

	

	
	
	
	

MEAP	Edition	
Manning	Early	Access	Program	
React	Native	in	Action	

Developing	iOS	and	Android	Apps	with	JavaScript	
Version	8	

	
	
	
	
	

Copyright	2017	Manning	Publications	
	
	

For	more	information	on	this	and	other	Manning	titles	go	to	

www.manning.com	

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

Licensed to Hans Otten <hans.otten@autodata.net>

http://www.manning.com
https://forums.manning.com/forums/react-native-in-action
http://www.manning.com
https://forums.manning.com/forums/react-native-in-action

welcome
Thank you for purchasing React Native in Action! With the growing demand for app
development and the increasing complexity that app development entails, React Native comes
along at a perfect time, making it possible for developers to build performant cross platform
native apps much easier than ever before, all with a single programming language: JavaScript.
This book gives any iOS, Android, or web developer the knowledge and confidence to begin
building high quality iOS and Android apps using the React Native Framework right away.

When React Native was released in February of 2015, it immediately caught my attention,
as well as the attention of the lead engineers at my company. At the time, we were at the
beginning stages of developing a hybrid app using Cordova. After looking at React Native, we
made the switch and bet on React Native as our existing and future app development
framework. We have been very pleased at the ease and quality of development that the
framework has allowed the developers at our company, and I hope that once you are finished
reading this book, you will also have a good understanding of the benefits that React Native
has to offer.

Since I began working with React Native at its release, it’s been a pleasure to work with it
and to be involved with its community. I’ve spent much time researching, debugging,
blogging, reading, building things with, and speaking about React Native. In my book, I boil
down what I have learned into a concise explanation of what React Native is, how it works,
why I think it’s great, and the important concepts needed to build high quality mobile apps in
React Native.

Any developer serious about app development or wanting to stay ahead of the curve
concerning emerging and disruptive technologies should take a serious look at React Native,
as it has the potential to be the holy grail of cross-platform app development that many
developers and companies have been hoping for.

—Nader Dabit

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

brief contents
PART 1: GETTING STARTED WITH REACT NATIVE

 1 Getting started with React Native

 2 Understanding React

 3 Building your first React Native App

PART 2: REACT NATIVE APPLICATION DEVELOPMENT

 4 Introduction to styling

 5 Styling in depth

 6 Cross-platform component

 7 Navigation

 8 Cross-platform APIs

 9 iOS-specific components and APIs

10 Android-specific components and APIs

11 Working with network requests

12 Animations

PART 3: DATA ARCHITECTURES & TESTING

13 Data architectures

14 Testing

APPENDIXES

 A Installing and running React Native

 B Resources

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

1
Getting started with React Native

This chapter covers

• Introducing React Native
• The strengths of React Native
• Creating components
• Creating a starter project

Native mobile application development can be complex. With the complicated environments,
verbose frameworks, and long compilation times, developing a quality native mobile
application is no easy task. It’s no wonder that the market has seen its share of solutions
come onto the scene that attempt to solve the problems that go along with native mobile
application development, and try to somehow make it easier.

At the core of this complexity is the obstacle of cross platform development. The various
platforms are fundamentally different and do not share much of the same development
environments, APIs, or code. Because of this, you must have separate teams working on each
platform, which is both expensive and inefficient.

This is where React Native stands out. React Native is an extraordinary technology. It will
not only improve the way you work as a mobile developer, it will change the way you build
and reason about mobile application development, and how you organize your engineering
team.

This is a very exciting time in mobile application development. We are witnessing a new
paradigm in the mobile development landscape, and React Native is on the forefront of this
shift in how we build and engineer our mobile applications, as it is now possible to build native
performing cross platform apps as well as web applications with a single language and team.
With the rise of mobile devices and the subsequent increase in demand of talent driving

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

1

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

developer salaries higher and higher, React Native brings to the table a framework that offers
the possibility of being able to deliver quality applications across all platforms at a fraction of
the time and cost while still delivering a high quality user experience and a delightful
developer experience.

1.1 Introducing React and React Native
React Native is a framework for building native mobile apps in JavaScript using the React
JavaScript library and compiles to real native components. If you’re not sure what React is, it
is a JavaScript library open sourced by and used within Facebook, and was originally used to
build user interfaces for web applications. It has since evolved and can now also be used to
build server side and mobile applications (using React Native).

React Native has a lot going for it. Besides being backed and open sourced by Facebook, it
also has a tremendous community of motivated people behind it. Facebook groups, with its
millions of users, is powered by React Native as well as Facebook Ads Manager. Discord and
li.st are also built with React Native and Discovery VR has harnessed the framework to build a
beautiful and complex virtual reality video application.

With React Native, developers can build native views and access native platform-specific
components using JavaScript. This sets React Native apart from hybrid app frameworks, as
hybrid apps package a web view into a native application and are built using HTML & CSS.

There are many benefits to choosing React Native as a mobile application framework.
Because the application renders native components and APIs directly, the speed and
performance are much better than hybrid frameworks such as Cordova or Ionic. With React
Native we are writing our entire application using a single programming language, Javascript,
so a lot of code can be reused, therefore reducing the time it takes to get a cross platform
application shipped. Hiring and finding quality JavaScript developers is much easier and
cheaper than hiring Java or Objective C / Swift developers, leading to an overall less
expensive process.

React Native applications are built using JavaScript and JSX. JSX is something we will be
discussing in depth in this book, but for now think of it as a JavaScript syntax extension that
looks like html or xml.

1.1.1 A Basic React Native Class

Components are the building blocks of a React Native application. The entry point of your
application is a component that requires other components. These components may also
require other components and so on and so forth.

There are two main types of React Native components, stateless and stateful.

Listing 1.1 Stateful component using React.createClass

var HelloWorld = React.createClass({
 render () {
 return (

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

2

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

<SomeComponent />
)
 }
})

Listing 1.2 Stateful component using ES6 class

class HelloWorld extends React.Component ({
 render () {
 return (
<SomeComponent />
)
 }
})

Listing 1.3 Stateless component

const HelloWorld = () => (
 <SomeComponent />
)

The main difference is that the stateless components do not hook into any lifecycle methods
and therefore hold no state of their own, so any data to be rendered has to be passed down as
props. We will discuss all of this in depth later in this chapter, but for now, we will talk about
creating React Native components using ES6 classes.

To get started and begin understanding the flow of React Native, let’s walk through and go
over what happens when a basic React Native Component class is created and rendered
(figure 1.1, listing 1.4).

Figure 1.1 Rendering a React Native class

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

3

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Listing 1.4 Creating a basic Reacct Native class component

import React from 'react'
import { View, Text, StyleSheet } from 'react-native'

class HelloWorld extends React.Component {
 constructor () { ❶
 super()
 this.state = {
 name: 'React Native in Action'
 }
 }
 componentWillMount () { ❷
 console.log('about to mount..')
 }
 componentDidMount () { ❹
 console.log('mounted..')
 }
 render () { ❸
 return (
<View style={styles.container}>
<Text>{this.state.name}</Text>
</View>
)
 }
}

const styles = StyleSheet.create({
 container: {
 marginTop: 100,
 flex: 1
 }
})

Something to keep in mind when we discuss the following methods it the concept of mounting. When a

component is mounted, or created, the react component lifecycle is instantiated, triggering the methods we

used above and will discuss below.

At the top of the file, we require React from 'react', as well as View, Text, and StyleSheet
from 'react-native'. View is the most fundamental build block for building React Native
components and the UI in general, and can be thought of like a div in HTML. Text allows us to
create text elements and is comparable to a span tag in HTML. StyleSheet allows us to create
style objects to use in our application. These two packages (react and react-native) are
available as npm modules.

When the component first loads, we set a state object with the variable name in the
constructor (❶) . For data in a React Native application to be dynamic, it either needs to be
set in the state or passed down as props. Here, we have set the state in the constructor and
can therefore change it if we would like by calling:

this.setState({
 name: 'Some Other Name'
})

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

4

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

which would rerender the component. If we did not set the variable in the state, we would not
be able to update the variable in the component.

The next thing to happen in the lifecycle is componentWillMount is called (❷)
.componentWillMount is called before the rendering of the UI occurs.

render is then called (❸) , which examines props and state and then must return either a
single React Native element, null, or false. This means that if you have multiple child
elements, they must be wrapped in a parent element. Here the components, styles, and data
are combined to create what will be rendered to the UI.

The final method in the lifecycle is componentDidMount (❹) . If you need to do any api
calls or ajax requests to reset the state, this is usually the best place to do so.

Finally, the UI is rendered to the device and we can see our result.

1.1.2 React Lifecycle

When a React Native Class is created, there are methods that are instantiated that we can
hook into. These methods are called lifecycle methods, and we will cover them in depth in
chapter 2. The methods we saw in figure 1.1were constructor, componentWillMount,
componentDidMount, and render, but there are a few more and they all have their own use
cases.

Lifecycle methods happen in sync, and help manage the state of components as well as
execute code at each step of the way if we would like. The only lifecycle method that is
required is the render method, all of the others are optional.

When working with React Native, we are fundamentally working with the same lifecycle
methods and specifications as one would use when using React.

1.2 What You Will Learn
In this book, we will cover everything you will need to know to build robust mobile applications
for iOS and Android using the React Native framework.

Because React Native is built using the React library, we will begin by covering and
thoroughly explaining how React works in Chapter 2.

We will then cover styling, touching on most of the styling properties available in the
framework. Because React Native uses flexbox for laying out the UI, we will dive deep into
how flexbox works and discuss all of the flexbox properties.

We will then go through all of the native components that come with the framework out of
the box and walk through how each of them works. In React Native, a component is basically
a chunk of code that provides a specific functionality or UI element and can easily be used in
the application. Components will be covered extensively throughout this book as they are the
building blocks of a React Native application.

There are many ways to implement navigation, each with their nuances, pros and cons.
We will discuss navigation in depth and cover how to build robust navigation using the most
important of the navigation APIs. We will be covering not only the native navigation APIs that

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

5

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

come out of the box with React Native, but also a couple of community projects available
through npm.

After learning navigation, we will then cover both cross platform and platform specific APIs
available in React Native and discuss how they work in depth.

It will then be time for us to start working data using network requests, async storage (a
form of local storage), firebase, and websockets.

After that we will dive into the different data architectures and how each of them works to
handle the state of our application

Finally, we will take a look at testing and a few different ways to do so in React Native.

1.3 What You Should Know
To get the most out of this book, you should have a beginner to intermediate knowledge of
JavaScript. Much of our work will be done with the command line, so a basic understanding of
how to use the command line is also needed. You should also understand what npm is and
how it works on at least a fundamental level. If you will be building in iOS, a basic
understanding of Xcode is beneficial and will speed things along, but is not absolutely
necessary. Fundamental knowledge of newer JavaScript features implemented in the es2015
release the JavaScript programming language is beneficial but not necessary. Some
conceptual knowledge on MVC frameworks and Single Page Architecture is also good but not
absolutely necessary.

1.4 Understanding how React Native works

1.4.1 JSX

React and React native both encourage the use of JSX. JSX is basically a preprocessor step
that adds an XML like syntax to JavaScript. You can build React Native components without
JSX, but JSX makes React and React Native a lot more readable, easier to read, and easier to
maintain. JSX may seem strange at first, but it is extremely powerful and most people grow to
love it.

1.4.2 Threading

All JavaScript operations, when interacting with the native platform, are done on separate a
thread, allowing the user interface as well as any animations to perform smoothly. This thread
is where the React application lives, and all API calls, touch events, and interactions are
processed. When there is a change to a native-backed component, updates are batched and
sent to the native side. This happens at the end of each iteration of the event-loop. For most
React Native applications, the business logic runs on the JavaScript thread.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

6

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

1.4.3 React

A great feature of React Native is that is uses React. React is an open-source JavaScript
library that is also backed by Facebook. It was originally designed to build applications and
solve problems on the web. This framework has become extremely popular and used since its
release, with companies such as Airbnb, Box.com, CodeAcademy, and Dropbox taking
advantage of its quick rendering, maintainability, and declarative UI among other things.
Traditional DOM manipulation is very slow and expensive in terms of performance, and should
be minimized. React bypasses the traditional DOM with something called the ‘Virtual DOM’.
The Virtual DOM is basically a copy of the actual DOM in memory, and only changes when
comparing new versions of the Virtual Dom to old versions of the Virtual DOM. This allows the
minimum number of DOM operations needed to achieve the new state.

1.4.4 Unidirectional data flow

React and React Native emphasize unidirectional, or one way data flow. Because of how React
Native applications are build, this one way data flow is easy to achieve.

1.4.5 Diffing

React takes this idea of diffing and applies it to native components. It takes your UI and sends
the smallest amount of data to the main thread to render it with native components. Your UI
is declaratively rendered based on the state, and React uses diffing to send the necessary
changes over the bridge.

1.4.6 Thinking in components

When building your UI in React Native, it is useful to think of your application being as
composed of a collection of components, and then build your UI with this in mind. If you think
about how a page is set up, we already do this conceptually, but instead of component names,
we normally use concepts, names or class names like header, footer, body, sidebar, and so
on. With React Native, we can give these components actual names that make sense to us
and other developers who may be using our code, making it easy to bring new people into a
project, or hand a project off to someone else. Let’s take a look at an example mockup that
our designer has handed us. We will then think of how we can conceptualize this into
components.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

7

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Figure 1.2 Final example app design / structure

The first thing to do is to mentally break the UI elements up into what they actually represent.
So, in the above mockup, we have a header bar, and within the header bar we have a title and
a menu button. Below the header we have a tab bar, and within the tab bar we have three
individual tabs. Go through the rest of the mockup and think of what the rest of the items
might be as well. These items that we are identifying will be translated into components. This
is the way you should think about composing your UI. When working with React Native, you
should break down common elements in your UI into reusable components, and define their
interface accordingly. When you need this element any time in the future, it will be available
for you to reuse.

Breaking up your UI elements in to reusable components is not only good for code reuse,
but will also make your code very declarative and understandable. For instance, instead of
twelve lines of code implementing a footer, the element could simply be called footer. When
looking at code that is built in this way, it is much easier to reason about and know exactly
what is going on.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

8

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Let’s take a look at how the design in Figure 1.2 could be broken up in the way we just
described:

Figure 1.3 App structure broken down into separate components

The names I have used here could be whatever makes sense to you. Look at how these items
are broken up and some of them are grouped together. We have logically separated these
items into individual and grouped conceptual components. Next, let’s see how this would look
using actual React Native code.

First, let’s look at how the main UI elements would on our page:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

9

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

<Header />
<TabBar />
<ProjectList />
<Footer />

Next, let’s see how our child elements would look:

TabBar:

 <TabBarItem />
 <TabBarItem />
 <TabBarItem />

ProjectList:
 // Loop through projects array, for each project return:
 <Project />

As you can see, we have used the same names that we declared in figure 1.3, though they
could be whatever makes sense to you.

1.5 Acknowledging the strengths
As discussed earlier, one of the main strengths React Native has going for it is that is that it
uses React. React, like React Native, is an open source project that is backed by Facebook. As
of the time of this writing, React has over 45,000 stars and 700contributors on Github, which
shows that there is a lot of interest and community involvement in the project, making it
easier to bet on as a developer or as a project manager. Because React is developed and
maintained and used by Facebook, it has some of the most talented engineers in the world
overseeing it, pushing it forward and adding new features, and it will probably not be going
anywhere anytime soon.

1.5.1 Developer availability

With the rising cost and falling availability of native mobile developers, React Native enters the
market with a key advantage over native development: it leverages the wealth of existing
talented web and JavaScript developers and gives them another platform in which to build
without having to learn a new language.

1.5.2 Developer productivity

Traditionally, to build a cross platform mobile application, you needed both an Android team
as well as an iOS team. React Native allows you to build your both Android, iOS, and soon
Windows applications using only a single programming language, JavaScript, and possibly
even a single team, dramatically decreasing development time and development cost, while
increasing productivity. As a native developer, the great thing about coming to a platform like
this is the fact that you are no longer tied down to being only an Android or iOS developer,
opening the door for a lot of opportunity. This is great news for JavaScript developers as well,

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

10

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

allowing them to spend all of their time in one state of mind when switching between web and
mobile projects. It is also a win for teams who were traditionally split between Android and
iOS, as they can now work together on a single codebase.

To underscore these points, you can also share your data architecture not only cross
platform, but also on the web, if you are using something like Redux, which we will look at in a
later chapter.

1.5.3 Performance

If you follow other cross platform solutions, you are probably aware of solutions such as
PhoneGap, Cordova and Ionic. While these are also viable solutions, the overall consensus is
that the performance has not yet caught up to the experience a native app delivers. This is
where React Native also really shines, as the performance is usually unnoticeable from that of
a native mobile app built using Objective-C or Java.

1.5.4 One-way data flow

One-way data flow separates React and React Native from not only most other JavaScript
frameworks, but also any MVC framework. React differs in that it incorporates a one-way data
flow, from top-level components all the way down. This makes applications much easier to
reason about, as there is one source of truth for your data layer as opposed to having it
scattered about your application. We will look at this in more detail later in the book.

Figure 1.4 Explanation of how one-way data flow works

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

11

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

1.5.5 Developer experience

The developer experience is a major win for React Native. If you’ve ever developed for the
web, you’re aware of the snappy reload times of the browser. Web development has no
compilation step, just refresh the screen and your changes are there. This is a far cry from
long the compile times of native development. One of the reasons Facebook decided to
develop React Native was the lengthy compile times the Facebook application was giving
them. Even if they needed to make a small UI change, or any change, they would have to wait
a long time while the program compiled to see the results. This long compilation time results
in decreased productivity and increased developer cost. React Native solves this issue by
giving you the quick reload times of the web, as well as Chrome and Safari debugging tools,
making the debugging experience feel a lot like the web.

React Native also has something called Hot Reloading built in. What does this mean? Well,
while developing an application, imaging having to click a few times into your app to get to the
place in your app that you are developing for. While using Hot Reloading, when you make a
code change, you do not have to reload and click back through the app to get to the current
state. While using this feature in React Native, you simply save the file and the application
reloads only the component which you have made changes to, instantly giving you feedback
and updating the current state of the ui without having to click back through the app to get to
the state you are working in.

1.5.6 Transpilation

Transpilation is typically when something known as a transpiler takes source code written in
one programming language and produces the equivalent code in another language. With the
rise of new EcmaScript features and standards, transpilation has spilled over to also include
taking newer versions and yet to be implemented features of certain languages, in our case
JavaScript, and producing compiled standard JavaScript, making the code usable by platforms
that can only process older versions of the language.

React Native uses Babel to do this transpilation step, and it is built in by default. Babel is
an open source tool that transpiles the most bleeding edge JavaScript language features in to
code that can be used today. This means that we do not have to wait for the bureaucratic
process of language features being proposed, approved, and then implemented before we can
use them. We can start using it as soon as the feature makes it into Babel, which is usually
very quickly. JavaScript classes, arrow functions and object destructuring are all examples of
powerful ES2015 features that have not made it into all browsers and runtimes yet, but with
Babel and React Native, you can use them all today with no worries about whether or not they
will work. If you like this, it is also available on the web.

1.5.7 Productivity and efficiency

Native mobile development is becoming more and more expensive, and because of this,
engineers who can deliver applications across platforms and stacks will become extremely

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

12

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

valuable and in demand. Once React Native, or something like it if it comes along, makes
developing desktop and web as well as mobile applications using a single framework
mainstream, there will be a restrucuring and rethinking of how engineering teams are
organized. Instead of a developer being specialized in a certain platform, such as iOS or web,
they will be in charge of features across platforms. In this new era of cross platform and cross
stack engineering teams, developers delivering native mobile, web, and desktop applications
will be more productive and efficient and will therefore be able to demand a higher wage than
a traditional web developer only able to deliver web applications.

Companies that are hiring developers for mobile development stand to benefit the most
out of using React Native. Having everything written in once language makes hiring a lot
easier and less expensive. Productivity also soars when your team is all on the same page,
working within a single technology, which makes collaboration and knowledge sharing easier.

1.5.8 Community

The React community, and by extension the React Native community, is one of the most open
and helpful groups I have ever interacted with. When running into issues that I have not been
able to resolve on my own, by searching online or Stack Overflow, I have reached out directly
to either a team member or someone in the community and have had nothing but positive
feedback and help.

1.5.9 Open source

React Native is open source. This offers a wealth of benefits. First of all, in addition to the
Facebook team there are hundreds of developers that contribute to React Native. If there are
bugs, they are pointed out much faster than proprietary software, which will only have the
employees on that specific team working on bug fixes and improvements. Open source usually
gets closer to what users really want because the users themselves can have a hand in
actually making the software what they want it to be. Between the cost of purchasing
proprietary software, licensing fees, and support costs, open source also wins when measuring
price.

1.5.10 Immediate updates

Traditionally when publishing new versions of an app, you are at the mercy of the app store
approval process and schedule. This is a long a tedious process, and can take up to two
weeks. If and when you have a change, even if it is something extremely small, it is a painful
process to release a new version of your application. React Native, as well as hybrid
application frameworks, allow you to deploy mobile app updates directly to the user’s device,
without going through and app store approval process. If you are used to the web, and the
rapid release cycle it has to offer, you can now also do this with React Native and other hybrid
application frameworks.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

13

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

1.5.11 Drawbacks

Now that we’ve gone over all of the benefits of using React Native, let’s take a look at a few
reasons and circumstances where you may not want to choose the framework.

First, React Native is still immature when compared with other platforms such as native
iOS and Android, as well as Cordova. The feature parity is not there yet with either native or
Cordova. While most functionality is now built in, there may be times where you need some
functionality that is not yet available, and this means you will either have to dig into the native
code to build it yourself, hire someone to do it, or not implement the feature at all.

Another thing to think about is the fact that you and or your team will have to learn a
completely new technology if you are not already familiar with React. While most people seem
to agree that React is easy to pick up, if you are already proficient with Angular and Ionic, for
example, and you have an application deadline coming up, it may be wise to go with what you
already know instead of spending the time it takes to learn and train your team on a new tech.

In addition to learning React and React Native, you must also become familiar with Xcode
and the android development environments, which can take some getting used to as well.

Finally, React Native is just a complex abstraction built on top of existing platform APIs.
This means that when newer version of iOS, Android, or other future platforms are released,
there may be a time when React Native will be behind on the new features released with the
newer version of the other platforms, forcing you to have to either build custom
implementations to interact with these new APIs or wait until React Native regains feature
parity with the new release.

1.5.12 Conclusion

React Native has come a long way at a fast pace. Considering all of the knowledgeable people
both in the community and at Facebook working together to improve React Native, I do not
see any serious roadblocks stopping the team and the community from handling most issues
that have not yet been addressed, or that may have yetcome up. Many companies are betting
big on this framework, yet many have chosen to stay native or hybrid at the moment. It would
be a good idea to look at your individual situation and see what type of mobile implementation
works best for you, your company, or your team.

1.6 Creating and using basic components
Components are the fundamental building blocks in React Native, and they can vary in
functionality and type. Examples of components in popular use cases could be a button,
header, footer, or navigation component. They can vary in type from an entire View, complete
with its own state and functionality, all the way to a single stateless component that receives
all of its props (properties) from its parent.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

14

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

1.6.1 Components

At the core of React Native is the concept of components. React Native has built in
components that you will see me describe as Native components, and you will also build
components using the framework. Components are a collection of data and UI elements that
make up your views and ultimately your application. We will go in depth on how to build,
create and use components in this book.

As we mentioned earlier, React Native components are built using JSX. Let’s run through a
couple of basic examples of what JSX in React Native looks like vs HTML:

Table 1.1 JSX components vs HTML elements

1. Text Component

HTML React Native JSX

Hello World

<Text>Hello World</Text>

2.View Component

HTML React Native JSX

<div>
Hello World 2
</div>

<View>
<Text>Hello World 2</Text>
</View>

3. Touchable Highlight

HTML React Native JSX

<button>
Hello World 2
</button>

<TouchableHighlight>
<Text>Hello World 2</Text>
</TouchableHighlight>

As you can see in table 1.1, JSX looks very similar to HTML or XML.

1.6.2 Native components

The framework offers native components out of the box, such as View, Text, and Image,
among others. We will create our own components using these Native components as building
blocks. For example, we may use the following markup to create our own Button component
using React Native TouchableHighlight, and Text components (listing 1.5).

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

15

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Listing 1.5 Creating button component

const Button = () => (
 <TouchableHighlight>
 <Text>Hello World</Text>
 </TouchableHighlight>
)
export default Button

We can then import and use our new button like this (listing 1.6).

Listing 1.6 Importing and using Button component

Import React from 'react'
Import { Text, View } from 'react-native'
import Button from './pathtobutton'
const Home = () => (
 <View>
 <Text>Welcome to the Hello World Button!</Text>
 <Button />
 </View>
)

Next, we will go through the fundamentals of what a component is, how they fit into the
workflow, as well as common use cases and design patterns for building them.

1.6.3 Component composition

While components are usually composed using JSX, they can also be composed using
JavaScript. They can be stateful, or since the release of React 0.14, stateless.

Below, we will be creating a component in a number of different ways so we can go over
all of the options when creating components.

We’ll be creating this component:

<MyComponent />

This component simply outputs ‘Hello World’ to the screen. Now, let’s look at how we can build
this basic component. The only out of the box components we will be using to build this
custom component are the View and Text elements we discussed earlier. Remember, a <View>
component is similar to an html <div>, and a <Text> component is similar to an html .

Let’s take a look at a few ways that you can create a component.

1. CREATECLASS SYNTAX (ES5, JSX)

This is the way to create a React Native component using es5 syntax. While you will probably
still see this syntax in use a lot on the web and in some older documentation, this syntax is
not being used as much in newer documentation and most of the community seems to be
heading to using the es2015 class syntax. Because of this, we will be focusing on the ES2015
class syntax for most of the rest of the book.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

16

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

The entire application does not have to be consistent in its component definitions, but it is usually

recommended that you do try to stay mostly consistent with either one or the other.

const React = require('react')
const ReactNative = require('react-native')
const{View,Text} = ReactNative

const MyComponent = React.createClass({
 render() {
 return (
 <View>
 <Text>Hello World</Text>
 </View>)
 }
})

2. CLASS SYNTAX (ES2015, JSX)

Another way to create React Native components is using ES2015 classes. This is the way we
will be creating our stateful components for the rest of the book and is now the recommended
way to do so by the community and creators of React Native, though we will be using stateless
components whenever we can.

import React from ‘react’
import {View,Text} from ‘react-native’

class MyComponent extends React.Component {
 render() {
 return (
 <View>
 <Text>Hello World</Text>
 </View>)
 }
}

3. STATELESS (REUSABLE) COMPONENT (JSX)

Since the release of React 0.14, we have had the ability to create what are called stateless or
reusable components. We have yet dived into state, but just remember that these
components are basically pure functions of their props, and do not contain their own state, so
their state cannot be mutated. This syntax is much cleaner than the class or createClass
syntax.

import React from 'react'
import {View,Text} from 'react-native'

const MyComponent = () => (
 <View>
 <Text>Hello World</Text>
 </View>
)

or

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

17

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

import React from 'react'
import {View,Text} from 'react-native'

function MyComponent () {
 return <Text>HELLO FROM STATELESS</Text>
}

4. CREATEELEMENT (JAVASCRIPT)

React.createElement is rarely used, and you will probably never need to create a React
Native element using this syntax, but may come in handy if you ever need more control over
how you are creating your component or you are reading someone else’s code. It will also give
you a look at how JavaScript compiles JSX.

React.createElement takes a few arguments:

React.createElement(class type, props, children) {}

Let’s walk through these arguments:

• class type: The element you want to render
• props: any properties you want the component to have
• children: child components or text

As you can see below, we pass in a View as the first argument to the first instance of
React.createElement, an empty object as the second argument, and another element as the
last argument.

In the second instance, we pass in Text as the first argument, an empty object as the
second argument, and “Hello” as the final argument.

class MyComponent extends React.Component {
render() {
 return (
 React.createElement(View, {},
 React.createElement(Text, {}, "Hello")
)
)
 }
}

Which is the same as declaring the component like this:

class MyComponent extends React.Component {
 render () {
 return (
 <View>
 <Text>Hello</Text>
 </View>
)
 }
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

18

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

1.6.4 Exportable components

Next, let’s look at another more in depth implementation of a React Native component. Let’s
create an entire component that we can export and use in another file. We will walk through
each piece of this code:

import React, { Component } from ‘react’
import {
 Text,
 View
} from ‘react-native’

class Home extends Component {
 render() {
 return (
 <View>
 <Text>Hello from Home</Text>
 </View>)
 }
}

export default Home

Let’s go over all of the different pieces that make up the above component, and discuss what’s
going on.

IMPORTING

The following code imports and React Native variable declarations:

import React, { Component } from 'react'
import {
 Text,
 View
} from 'react-native'

Here, we are importing React directly from the React library, and importing Component using
ES6 object destructuring from the React library. We are also using ES6 object destructuring
and an import statement to pull Text, and View into our file.

The import statement using ES5 would look like this:

varReact = require(‘react’)

The above statement without object destructuring would look like this:

import React = from 'react'
constComponent = React.Component
import ReactNative from 'react-native'
constText = ReactNative.Text
constView = ReactNative.View

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

19

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

The import statement is used to import functions, objects, or variables that have been
exported from another module, file, or script.

COMPONENT DECLARATION

The following code declares the component:

class Home extends Component { }

Here we are creating a new instance of a React Native Component class by extending it, and
naming it Home. As you can see, before we declared React.Component, we are now just
declaring Component. This is because we have imported the Component element in the object
destructuring statement, giving us access to Component as opposed to having to call
React.Component.

THE RENDER METHOD

Next, take a look at the Render method:

render() {
 return (
 <View>
 <Text>Hello from Home</Text>
 </View>)
 }

The code for the component gets executed in the render method, and the content after the
return statement returns what is rendered on the screen. When the render method is called,
it should return a single child element. Any variables or functions declared outside of the
render function can be executed here. If you need to do any calculations, declare any
variables using state or props, or run any functions that do not manipulate the state of the
component, you can do so here in between the render() method and the return statement.

EXPORTS

Here, we export the component to be used elsewhere in our application. If you want to use
the component in the same file, you do not need to export it. After it is declared, you can use
it in your file, or export it to be used in another file. You may also use module.exports =
‘Home’ which would be es5 syntax.

export default Home

1.6.5 Combining components

Let’s look at how we might combine components. First, let’s create a Home, Header and
Footer component. In a single file, let’s start by creating the Home Component:

import React, { Component } from 'react'
 import {

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

20

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

 Text,
View
} from 'react-native'

class Home extends Component {
 render() {
 return (
 <View>

 </View>)
 }
 }

In the same file, below the Home class declaration, let’s start by building out a Header
component:

class Header extends Component {
 render() {
 return <View>
 <Text>HEADER</Text>
 </View>
 }
 }

This looks nice, but let’s rewrite the Header into a stateless component. We will discuss when
and why it is good to use a stateless component versus a regular React Native class in depth
later in the book. As you will begin to see, the syntax and code is much cleaner when we use
stateless components:

const Header =() => (
 <View>
 <Text>HEADER</Text>
 </View>
)

Now, let’s insert our Header into our Home component:

class Home extends Component {
 render() {
 return (
 <View>
 <Header />
 </View>
)
 }
}

We’ll then create a Footer and a Main view as well:

constFooter =() => (
 <View>
 <Text>Footer</Text>
 </View>
)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

21

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

constMain=() => (
 <View>
 <Text>Main</Text>
 </View>
)

Now, we’ll just drop those into our application:

class Home extends Component {
 render() {
 return (
 <View>
 <Header />
 <Main />
 <Footer />
 </View>
)
 }
}

As you can see, the code we just wrote is extremely declarative, meaning it’s written in such a
way that it describes what you want to do, and is easy to understand in isolation.

This is a very high level overview of how we will be creating our components and views in
React Native, but should give you a very good idea of how the basics work.

1.7 Creating a starter project
Now that we have gone over a lot of basic details about React Native, let’s start digging into
some more code. The best way to get started is by looking at the starter project that the
React Native CLI gives you and going through it piece by piece, and explaining what
everything does and means.

Before we go any further, make sure you see the appendix to make sure you have the
necessary tools installed on your machine.

To get started with the React Native starter project and the React Native CLI, open your
command line and then create and navigate to an empty directory. Once you are there, install
the react-native cli globally by typing the following:

npm install -g react-native-cli

After React Native is installed on your machine, you can initialize a new project by typing
react-native init followed by the project name:

react-native init myProject

myProject can be any name that you choose.
The CLI will then spin up a new project in whatever directory you are in. Once this has

finished, open up the project in a text editor.
First, let’s take a look at the files and folders this has generated for us:

• android – This folder contains all of the android platform specific code and

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

22

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

dependencies. You will not need to go into this folder unless you are either
implementing a custom bridge into android, or if you install a plugin that calls for some
type of deep configuration

• ios - This folder contains all of the ios platform specific code and dependencies. You will
not need to go into this folder unless you are either implementing a custom bridge into
android, or if you install a plugin that calls for some type of deep configuration

• node_modules – React Native uses something called npm (node package manager) to
manage dependencies. These dependencies are identified and versioned in the
.package.json file, and stored in the node_modules folder. When you install any new
packages from the npm / node ecosystem, they will go in here

• .flowconfig – Flow (also open sourced by Facebook) offers type checking for JavaScript.
Flow is similar to Typescript, if you are familiar with that. This file is the configuration
for flow, if you choose to use it.

• .gitignore – This is the place to store any file paths that you do not want in version
control

• .watchmanconfig – Watchman is a file watcher that React Native uses to watch files
and record when they change. This is the configuration for Watchman. No changes to
this will be needed except for rare use cases.

• .index.android.js- this is the entry point for the Android build of the application. When
you run your Android application, this is the first JavaScript file to get executed.

• .index.ios.js- This is the entry point for the iOS build of the application. When you run
your iOS application, this is the first JavaScript file to get executed.

• .package.json- This file holds all of our npm configuration. When we npm install files,
we can save them here as dependencies. We can also set up scripts to run different
tasks.

Now, let’s take a look at one of the index files. Open either index.ios.js or index.android.js:

Listing 1.7Index.ios.js / index.android.js

/**
 * Sample React Native App
 * https://github.com/facebook/react-native
 */
'use strict';
import React, {
 AppRegistry,
 Component,
 StyleSheet,
 Text,
 View
} from 'react-native';
class book extends Component {
 render() {
 return (
 <View style={styles.container}>
 <Text style={styles.welcome}>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

23

Licensed to Hans Otten <hans.otten@autodata.net>

https://github.com/facebook/react-native
https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

 Welcome to React Native!
 </Text>
 <Text style={styles.instructions}>
 To get started, edit index.ios.js
 </Text>
 <Text style={styles.instructions}>
 Press Cmd+R to reload,{'\n'}
 Cmd+D or shake for dev menu
 </Text>
 </View>
);
 }
}
const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center',
 backgroundColor: '#F5FCFF',
 },
 welcome: {
 fontSize: 20,
 textAlign: 'center',
 margin: 10,
 },
 instructions: {
 textAlign: 'center',
 color: '#333333',
 marginBottom: 5,
 },
});

AppRegistry.registerComponent('book', () => book);

As you can see, the above codelooks very similar to what we went over in the last section.
There are a couple of new items we have not yet seen:

StyleSheet
AppRegistry

StyleSheet is an abstraction similar to CSS stylesheets. In React Native you can declare
styles either inline or using Stylesheets. As you can see in the first view, there is a container
style declared:

<View style={styles.container}>

This corresponds directly to:

container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center',
 backgroundColor: '#F5FCFF',
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

24

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

At the bottom of the file, you see

AppRegistry.registerComponent('book', () => book);

This is the JavaScript entry point to running all React Native apps. In the index file is the only
place you will be calling this function. The root component of the app should register itself with
AppRegistry.registerComponent(). The native system can then load the bundle for the app
and then actually run the app when it is ready.

Now that we have gone over what is in the file, let’s run the project in either our iOS
simulator or our Android emulator.

Figure 1.5 React Native starter project – what you should see after running the starter project on the emulator.

In the Text element that contains ‘Welcome to React Native’, replace that with ‘Welcome to
Hello World!’ or some text of your choice. Refresh the screen. You should see your changes.

1.8 Summary
• React Native is a framework for building native mobile apps in JavaScript using the

React JavaScript library.
• Some of React Native’s strengths are its performance, developer experience, ability to

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

25

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

build cross platform with a single language, one-way data flow, and community. You
may consider React Native over hybrid mainly because of its performance, and over
Native mainly because of the developer experience and cross platform ability with a
single language.

• JSX is a preprocessor step that adds an XML like syntax to JavaScript. You can use JSX
to create a UI in React Native.

• Components are the fundamental building blocks in React Native. They can vary in
functionality and type. You can create custom components to implement common
design elements.

• Components can be created using either the ES2015 (class definition) syntax or the
ES5 (createClass) syntax, with the es2015 (class definition) syntax being widely
recommended and used by the community and in newer documentation.

• Stateless components can be created with less boilerplate for components that do not
need to keep up with their own state.

• Larger components can be created by combining smaller subcomponents together.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

26

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

2
Understanding React

This chapter covers

• State: how it works and why it is important
• Props: how it works and why it is important
• Understanding the React Component Specification and what it means
• Implementing and understanding React lifecycle methods

Now that we’ve gone over the basics, it’s time to dive into some other fundamental and
important pieces that make up React and React Native. We will be discussing how to manage
state and data, and how data is passed through an application. We will also dive deeper by
learning how to pass properties (props) between components, and how to manipulate these
properties from the top down.

After we are equipped with knowledge about state and props, we will go deeper into how
to use the built in React lifecycle methods. These methods will allow us to perform certain
actions when a component is created or destroyed. Understanding these methods is key to
understanding how React and React Native work and how fully take advantage of the
framework. The lifecycle methods are also conceptually the biggest part of React and React
Native.

You will see both React and React Native referenced in this chapter. Keep in mind that
when I am referencing React, I’ll be talking not about things that are specific to React Native,
but concepts that are related to both React and React Native. For example, state and props
work the same in both React and React Native, as do the React lifecycle and the React
component specifications.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

27

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

2.1 State
State and props are the way that data is handled and passed down in a React or React Native
application. First, we will look at state, and then props.

Table2.1 Props vs State

Props State

1) external data

2) immutable

3) inherited from parent

4) can be changed by parent component

5) can be passed down as props

6) cannot change inside component

1) internal data

2) mutable

3) created in the component

4) can only be updated in the component

5) can be passed down as props

6) can change inside component

2.1.1 STATE

State is a collection of values that a component manages. React thinks of UIS as simple state
machines. When the state of a component changes, React rerenders the component. If any
child components are inheriting this state as props, then all of the child components get
rerendered as well.

When building an application using React Native, understanding how state works is
fundamental because state determines how stateful components render and behave. state
also is what allows us to create components that are dynamic and interactive. The main point
to understand when differentiating between state and props is that state is mutable, while
props are immutable.

SETTING INITIAL STATE

State is initialized when the component is created, either in the getInitialState function
(React.createClass) or the constructor (ES2015 class). Once the state is initialized, it is then
available in the component as this.state.

The getInitialState function is invoked once before the component is mounted (listing
2.1). The returned value will be used as the state value. getInitialState will only work
when a component is instantiated with React.createClass, and not when using a
constructor. This is one of the React lifecycle methods. We will learn more about component
lifecycle methods and what it means for the component to be mounted in the next section, but
for now just understand that this function is called right before the component is created.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

28

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Listing 2.1 Setting state with getInitialState()

const MyComponent = React.createClass({
 getInitialState() {
 return {
 year: 2016,
 name: ‘Nader Dabit’,
 colors: [‘blue’]
 }
 },
 render() {
 return (
 <View>
 <Text>My name is: { this.state.name }</Text>
 <Text>The year is: { this.state.year }</Text>
 <Text>My colors are { this.state.colors[0] }</Text>
 </View>
)
 }
})

The constructor function is called the moment that a JavaScript class is instantiated (listing
2.2). This is not a React lifecycle method, but a regular JavaScript class method.

Listing 2.2 Setting state with a constructor (class syntax)

class MyComponent extends Component {
 constructor(){
 super()
 this.state = {
 year: 2016,
 name: ‘Nader Dabit’,
 colors: [‘blue’]
 }
 }
 render() {
 return (
 <View>
 <Text>My name is: { this.state.name }</Text>
 <Text>The year is: { this.state.year }</Text>
 <Text>My colors are { this.state.colors[0] }</Text>
 </View>
)
 }
 }

The constructor takes the place of the getInitialState method when defining the initial state in
a React component when defined as a class.

UPDATING STATE

State can be updated in one of two ways: setState and replaceState.

• setState merges the previous state with the current state.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

29

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

• replaceState will remove the entire previous state and replace it with whatever is
provided.

setState will be used unless there is an extreme circumstance where some keys need to be
removed from the state. We will not even go into an example of replaceState as the method is
not available on ES6 classes and will probably be removed entirely in a future version of
React, but it is worth knowing that it exists.

Let’s look at how to use setState (listing 2.3). To do so, we will introduce a new method, a
touch handler called onPress. onPress can be called on a few types of ‘tappable’ React Native
components, but here we will be attaching it to a Text component to get us started with this
basic example. We will be calling a function called updateYear when the Text component is
pressed that will update our state with setState. This function will be defined before our render
function, as it is usually best practice to define any custom methods before the render
method, but keep in mind that the order of the definition of the functions does not affect the
actual functionality.

Listing 2.3 Updating state

 class MyComponent extends Component {
 constructor(){
 super()
 this.state = {
 year: 2016,
 }
 }
 updateYear() {
 this.setState({
 year: 2017
 })
 }
 render() {
 return (
 <View>
 <Text
 onPress={() => this.updateYear()}>
 The year is: { this.state.year }
 </Text>
 </View>
)
 }
 }

Every time setState is called, React will rerender the component (calling the render method
again), and any child components. Calling this.setState is the way to change a state
variable and trigger the render method again, as changing the state variable directly will not
trigger a rerender of the component and therefore no changes will be visible in the UI. A
common mistake for beginners is updating the state variable directly. For example, something
like what we are doing in listing 2.4 does not work when trying to update state. The state

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

30

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

object is updated, but the UI is not updated because setState was not called, and the
component does not get rerendered.

Listing 2.4 This does not work when updating state

class MyComponent extends Component{
 constructor(){
 super()
 this.state = {
 year: 2016,
 }
 }
 updateYear() {
 this.state.year = 2017
 }
 render() {
 return (
 <View>
 <Text
 onPress={() => this.updateYear()}>
 The year is: { this.state.year }
 </Text>
 </View>
)
 }
}

However, there is a method that is available in React that can force an update once a state
variable has been changed as we did above. This method is called forceUpdate(listing 2.5).
Calling forceUpdate will cause render() to be called on the component, therefore triggering a
rerendering of the UI.

Listing 2.5 Forcing rerender with forceUpdate()

class MyComponent extends Component {
 constructor(){
 super()
 this.state = {
 year: 2016,
 }
 }
 updateYear() {
 this.state.year = 2017
 }
 update() {
 this.forceUpdate()
 }
 render() {
 return (
 <View>
 <Text
 onPress={ () => this.updateYear() }>
 The year is: { this.state.year }
 </Text>
 <Text

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

31

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

 onPress={ () => this.update () }>Force Update
 </Text>
 </View>
)
 }
}

Now that we have gone over how to work with state using a basic string, let’s look at a few
other data types. We will attach a Boolean, array, and object to our state and use it in our
component. We will also conditionally show a component based on a Boolean in our state
(listing 2.6).

Listing 2.6 State with other data types

 class MyComponent extends Component {
 constructor(){
 super()
 this.state = {
 year: 2016,
 leapYear: true,
 topics: [‘React’, ‘React’, ‘JavaScript’],
 info: {
 paperback: true,
 length: ‘335 pages’,
 type: ‘programming’
 }
 }
 }
 render() {
 let leapyear = <Text>This is not a leapyear!</Text>
 if (this.state.leapYear) {
 leapyear = <Text>This is a leapyear!</Text>
 }
 return (
 <View>
 <Text>{ this.state.year }</Text>
 <Text>Length: { this.state.info.length }</Text>
 <Text>Type: { this.state.info.type }</Text>
 { leapyear }
 </View>
)
 }
 }

2.2 Props
props (short for properties) are a component’s inherited values or properties that have been
passed down from a parent component. props are immutable, and can only be changed by
changing the initial values at the top level where they are declared and passed down. props
can be either static or dynamic values when they are declared, but when they are inherited
they are immutable. React’s Thinking in React documentation says that props are best
explained as “a way of passing data from parent to child.”

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

32

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

A good way to explain how props work is to simply show an example. In listing 2.7, we will
declare a book value and pass it down to a child component as a static prop.

Listing 2.7 Static props

class MyComponent extends Component {
 render() {
 return (
 <BookDisplay book=”React Native in Action” />
)
 }
 }
 class BookDisplay extends Component {
 render() {
 return (
 <View>
 <Text>{ this.props.book }</Text>
 </View>
)
 }
}

As you can see, we’ve created two components: <MyComponent /> and <BookDisplay />.
When we use <BookDisplay />, we have passed in a property called book, and set it to a
string “React Native in Action”. Anything passed as a property in this way is available on the
child component as this.props.

You can also pass static properties like you would a dynamic variable, by using curly
braces and a string value (listing 2.8).

Listing 2.8 Displaying static props

class MyComponent extends Component {
 render() {
 return (
 <BookDisplay book={”React Native in Action”} />
)
 }
 }
 class BookDisplay extends Component {
 render() {
 return (
 <View>
 <Text>{ this.props.book }</Text>
 </View>
)
 }
 }

DYNAMIC PROPS

Next, let’s pass a dynamic property to our component.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

33

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

In our render method, before the return statement, let’s declare a variable “book” and
pass that variable in as a prop (listing 2.9).

Listing 2.9 Dynamic props

class MyComponent extends Component {
 render() {
 let book = “React Native in Action”
 return (
 <BookDisplay book={ book } />
)
 }
 }

 class BookDisplay extends Component {
 render() {
 return (
 <View>
 <Text>{ this.props.book }</Text>
 </View>
)
 }
 }

Now, let’s pass a dynamic property to our component using state (listing 2.10).

Listing 2.10 Dynamic props using state

class MyComponent extends Component {
 constructor() {
 super()
 this.state = {
 book “React Native in Action”
 }
 }
 render() {
 return (
 <BookDisplay book={this.state.book} />
)
 }
}
class BookDisplay extends Component {
 render() {
 return (
 <View>
 <Text>{ this.props.book }</Text>
 </View>
)
 }
}

Next, let’s look at how we may go about updating the state and therefore the prop that is
passed down. Remember, props are immutable, so we will be changing the state of the parent

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

34

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

component, which will update the props and trigger a rerender of both the component and the
child component.

Now, let’s break this idea up into individual parts and identify what needs to be done:

1. Declare state variable

this.state = {
 book: ‘React Native in Action’
}

2. Write function that will update state variable

updateBook() {
this.setState({
book: ‘Express in Action’
})
}

3. Pass the function and the state down to child component as prop

<BookDisplay
updateBook={ () => this.updateBook() }
book={ this.state.book } />

4. Attach function to touch handler in child component

<Text onPress={ this.props.updateBook }>

Ok, now that we know the pieces we need, let’s write all of the code to put this into action. We
will be using the components that we used in the previous examples, and adding the
additional functionality there (listing 2.11).

Listing 2.11 Updating dynamic props

 class MyComponent extends Component {
 constructor(){
 super()
 this.state = {
 book: ‘React Native in Action’
 }
 }
 updateBook() {
 this.setState({
 book: ‘Express in Action’
 })
 }
 render() {
 return (
 <BookDisplay
 updateBook={ () => this.updateBook() }
 book={ this.state.book } />
)
 }
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

35

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

 class BookDisplay extends Component {
 render() {
 return (
 <View>
 <Text
 onPress={ this.props.updateBook }>
 { this.props.book }
 </Text>
 </View>
)
 }
 }

DESTRUCTURING PROPS AND STATE

Constantly referring to state and props as this.state and this.props can get repetitive,
violating the dry (don’t repeat yourself) principle that many of us try to follow. To fix this, you
may try using destructuring here, the same way as we have been doing when we declare our
React components. Let’s write a component using destructuring (listing 2.12).

Listing 2.12 Destructuring state and props

class MyComponent extends Component {
 constructor(){
 super()
 this.state = {
 book: ‘React Native in Action’
 }
 }
 render() {
 const{ book } = this.state
 return (
 <BookDisplay
 updateBook={ () => this.updateBook() }
 book={ book } />
)
 }
 }
 class BookDisplay extends Component {
 render() {
 const{ book, updateBook } = this.props
 return (
 <View>
 <Text
 onPress={ updateBook }>
 { book }
 </Text>
 </View>
)
 }
 }

As you can see, we are now not having to refer to this.state or this.props in our actual
component when referencing our book, instead we have taken the book variable out of our

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

36

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

state and our props and can reference the variable itself, which also looks a lot cleaner. This
starts to make a lot more sense and will keep your code cleaner as your state and props get
larger and more complex.

PROPS WITH STATELESS FUNCTIONAL COMPONENTS

Because stateless components only have to worry about props, and do not have their own
state, they can be extremely useful when creating reusable components. Let’s see how props
are used in a stateless component.

To access props using a stateless component, simply pass in props as the first argument to
the function (listing 2.13).

Listing 2.13 Props with stateless components

constBookDisplay = (props) => {
 const{ book, updateBook } = props
 return (
 <View>
 <Text
 onPress={ updateBook }>
 { book }
 </Text>
 </View>
)
}

You can also destructure props in the function argument (listing 2.14).

Listing 2.14 Destructuring props in a stateless component

constBookDisplay = ({ updateBook, book }) => {
 return (
 <View>
 <Text
 onPress={ updateBook }>
 { book }
 </Text>
 </View>
)
}

As you can see, that looks a lot nicer and cleans up a lot of unnecessary code! We will be
using stateless components wherever we can, simplifying our code base and our logic.

PASSING ARRAYS AND OBJECTS AS PROPS

Other data types work exactly as you might expect. For example, if you would like to pass an
array, you simply pass in the array as a prop. If you would like to pass an object, you would
simply pass in the object as a prop. Let’s look at a basic example (listing 2.15).

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

37

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Listing 2.15 Passing other data types as props

 class MyComponent extends Component {
 constructor(){
 super()
 this.state = {
 leapYear: true,
 info: {
 type: ‘programming’
 }
 }
 }

 render() {
 return (
 <BookDisplay
 leapYear={ this.state.leapYear }
 info={ this.state.info }
 topics={[‘React’, ‘React’, ‘JavaScript’]] />
)
 }
 }

 constBookDisplay = (props) => {
 letleapyear
 let { topics } = props
 const { info } = props

 topics = topics.map((topic, i) => {
 return <Text key={ i }>{ topic }</Text>
 })

 if(props.leapYear) {
 leapyear = <Text>This is a leapyear!</Text>
 }
 return (
 <View>
 { leapyear }
 <Text>Book type: { info.type }</Text>
 { topics }
 </View>
)
 }

2.3 React Component Specifications
As stated before, there are two ways to create a component: createClass syntax
(React.createClass)and Class syntax (class MyComponent Extends React.Component).

When creating React and React Native components, there are several specifications and
lifecycle methods that you can hook into to control what is going on in your component. In this
section we will discuss all of them and try to get a good understanding of what each one does,
and when you should use the method.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

38

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

First, we will go over the basics of the component specifications. The component
spefication basically lays out how your component should react to different things happening
in the lifecycle of the component. See figure 2.16 for a list of these specifications. We will then
break this apart and go into detail of what each one means and how they are used so you will
have a clear understanding of what this all means.

Listing 2.16 Component specifications

render()
getInitialState – function // React.createClass only
constructor - function & this.state // ES2015 classes only
getDefaultProps – function // React.createClass only
defaultProps – object // ES2015 classes only
propTypes – object
statics – object

2.3.1 render

The render method (figure 2.17) is the only method in the component specification required
when creating a component, and must return either a single child element, null, or false. This
child element can either be component that you have declared yourself, (such as a <View />
or <Text />), or another component that you have defined.

Listing 2.17 Render method

render() {
 return (
 <View>
 <Text>Hello</Text>
 </View>
)
}

You can use the render method with or without parenthesis. If you don’t use parenthesis, then
the returned element must of course be on the same line as the return statement, as shown in
listing 2.18.

Listing 2.18 render method without parenthesis

render() {
 return <View>
 <Text>Hello</Text>
 </View>
}

The render method can also return another component that was defined elsewhere, as shown
in listing 2.19.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

39

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Listing 2.19 render returning predefined component

render() {
 return <SomeComponent />
 }
 // or
 render() {
 return (
 <SomeComponent />
)
 }

You can also check for conditionals in the render method, perform logic, and return
components based on their value, as shown in listing 2.20.

Listing 2.20 render method with conditional

render() {
 if(something === true) {
 return <SomeComponent />
 } else return <SomeOtherComponent />
 }

2.3.2 getInitialState and constructor

getInitialStateis invoked once before the component is mounted. This function is used to set
initial state when using React.createClass to create a component.The value returned is then
available in the component as this.state, as shown in listing 2.21.

Listing 2.21 getInitialState

getInitialState() {
 return {
 someNumber: 1,
 someBoolean: false
 }
 }

Use a constructor method (listing 2.22)to set the initial state when using classes. The
concept of classes, as well as the constructor function, is not specific to React or React Native;
it’s an ES2015 specification and is really just syntactic sugar on top of JavaScript’s existing
prototype based inheritance for creating and initializing an object created with a class. Other
properties can also be set for a component class in the constructor by declaring them with the
syntax this.property (property being the name of the property).The keyword this refers
to the current class we are in.

Listing 2.22 constructor

constructor(){
super()
this.state = {
someOtherNumber: 19,

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

40

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

someOtherBoolean: true
}
 this.name = 'Hello World'
 this.type = 'class'
 this.loaded = false
}

When using a constructor, you must use the super keyword before you can use the this
keyword. Also, if you need access to any props passed to the component, they must be
passed as an argument to the constructor and the super call. Setting the state based on props
is usually not good practice unless you are intentionally setting some type of seed data for the
component’s internal functionality, as the data is no longer going to be consistent across
components if it is changed. This is because getInitialState is only invoked when the
component is first mounted or created, and not again. This means that if you rerender the
same component using a different new value as a prop, this already mounted component and
any children inheriting this data as props will not receive this new data (listing 2.23).

Listing 2.23 constructor with props

constructor(props){
 super(props)
 this.state = {
 fullName: props.first + ''+ props.last,
 }
 }

2.3.3 Default Props

When creating your component, you may want to set a default value for props being passed
into the component. If there are no props passed, the default value will be available to the
component. If the prop is passed, the default value will be overwritten. There are different
ways to do this depending on how you are writing your component, either with
React.createClass or using ES2015 classes.

getDefaultProps (React.createClass) This method is invoked and cached once the
component is created (listing 2.24). Anything returned here will be available as this.props.

Listing 2.24 Using getDefaultProps with React.createClass

const MainComponent = React.createClass({
 render() {
 return <ChildComponent firstName=’Sammy’ />
 }
 })

const ChildComponent = React.createClass ({
 getDefaultProps(){
 return {
 firstName: ‘Nader’,
 lastName: ‘Dabit’,
 favoriteColor: ‘blue’

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

41

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

 }
 },
 render() {
 return (
 <View>
 <Text>{ this.props.firstName }</Text>
 <Text>{ this.props.lastName }</Text>
 <Text>{ this.props.favoriteColor }</Text>
 </View>
)
 }
 })

The component in figure 2.24 will return this:

• Sammy // defined in parent component
• Dabit // not defined in parent component, fall back to getDefaultProps value
• blue // not defined in parent component, fall back to getDefaultProps value

defaultProps (ES2015 class syntax) Setting default props when using classes is a little
different. defaultProps are defined as properties on the component instead of inside the class
body, as shown in listing 2.25.

Listing 2.25 Listing 2.6 Using defaultProps with es2015 classes

 const MainComponent = React.createClass({
 render() {
 return <ChildComponent firstName=’Sammy’ />
 }
 })

 const ChildComponent = React.createClass ({
 render() {
 return (
 <View>
 <Text>{ this.props.firstName }</Text>
 <Text>{ this.props.favoriteColor }</Text>
 </View>
)
 }
 })

 ChildComponent.defaultProps = {
 firstName: ‘Nader’,
 favoriteColor: ‘blue’
 }

defaultProps can also be set as a property on a stateless component, just like we did with
the ES2015 classes, as shown in listing 2.26.

Listing 2.26 defaultProps with stateless components

class MainComponent extends Component {
 render() {

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

42

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

 return <ChildComponent firstName=’Sammy’ />
 }
 }

 const ChildComponent = (props) => (
 <View>
 <Text>{ props.firstName }</Text>
 <Text>{ props.lastName }</Text>
 <Text>{ props.favoriteColor }</Text>
 </View>
)

 ChildComponent.defaultProps = {
 firstName: ‘Nader’,
 lastName: ‘Dabit’,
 favoriteColor: ‘blue’
 }

2.3.4 propTypes

Sometimes, you need to ensure that a certain type of prop is passed into your component and
whether or not the prop is required. To do this, you can set a propTypes object, and check to
make sure certain props are passed in, then specifying if they are required. If the props are
not passed in and they are required, a warning will be shown in the JavaScript console. You
will also get a warning if the incorrect type of prop is passed in. There are two ways to set this
up depending on whether you are using React.createClass syntax or class syntax. Let’s look
at how to set this up (listing 2.27).

Listing 2.27 propTypes with react.createClass

const MainComponent = React.createClass ({
render() {
 return (
 <ChildComponent
 firstName=’Nader’
 favoriteLanguages={[‘JavaScript’, ‘Python’]}
 about={{age:24, language: ‘English’}} />
)
 }
 })

 const ChildComponent = React.createClass ({
 propTypes: {
 firstName: React.PropTypes.string,
 favoriteLanguages: React.PropTypes.array,
 about: React.PropTypes.object
 },

 render() {
 return (
 <View>
 <Text>Name: {this.props.firstName}</Text>
 <Text>Fav language: {this.props.favoriteLanguages[0]}</Text>
 <Text>Age: {this.props.about.age}</Text>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

43

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

 </View>
)
 }
 })

Listing 2.28 Using propTypes with es2015 classes

class MainComponent extends Component {
 render() {
 return (
 <ChildComponent
 firstName=’Nader’
 favoriteLanguages={[‘JavaScript’, ‘Python’]}
 about={{age:24, language: ‘English’}} />
)
 }
 }

 class ChildComponent extends Component {
 render() {
 return (
 <View>
 <Text>Name: {this.props.firstName}</Text>
 <Text>Fav language: {this.props.favoriteLanguages[0]}</Text>
 <Text>Age: {this.props.about.age}</Text>
 </View>
)
 }
 }

 ChildComponent.propTypes = {
 firstName: React.PropTypes.string,
 favoriteLanguages: React.PropTypes.array,
 about: React.PropTypes.object
 }

You can also use propTypes with stateless component by defining propTypes as a property of
the component (listing 2.29).

Listing 2.29 PropTypes with a stateless component

SomeStatelessComponent.propTypes = {
 firstName: React.PropTypes.string.isRequired,
 favoriteLanguages: React.PropTypes.array.isRequired,
 about: React.PropTypes.object.isRequired
 }

If any of the props that are specified are not passed into the component, a warning will be
shown in the JavaScript console.

Some props may need to be required for the component to function correctly. This can be
solved with the .isRequired property. To require a prop, simply add .isRequired at the end
of the propType (listing 2.30).

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

44

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Listing 2.30 Required PropTypes with React.createClass

SomeComponent.propTypes = {
 firstName: React.PropTypes.string.isRequired,
 favoriteLanguages: React.PropTypes.array.isRequired,
 about: React.PropTypes.object.isRequired
 }

You can take arrays and objects one step further by specifying what type of values should
be in the object or array(listing 2.31).

Listing 2.31 Specifying property values in PropTypes

SomeComponent.propTypes = {
 favoriteLanguages: React.PropTypes.arrayOf(React.PropTypes.object),
 about: React.PropTypes.object(React.PropTypes.string)
 }

See listing 2.32 for a list of the propTypes that can be used

Listing 2.32 List of available PropTypes

React.PropTypes.array,
React.PropTypes.bool,
React.PropTypes.func,
React.PropTypes.number,
React.PropTypes.object,
React.PropTypes.string,
React.PropTypes.node,
React.PropTypes.element,
React.PropTypes.instanceOf(Message),
React.PropTypes.oneOf(['News', 'Photos']),

 // An object that could be one of many types
 React.PropTypes.oneOfType([
 React.PropTypes.string,
 React.PropTypes.number,
 React.PropTypes.instanceOf(Message)
]),

React.PropTypes.arrayOf(React.PropTypes.number),
React.PropTypes.objectOf(React.PropTypes.number),

 // An object taking on a particular shape
 React.PropTypes.shape({
 color: React.PropTypes.string,
 fontSize: React.PropTypes.number
 })

2.3.5 statics

statics statics allow you to define static methods that can be called on the component class.
Static methods can be run before component instances are created, but do not have access to
the props or state of the component.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

45

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

There are two ways to define static methods or properties on a component, depending on
whether you are using class syntax or React.createClass syntax.

When using React.createClass, you declare a statics object and define the static
methods in this object (listing 2.33).

Listing 2.33 statics with React.createClass

const MainComponent = React.createClass({

 statics: {
 sayHello() {
 console.log(‘Hello’)
 }
 },

 render() {
 return (
 <SomeComponent />
)
 }
})

MainComponent.sayHello()

When using ES2015 classes, you declare statics as a static class method (listing 2.34).

Listing 2.34 statics with ES2015 classes

class MainComponent extends Component {
 static sayHello() {
 console.log(‘Hello!’)
 }

 render() {
 return (
 <SomeComponent />
)
 }
 }

MainComponent.sayHello()

2.4 React Lifecycle Methods
Various methods are executed at specific points in a component’s lifecycle, these are called
the Lifecycle Methods. Understanding how these lifecycle methods work is important because
they allow us to perform specific actions at different points in the creation and destruction of a
component. Think for example if we wanted to make an API call that returned some data, we
would probably want to make sure our component was ready to render this data, so we would
make the API call once the component mounted in a method called componentDidMount. In
this section, we will go over all of the lifecycle methods and explain how they work.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

46

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

2.4.1 ComponentWillMount

componentWillMount (listing 2.35)is invoked only once and is done so immediately before the
initial rendering of the component occurs. This happens before the render() method is called.
At this point the component does not have any access to the UI, and you will also not have
any access to child refs as they have not yet been created. In listing 2.35, we set the state
with an initial value of 0, and we log out both the state and the refs in the render method. The
first values logged out for tick is 1 and the refs as an empty object, showing us that the
render method runs only after componentWillMount, but after componentDidMount.

Listing 2.35componentWillMount

class MainComponent extends Component {
 constructor() {
 super()
 this.state = { tick: 0 }
 }

 componentWillMount() {
 this.setState({
 tick: this.state.tick + 1
 })
 }

 componentDidMount () {
 this.setState({
 tick: this.state.tick + 1
 })
 }
 render() {
 console.log('state:', this.state)
 console.log('refs:', this.refs)
 debugger
 return <div />
 }
}

2.4.2 componentDidMount

componentDidMount (listing 2.36)is called exactly once, just after the component has
been loaded.

This method is a good place to fetch data with ajax calls, perform setTimeout functions, or
integrate with other JavaScript frameworks.

Listing 2.36 componentDidMount

class MainComponent extends Component {
 constructor() {
 super()
 this.state = { loading: true, data: {} }
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

47

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

 componentDidMount() {
 // simulate ajax call
 setTimeout(() => {
 this.setState({
 loading: false,
 data: {name: ‘Nader Dabit’, age: 35}
 })
 }, 2000)
}

render() {
 if(this.state.loading) {
 return <Text>Loading</Text>
 }
 const { name, age } = this.state.data
 return (
 <View>
 <Text>Name: {name}</Text>
 <Text>Age: {age}</Text>
 </View>
)
 }
}

2.4.3 componentWillReceiveProps

componentWillReceiveProps (listing 2.37) is invoked when a component is receiving new
props, and is not called for the initial render. This method enables you to update the state
depending on the existing and upcoming props, without triggering another render. A use case
for this could be checking a prop change, and setting state based on the value of the new prop
vs the existing prop.

Listing 2.37 componentWillReceiveProps

class Child extends Component {
 constructor(props) {
 super(props)
 this.state = {
 nameChanged: false
 }
 }

 componentWillReceiveProps(nextProps) {
 if(nextProps.name != this.props.name) {
 this.setState({ nameChanged: true })
 }
 }

 render() {
 return (
 <View>
 <Text>
 { this.props.name }
 </Text>
 { this.state.nameChanged &&<Text>Name has changed</Text> }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

48

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

 </View>
)
 }
}

2.4.4 shouldComponentUpdate

shouldComponentUpdate (listing 2.38) returns a Boolean, and allows you to decide exactly
when a component renders. If you know that the new state or props will not require the
component or any of its children to render, you can return false. If you want the component to
rerender, return true.

Listing 2.38 shouldComponentUpdate

class MainComponent extends Component {

 shouldComponentUpdate(nextProps, nextState) {
 if(nextProps.name !== this.props.name) {
 return true
 }
 return false
 }

 render() {
 return <SomeComponent />
 }
 }

2.4.5 componentWillUpdate

componentWillUpdate(listing 2.39) is invoked immediately before rendering when new props
or state are being received. This method is not called for the initial render, and is an
opportunity to perform preparation before a render occurs. Here, you can directly manipulate
the state of the component without calling this.setState. Also note that you cannot call
setState in this method.

Listing 2.39 componentWillUpdate

class MainComponent extends Component {
 componentWillUpdate(nextProps, nextState) {
 if(!nextState.nameChanged) {
 nextState.nameChanged = !nextState.nameChanged
 }
 }
 render() {
 return <SomeComponent />
 }
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

49

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

2.4.6 componentDidUpdate

componentDidUpdate(listing 2.40) is invoked immediately after the component has been
updated and rerendered. You get the previous state and previous props as arguments.

Listing 2.40 componentDidUpdate

class MainComponent extends Component {
 componentDidUpdate(nextProps, nextState) {
 if(nextState.showToggled === this.state.showToggled) {
 this.setState({
 showToggled: !showToggled
 })
 }
 }
 render() {
 return <SomeComponent />
 }
 }

2.4.7 componentWillUnmount

componentWillUnmount (listing 2.41) is called before the component is removed from the
application. Here, you can perform any necessary cleanup, remove listeners, or remove timers
that were set up in componentDidMount.

Listing 2.41 componentWillUnmount

class MainComponent extends Component {

 handleClick() {
 this._timeout = setTimeout(() => {
 this.openWidget();
 }, 2000);
 }
 componentWillUnmount() {
 clearTimeout(this._timeout);
 }
 render() {
 return <SomeComponent
 handleClick={() => this.handleClick()} />
 }
}

2.5 Summary
• State is a way to handle data in React components and updating state rerenders the UI

of the component and any child component relying on this data as props.
• Props are how data is passed down through a React Native application to child

components and that updating props automatically updates any components receiving
the same props.

• The React Component Specification is a group of methods and properties in a React

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

50

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

component that specifies the declaration of the component. render is the only required
method when creating a React component, with all other methods and properties being
optional.

• React Lifecycle methods are a group of methods available in a React component that
are executed at specific points in a component's lifecycle and control how the
component functions and updates.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

51

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

3
Building Your First
React Native App

This chapter covers

• Light debugging
• Building a Todo app from the ground up

Now that we understand the basics of how React and React Native work, let’s put these pieces
together to make our first app, a todo app. Going through the process of building a small app
and putting to use the knowledge we have gone over so far will be a good way to reinforce
your understanding of how to use React Native.

3.1 Building a Todo app
When learning a new framework, technology, language or concept, diving directly into the
process by building a real app is a really great way to jump start the learning process. For us,
this will mean building a working Todo application.

There will definitely be some concepts being used in our app that we have not gone over
yet in depth, and there will be some styling nuances and details we have yet to cover, but do
not worry, we will get to all of these details later.

Instead of going over these new ideas one by one now, we will build our basic app and
then go over them in detail in later chapters. Take this opportunity to play around with the
app as we build it to learn as much as possible in the process, break and fix styles and
components to see what happens in the process.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

52

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

3.1.1 Layout out the Todo app

Let’s get started building our todo app. We will be building a todo app similar in style and
functionality to the apps on the TodoMVC site. Before we get started, let’s take a glance at
how our app will look when we are done so that we can conceptualize what components we
need and how we may structure these components.

Figure 3.1 Todo app design

As we did in chapter one, let’s now visually break this up into components and container
components.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

53

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Figure 3.2 Todo app with descriptions

Now let’s take a look at how this would look in our app, using React Native components by
laying out a basic implementation of these components as shown in listing 3.1.

Listing 3.1 Basic Todo app implementation

<View>
 <Heading />
 <Input />
 <TodoList />
 <Button />
 <TabBar />
</View>

Our app will start off displaying a heading, tab bar, text input and a button. When we add a
Todo to our app, it will add the Todo to our array of Todos and display the new Todo beneath
the input. Each Todo will have two buttons: Done and Delete. Our Done button will mark it as
complete, and the Delete button will remove it from the array of Todos.

At the bottom of the screen, the TabBar that will filter the Todos based on whether they
are complete or still active.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

54

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Let’s get started coding the app. To begin, create a new React Native project by typing
react-native init TodoApp (or, instead of TodoApp whatever you would like your app to be
named)in our terminal (figure 3.3).

Figure 3.3 Initializing new React Native app

REACT NATIVE VERSIONI am using React Native version 0.33 for this example. Newer versions may

have api changes, but nothing should be breaking for building our Todo app. You are welcome to use either the

most recent version of React Native, or use the specific version I am using here.

Now, go into your index file. If you are developing for iOS, open index.iOS.js, and if
developing for Android open index.Android.js. The code for both platforms will be exactly the
same.

3.1.2 Coding the Todo app
In the index file, let’s import an App component that we will create soon, and delete the

styling along with any extra components we are no longer using (listing3.2).

Listing 3.2 index.iOS.js / index.Android.js

import React from 'react'
import { AppRegistry } from 'react-native'
import App from './app/App'

const TodoApp = () =><App />

AppRegistry.registerComponent('TodoApp', () => TodoApp)

Here, we’re only bringing in AppRegistry from react-native. We’re also bringing in our main
App component, which we will create next.

In the AppRegistry method, we’re initiating our application. AppRegistry is the JS entry
point to running all React Native apps. Appregistry takes two arguments. The first argument
is the appKey, or the name of the actual application which we defined when we initialized the
app. The second argument is a function that returns the React Native component we would

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

55

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

like to use as the entry point of our app. In this case, we are returning the TodoApp
component we declared in Listing 3.2

Now, create a folder in the root of the application called app. In the app folder, create a file
called App.js. In it, let’s add some basic code to get us started (listing 3.3).

Listing 3.3Creating the App component: app/App.js

import React, { Component } from 'react'
import {View, ScrollView, StyleSheet} from 'react-native'

class App extends Component {
 render() {
 return (
 <View style={styles.container}>
 <ScrollView style={styles.content}>
 <View />
 </ScrollView>
 </View>
)
 }
}

const styles = StyleSheet.create({
 container: {
 flex: 1,
 backgroundColor: '#f5f5f5'
 },
 content: {
 flex: 1,
 paddingTop: 60
 }
})

export default App

We’ve pulled in a new component called ScrollView, which wraps the platform ScrollView
and is basically a scrollable View component. We make sure that both the ScrollView and the
parent View of the ScrollView both have a flex:1 value. flex:1which will make the
component fill the entire space of it’s parent container.

Now, let’s go ahead and set up an initial state for some of the values we will be needing
later on. We will be needing an array to keep our todos that we will name todos, a value to
hold the current state of the TextInput that will be adding the todos which we will name
inputValue, and a value to store the type of todo that we are currently viewing (All, Current,
or Active) which we will name type.

In App, before our render function, let’s add a constructor and an initial state to the class
and initialize these values in our state (listing 3.4).

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

56

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Listing 3.4Setting the initial state: app/App.js

...

class App extends Component {
 constructor() {
 super()
this.state = {
 inputValue: '',
 todos: [],
 type: 'All'
 }
 }
 render() {
...
 }
}

...

Next, let’s go ahead and create our Heading component and give it some styling. In the app
folder, create a file called Heading.js. This will be a stateless component (listing 3.5).

Listing 3.5Creating the Heading component app/Heading.js

import React from 'react'
import { View, Text, StyleSheet } from 'react-native'

const Heading = () => (
<View style={styles.header}>
<Text style={styles.headerText}>
 todos
</Text>
</View>
)

const styles = StyleSheet.create({
 header: {
 marginTop: 80
 },
 headerText: {
 textAlign: 'center',
 fontSize: 72,
 color: 'rgba(175, 47, 47, 0.25)',
 fontWeight: '100'
 }
})

export default Heading

Note that in the styling of headerText, we are passing an rgba value to color. If you are not
familiar with rgba, the first three values make up the rgb color values, and the last value
represents the alpha or the opacity (red, blue, green, alpha). We are passing in an alpha value

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

57

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

of 0.25, or 25%. We are also setting the font weight to be ‘100’, which will give our text a
thinner weight and look.

Go back into App.js and bring in the Header component and place it in the ScrollView,
replacing the empty View we originally placed there (listing 3.6).

Listing 3.6 Importing and using the Heading component: app/App.js

import React, { Component } from 'react'
import {View, ScrollView, StyleSheet} from 'react-native'
import Heading from '/Heading'

class App extends Component {
 ...
 render() {
 return (
<View style={styles.container}>
<ScrollView style={styles.content}>
<Heading />
</ScrollView>
</View>
)
 }
}

...

Let’s go ahead and run our app to see our new Heading and App Layout. This is how our
application should now look (figure 3.4).

Figure 3.23 Running the app

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

58

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Next, let’s go ahead and create our TextInput component and give it some styling. In the app
folder, create a file called Input.js (listing 3.7).

Listing 3.7 Creating the Input component: app/Input.js

import React from 'react'
import { View, TextInput, StyleSheet } from 'react-native'

constInput =() => (
<View style={styles.inputContainer}>
<TextInput
 style={styles.input}
 placeholder='What needs to be done?'
 placeholderTextColor='#CACACA'
 selectionColor='#666666'/>
</View>
)

conststyles = StyleSheet.create({
 inputContainer: {
 marginLeft: 20,
 marginRight: 20,
 shadowOpacity: 0.2,
 shadowRadius: 3,
 shadowColor: '#000000',
 shadowOffset: { width: 2, height: 2 }
 },
 input: {
 height: 60,
 backgroundColor: '#ffffff',
 paddingLeft: 10,
 paddingRight: 10
 }
})

export default Input

We are using a new React Native component called TextInput here. If you are familiar with
web development, this is very similar to an html input. We are also giving both the
TextInput and the outer View their own styling.

TextInput takes a few other props. Here, we are specifying a placeholder to show text
before the user starts to type, a placeholderTextColor which will style the placeholder text,
and a selectionColor which styles the cursor for the TextInput.

Next, let’s wire up a function that will let us get the value of the TextInput and save it to
the state of our App component. To do this, first go into App.js and add a new function called
inputChange below the constructor and above the render function. This function will update
the state value of inputValue with the value passed in, and for now will also log out the value
of inputValue for us to make sure the function is working.

To view console.log() statements in React Native, we first need to open the developer
menu. Let’s go ahead and take a look at the developer menu and see how it works.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

59

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

If you are not interested in the Developer Menu or want to skip this section for now, go to section 2.1.6 to

continue building out the Todo app.

3.1.3 Opening Developer Menu in iOS Simulator

The developer menu is a built in menu that is available to us as a part of React Native and will
give us access to the main debugging tools that we will be using.

While the project is running in the simulator, the developer menu can be opened in one of
three ways:

1. Pressing cmd + Don the keyboard
2. Pressing cmd + ctrl + z on the keyboard
3. Opening the Hardware > Shake Gesture menu in the simulator options (figure 3.5).

Figure 3.5 Manually opening the developer menu (iOS Simulator)

Now we should see the developer menu shown in figure 3.6.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

60

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Figure 3.6 React Native Developer Menu (iOS Simulator)

If cmd + d or cmd + ctrl + zdo not open the menu for you, you may need to connect your hardware to

the keyboard. To do this, go to Hardware -> Keyboard -> Connect Hardware Keyboard in your simulator menu,

as shown in figure 3.7.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

61

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Figure 3.7 Connecting the Hardware Keyboard to iOS Simulator

3.1.4 Opening the developer menu in Android Emulator

To begin debugging for Android, we first need to bring up the developer menu. The developer
menu will give us access to the main debugging tools that we will be using. To open the menu,
run the project in your simulator. Once the simulator is open and running, the developer menu
can be opened in one of two ways:

1. Pressing F2 on the keyboard
2. Press cmd + m on the keyboard
3. Press the hardware button (see figure 3.8).

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

62

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Figure 3.8 Manually opening hardware menu (Android Emulator)

Now we should see the developer menu shown in figure 3.9.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

63

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Figure 3.9 React Native developer menu (Android Emulator)

3.1.5 Using the Developer Menu

Once the developer menu is open, you should see the following options:

1. Reload (iOS) / Reload JS (Android) - Simply reloads the app. This can also be done
by pressing cmd + r on the keyboard (iOS) or pressing r twice (Android)

2. Debug JS Remotely (iOS and Android) - This opens the chrome dev tools and allows
you to have full debugging support through the browser. Here, you have access not
only to logging statements within your code, but also to break points and whatever you
are used to while debugging web apps with the exception of the DOM (figure 3.6). If
you need to log out any information or data in your app, this is usually the place to do
so.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

64

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Figure 3.10 Debugging in Chrome

3. Enable Live Reload (iOS and Android) - This will enable live reload. When you
make changes in your code, the entire app will reload and refresh in the simulator

4. Start Systrace (iOS only) - Systrace is a profiling tool. This will give you a good idea
of where your time is being spent during each 16ms frame while your app is running.
Profiled code blocks are surrounded by markers start/end markers which are then
visualized in a colorful chart format.To use this, you need to install trace2html by
typing brew install trace2html into your terminal window.

Systrace can also be enabled manually from the command line in Android. If you would
like to learn more about this, check out the docs for a very comprehensive overview.

If your trace .html file isn't opening correctly, check your browser console for the
following:

Uncaught TypeError: Object.observe is not a function

Because Object.observe was deprecated in recent browsers, you may have to open the
file from the Google Chrome Tracing tool. You can do so by:
1. Opening tab in chrome chrome://tracing
2. Selecting load
3. Selecting the html file generated from the previous command.

5. Enable hot reloading (iOS and Android) - This is a really great feature that was
added in version .22 of React Native. It offers an amazing developer experience, giving
you the ability to see your changes immediately as your files are changed without
losing the current state of the app. This is expecially useful when making ui changes
deep within your app without losing state. This is different than live reloading as it
actually retains the current state of your app, only updating the components / state
that has been changed, while the live reloading will reload the entire app therefore
losing the current state.

6. Show inspector (iOS and Android) - This will bring up a property inspector similar
to what you see in the chrome dev tools. You can click on an element and see where it
is in the heirarchy of components, as well as any styling applied to the element (figure
3.11).

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

65

Licensed to Hans Otten <hans.otten@autodata.net>

chrome://tracing
https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Figure 3.11 Using the inspector (iOS left, Android Right)

7. Show Perf Monitor (iOS and Android) – This brings up a small box in the top left
corner of your app giving you some information about the performance of your app.
Here you will see the amount of RAM being used, and the number of frames per second
that the app is currently running at. If you click the box, it will expand to show you
even more information about the app (figure 3.12).

8. Dev Settings (Android Emulator only) – Brings up additional debugging options,
includeing an easy way to toggle between __DEV__ environment variable being true /
false.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

66

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Figure 3.12 Perf Monitor (iOS left, Android right)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

67

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Figure 3.13 Dev Settings (Android Emulator)

3.1.6 Continuing building the Todo app

Now that we know how the developer menu works, let’s go ahead and open the developer
menu and press Debug JS Remotely, which should open the Chrome dev tools and we
should be ready to start logging out information to the console.

The next thing we will be doing is attaching a method to TextInputwhich wewill give as a
property to the Input component. We will also pass the inputValue that is stored on the state
to Inputas a property (listing 3.8).

We also make sure to import the Input component into app/App.js.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

68

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Listing 3.8 Creating the inputChange function: app/App.js

...
import Heading from './Heading'
import Input from './Input'

class App extends Component {
constructor() {
 …
 }
 inputChange(inputValue) { ❶
 console.log('Input Value: ', inputValue) ❷
 this.setState({ inputValue }) ❸
 }
 render() {
 const{ inputValue } = this.state
 return (
 <View style={styles.container}>
 <ScrollView style={styles.content}>
 <Heading />
 <Input
 inputValue={inputValue} ❹
 inputChange={(text) => this.inputChange(text)} /> ❺
 </ScrollView>
 </View>
)
 }}

❶ Here the inputChange method is created, which takes inputValue as an argument.
❷ Log out the inputValuevalue to make sure the method is working
❸ Set the state with the new value (same as this.setState({inputValue: inputValue}))
❹ Pass inputValue down as a property to the Input component
❺ Pass inputChange method down as a property to the Input component

inputChange will take one argument, the value of the TextInput, and the inputChange value in the

state to the value passed into the function.

Now, we need to wire the function up with our TextInputin the Input component. Open
Input.js, and update the TextInpt component with the newinputChange function and the
inputValue property (listing 3.9).

Listing 3.9Adding inputChange and inputValue to the TextInput: app/Input.js

...
constInput = ({ inputValue, inputChange }) => (❶
<View style={styles.inputContainer}>
<TextInput
value={inputValue}
 style={styles.input}
 placeholder='What needs to be done?'
 placeholderTextColor='#CACACA'
 selectionColor='#666666'
 onChangeText={inputChange} /> ❷
</View>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

69

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

)
...

❶ Destructure inputValue and inputChange props
❷ Set onChangeText method to inputChange

We’ve destructured the propsinputValue and inputChange in the creation of the stateless
component. When the value of the TextInput changes, the inputChange function is called and
the value is passed to the parent component to set the state of inputValue. We’ve also set
the value of the textInput to be inputValue, so we can later control and reset the
TextInput.onChangeText is a method that will be called every time the value of the
TextInput component is changed, and will get passed the value of the TextInput.

Now, let’s run the project again and see how it looks (figure 3.14).

Figure 3.14 Updated view after adding TextInput

We’re logging the value of the input, so as you type you should see the value being logged out
to the console.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

70

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Figure 3.15 Logging out TextInput value with inputChange method

Now that we have our inputValuevalue being stored in the state, let’s create a button to add
the items to a list of todos.

Before we create the button, let’s create a function that we will bind to our button that will
add the new todo to our array of todos that we have defined in our constructor.

We will call this function submitTodo. Let’s place it after our inputChange function and
before our render function (listing 3.10).

Listing 3.10 Adding submitTodo function app/App.js

...
submitTodo () {
 if (this.state.inputValue.match(/^\s*$/)) {
 return
 } ❶
 let todo = {
 title: this.state.inputValue,
 todoIndex: todoIndex,
 complete: false
 } ❷
 todoIndex++ ❸
 this.state.todos.push(todo) ❹
 this.setState({ todos: this.state.todos, inputValue: '' }, () => {
 console.log('State: ', this.state) ❻
 }) ❺
}
...

Let’s take a look at this function.

❶ First, we check to see if the inputValue is empty, if it is empty we return without doing anything else.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

71

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

❷ If inputValue is not empty, we then create and then assign a todo variable an object, we give this object a
title, a todoIndex, and a completeboolean (the todoIndex has not yet been created, we will do so shortly).

❸ After we create our todo variable, we increment the todoIndex.
❹ We then push the new todo to the existing array of todos.
❺ Finally, we set the state of our todos to match the updated array of this.state.todos, and reset the

inputValue to an empty string.
❻ We also log out the state to make sure that everything is working. This is done in a callback function from

setState. Once the state is set, you have the option to pass a callback function and that is what we are doing
here.

Now, let’s create the todoIndex at the top of our App.js file, below our last import statement
(listing 3.11).

Listing 3.11Creating todoIndex variable app/App.js

...
import Input from './Input'

let todoIndex = 0

class App extends Component {
...

Now that our submitTodo function has been created, let’s create a file called Button.js and
wire up this function to work with the button (listing 3.12).

Listing 3.12Creating the Button component app/Button.js

import React from 'react'
import { View, Text, StyleSheet, TouchableHighlight } from 'react-native'

constButton = ({ submitTodo }) => (❶
 <View style={styles.buttonContainer}>
 <TouchableHighlight
 underlayColor='#efefef'
 style={styles.button}
 onPress={submitTodo}> ❷
 <Text style={styles.submit}>
 Submit
 </Text>
 </TouchableHighlight>
 </View>
)

conststyles = StyleSheet.create({
 buttonContainer: {
 alignItems: 'flex-end'
 },
 button: {
 height: 50,
 paddingLeft: 20,
 paddingRight: 20,
 backgroundColor: '#ffffff',

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

72

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

 width: 200,
 marginRight: 20,
 marginTop: 15,
 borderWidth: 1,
 borderColor: 'rgba(0,0,0,.1)',
 justifyContent: 'center',
 alignItems: 'center'
 },
 submit: {
 color: '#666666',
 fontWeight: '600'
 }
})

export default Button

❶ Destructure the submitTodo function
❷ Attach submitTodo to the onPress function available to the TouchableHighlight component. This function will

get called when the TouchableHighlight is touched or pressed.

In the above component, we are using TouchableHighlight for the first time.
TouchableHighlight is one of the ways you can create buttons in React Native and is
fundamentally comparable to the html button element.

With TouchableHighlight, we can wrap views and make them respond properly to touch
events. On press down, the default backgroundColor is replaced with a specified
underlayColor property that we will provide as a prop. As you can see, we have specified an
underlayColor of '#efefef' which is a light gray, while the background color is white. This
will give the user a good sense of whether or not the touch event has registered. If no
underlayColor is defined, it defaults to black.

TouchableHighlight only supports one main child component. As you can see, we are
passing in a Text component. If you would like multiple components to be within a
TouchableHighlight, simply wrap them in a single View and pass this View as the child of the
TouchableHighlight.

We also have quite a bit of styling going on.

Do not worry about styling specifics in this chapter as we will cover them in depth in the coming chapters, but

do take a look at them and see what we are doing to get an idea of how styling works in each component. This

will help out a lot once we start going in depth in the future as you will already be exposed to some styling

properties and how they work.

Now that the Button component is created and wired up with the function we defined in
App.js, let’s bring this component into our app and see if it works! Open app/App.js (listing
3.13).

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

73

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Listing 3.13 Importing the Button component app/App.js

...
import Button from './Button' ❶

consttodoIndex = 0

...
constructor() {
 super()
this.state = {
 inputValue: '',
 todos: [],
 type: 'All'
 }
 this.submitTodo = this.submitTodo.bind(this) ❸
 }
...
render () {
 let { inputValue } = this.state
 return (
 <View style={styles.container}>
 <ScrollView style={styles.content}>
 <Heading />
 <Input
 inputValue={inputValue}
 inputChange={(text) => this.inputChange(text)} />
 <Button submitTodo={this.submitTodo} /> ❷
 </ScrollView>
 </View>
)
 }

❶ We import the new Button component
❷ We place the Button below the Input component and give it the
❸ We bind the method to our class in the constructor. Because we are using classes, functions will not be autobound

to the class.

We’ve imported the Button component, and then placed it under the Input component within
our render function. submitTodo is passed into the Button as a property, which will
callthis.submitTodo.

Now, refresh the app. It should look like figure 3.16.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

74

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Figure 3.16 Updated app with the Button component

When we add a todo, the TextInput should clear and the app state should log out to the
console, showing an array of todos with the new todo in the array.

Figure 3.17 Logging out the state

Now that we are adding todos to our array of todos, we need to render these todos to the
screen. To get started with this, we need to create 2 new components: TodoList and Todo.
TodoList will render our list of Todos, and will use theTodo component for each individual
todo.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

75

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

We will start by creating a file named Todo.js (listing 3.14).

Listing 3.14 Creating Todo component app/Todo.js

import React from 'react'
import { View, Text, StyleSheet } from 'react-native'

constTodo = ({ todo }) => (
 <View style={styles.todoContainer}>
 <Text style={styles.todoText}>
 {todo.title}
 </Text>
 </View>
)

conststyles = StyleSheet.create({
 todoContainer: {
 marginLeft: 20,
 marginRight: 20,
 backgroundColor: '#ffffff',
 borderTopWidth: 1,
 borderRightWidth: 1,
 borderLeftWidth: 1,
 borderColor: '#ededed',
 paddingLeft: 14,
 paddingTop: 7,
 paddingBottom: 7,
 shadowOpacity: 0.2,
 shadowRadius: 3,
 shadowColor: '#000000',
 shadowOffset: { width: 2, height: 2 },
 flexDirection: 'row',
 alignItems: 'center'
 },
 todoText: {
 fontSize: 17
 }
})

export default Todo

The Todo component takes one property for now, a todo, and renders the title within a Text
component. We have also added styling to the View and Text component we are using here.

Now that we have created our Todo component, let’s create our TodoList component
(listing 3.15).

Listing 3.15Creating the TodoList component app/TodoList.js

import React from 'react'
import { View } from 'react-native'
import Todo from './Todo'

constTodoList = ({todos }) => {
 todos = todos.map((todo, i) => {
 return (

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

76

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

 <Todo
 key={i}
 todo={todo} />
)
 })
 return (
 <View>
 {todos}
 </View>
)
}

export default TodoList

Our TodoList component will take one property for now, an array of todos. We then map over
these todos and create a new Todocomponent (which we imported at the top of the file) for
each todo, passing in the todo as a property to the Todo component. We have also specified a
key, and passed in the index (i) as a key to each component.

Now that this is set up, the last thing we need to do is import the TodoList component
into our App.js file, and pass in the todos as a property (listing 3.16).

Listing 3.16Importing the TodoList component app/App.js

...
import TodoList from './TodoList'
...
render () {
const{ inputValue, todos } = this.state
 return (
 <View style={styles.container}>
 <ScrollView style={styles.content}>
 <Heading />
 <Input inputValue={inputValue} inputChange={(text) =>

this.inputChange(text)} />
 <TodoListtodos={todos} />
 <Button submitTodo={this.submitTodo.bind(this)} />
 </ScrollView>
 </View>
)
 }
...

Let’s run the app. When we add a todo, we should see it pop up in our list of todos (figure
3.18).

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

77

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Figure 3.18 Updated app with the TodoList component

Ok, now that we have this working, the next step will be for us to mark a todo as complete,
and to delete a todo. Let’s open App.js and create a toggleComplete and deleteTodo function
below our submitTodo function (listing 3.17).

toggleComplete will toggle whether or not the todo is complete, and deleteTodo will
delete the todo.

Listing 3.17Adding toggleComplete and deleteTodo functions app/App.js

constructor () {
 ...
this.toggleComplete = this.toggleComplete.bind(this) ❶
 this.deleteTodo = this.deleteTodo.bind(this) ❷
}
...
deleteTodo (todoIndex) { ❸
 let { todos } = this.state
 todos = this.state.todos.filter((todo) => { return todo.todoIndex !==

todoIndex
 })
 this.setState({ todos })
}

toggleComplete (todoIndex) { ❹

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

78

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

 let { todos } = this.state
 todos.forEach((todo) => {
 if (todo.todoIndex === todoIndex) {
 todo.complete = !todo.complete
 }
 })
 this.setState({ todos })
 }
...

❶ We bind the toggleComplete method to our class in the constructor
❷ We bind the deleteTodo method to our class in the constructor
❸ deleteTodo takes the todoIndex as an argument and then filters our todos to return all but the todo with the

index that was passed in. We then reset the state to the remaining todos.
❹ toggleComplete also takes the todoIndex as an argument, and loops through the todos until it finds the

todo with the given index. It then changes the complete boolean to be the opposite of what it currently is set to be.
After that, it resets the state of the todos.

To hook these in, we need to create a button component we will pass in to the todo. Let’s go
into our app folder and create a new file called TodoButton.js (listing 3.18).

Listing 3.18Creating TodoButton.js app/TodoButton.js

import React from 'react'
import { Text, TouchableHighlight, StyleSheet } from 'react-native'

constTodoButtton = ({ onPress, complete, name }) => (❶
 <TouchableHighlight
 onPress={onPress}
 underlayColor='#efefef'
 style={styles.button}>
 <Text style={[
 styles.text,
 complete ? styles.complete : null, ❷
 name === 'Delete' ? styles.deleteButton : null]} ❸
 >
 {name}
 </Text>
 </TouchableHighlight>
)

conststyles = StyleSheet.create({
 button: {
 alignSelf: 'flex-end',
 padding: 7,
 borderColor: '#ededed',
 borderWidth: 1,
 borderRadius: 4,
 marginRight: 5
 },
 text: {
 color: '#666666'
 },
 complete: {
 color: 'green',

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

79

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

 fontWeight: 'bold'
 },
 deleteButton: {
 color: 'rgba(175, 47, 47, 1)'
 }
})
export default TodoButtton

❶ This component takes in onPress,complete, and name as props.
❷ Here we are checking to see if complete is true and applying a style
❸ We are also checking to see if the name property equals 'Delete' and also applying a style if it is the case.

Now, let’s pass our new functions down as props to the TodoList component (listing 3.19).

Listing 3.19 Passing toggleComplete and deleteTodo functions as props to
TodoListapp/App.js

render () {
 ...
 <TodoList
 toggleComplete={this.toggleComplete}
 deleteTodo={this.deleteTodo}
 todos={todos} />
 <Button submitTodo={() => this.submitTodo()} />
 ...
}

And then we pass toggleComplete and deleteTodo as props to the Todo component (listing
3.20).

Listing 3.20 Passing toggleComplete and deleteTodo functions as props to ToDo
app/TodoList.js

...
let TodoList = ({ todos, deleteTodo, toggleComplete }) => {
 todos = todos.map((todo, i) => {
 return (
 <Todo
 deleteTodo={deleteTodo}
 toggleComplete={toggleComplete}
 key={i}
 todo={todo} />
)
})
...

Finally, open Todo.js and update theTodo component to bring in the new TodoButton
component and some styling for the button container (listing 3.21).

Listing 3.21Updating Todo.js to bring in TodoButton and functionality app/Todo.js

import TodoButton from './TodoButton'
...
constTodo = ({ todo, toggleComplete, deleteTodo }) => (

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

80

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

 <View style={styles.todoContainer}>
 <Text style={styles.todoText}>
 {todo.title}
 </Text>
 <View style={styles.buttons}>
 <TodoButton
 name='Done'
 complete={todo.complete}
 onPress={() =>toggleComplete(todo.todoIndex)} />
 <TodoButton
 name='Delete'
 onPress={() =>deleteTodo(todo.todoIndex)}/>
 </View>
 </View>
)

conststyles = StyleSheet.create({
...
buttons: {
 flex: 1,
 flexDirection: 'row',
 justifyContent: 'flex-end',
 alignItems: 'center'
 },
...
)}

We’ve added two TodoButtons, one with the name Done and one with the name Delete. We
have also passed down toggleComplete and deleteTodo as functions to be called as the
onPress we defined in TodoButton.js. If we refresh our app and add a todo, we should now
see our new buttons.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

81

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Figure 3.19 App with TodoButton displayed

If we click done, the button text should now be bold and green. If we click delete, the todo
should disappear from our list of todos.

We are now almost done with the app. The final step is to build a tab bar filter that will
show us either all of our todos, only our complete todos, or only our incomplete todos. To get
this started, let’s create a new function that will set the type of todos that we will show.

In our constructor, we set a type variable to ‘All’ when we first created the app. We will
now create a function named setType that will take in a type as an argument and update the
type in our state. Place this function below the toggleComplete function (listing 3.22).

Listing 3.22 Adding setType function app/App.js

Constructor () {
 ...
 this.setType = this.setType.bind(this)
}
...
setType (type) {
 this.setState({ type })
}
...

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

82

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Now, we need to create the TabBar and TabBarItem components. First, let’s go ahead and
create the TabBar component. Create a file in the app folder named TabBar.js (listing 3.23).

Listing 3.23 Creating TabBar component app/TabBar.js

import React from 'react'
import { View, StyleSheet } from 'react-native'
import TabBarItem from './TabBarItem'

constTabBar = ({ setType, type }) => (
 <View style={styles.container}>
 <TabBarItem type={type} title='All'
 setType={() => setType('All')} />
 <TabBarItemtype={type}bordertitle='Active'
 setType={() => setType('Active')} />
 <TabBarItemtype={type}bordertitle='Complete'
 setType={() => setType('Complete')} />
 </View>
)

conststyles = StyleSheet.create({
 container: {
 height: 70,
 flexDirection: 'row',
 borderTopWidth: 1,
 borderTopColor: '#dddddd'
 }
})

export default TabBar

This component will take two props: setType and type which will both be passed down from
our main App component.

We are importing our yet to be defined TabBarItem component. Each TabBarItem
component takes three props: title, type, and setType. Two of the components also are
taking a border prop (boolean), which if set will add a left border style.

Next, create a file in the app folder named TabBarItem.js (listing 3.24).

Listing 3.24 Creating TabBarItem component app/TabBarItem.js

import React from 'react'
import { Text, TouchableHighlight, StyleSheet } from 'react-native'

constTabBarItem = ({ border, title, selected, setType, type }) => (
<TouchableHighlight
 underlayColor='#efefef'
 onPress={setType}
 style={[
 styles.item, selected ? styles.selected : null,
 border ? styles.border : null,
 type === title ? styles.selected : null]}>
 <Text style={[styles.itemText, type === title ? styles.bold : null]}>
 {title}
 </Text>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

83

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

 </TouchableHighlight>
)

conststyles = StyleSheet.create({
 item: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center'
 },
 border: {
 borderLeftWidth: 1,
 borderLeftColor: '#dddddd'
 },
 itemText: {
 color: '#777777',
 fontSize: 16
 },
 selected: {
 backgroundColor: '#ffffff'
 },
 bold: {
 fontWeight: 'bold'
 }
})

export default TabBarItem

In the TouchableHighlight component, we are checking a few props and setting styles based
on the prop. If selected is true, we give it the style styles.selected. If border is true, we
give it the style styles.border. If type is equal to the title, we give it styles.selected.

In the Text component, we are also checking to see if type is equal to title, and if so we
add a bold style to it.

To implement the TabBar, let’s open app/App.js and bring in the TabBar component and
set it up. We will also bring in type to our render function as part of our destructuring of
this.state (listing 3.25).

Listing 3.25 Implementing TabBar component app/TabBar.js

...
import TabBar from './TabBar'
class App extends Component {
...
render () {
 const{ todos, inputValue, type } = this.state
 return (
 <View style={styles.container}>
 <ScrollView style={styles.content}>
 <Heading />
 <Input inputValue={inputValue} inputChange={(text) =>

this.inputChange(text)} />
 <TodoList
 type={type}
 toggleComplete={this.toggleComplete}
 deleteTodo={this.deleteTodo.bind(this)}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

84

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

 todos={todos} />
 <Button submitTodo={() => this.submitTodo()} />
 </ScrollView>
 <TabBar type={type} setType={this.setType.bind(this)} />
 </View>
)
}
...

Here, we bring in the TabBar component. We then destructure ‘type’ from our state, and pass
it not only to our new TabBar component, but also to our TodoList component. We will use
this ‘type’ variable in just a second when filtering our todos based on this type.

We also pass the setType function as a prop to the Tabbar component.
The last thing we need to do is open our TodoList component and add a filter to return

only the todos of the type we are currently wanting back based on the tab that is selected.
Open TodoList.js and destructure the type out of the props and add the following
getVisibleTodos function before the return statement (listing 3.26).

Listing 3.26Updating TodoList component app/TodoList.js

...
constTodoList = ({ todos, deleteTodo, toggleComplete, type }) => {
 const getVisibleTodos = (todos, type) => {
 switch (type) {
 case 'All':
 return todos
 case 'Complete':
 return todos.filter((t) => t.complete)
 case 'Active':
 return todos.filter((t) => !t.complete)
 }
 }

 todos = getVisibleTodos(todos, type)
todos = todos.map((todo, i) => {
...

We are using a switch statement to check and see which type is currently set. If ‘All’ is set, we
return the entire list of todos. If 'Complete' is set, we filter the todos and only return the
complete todos. If ‘Active’ is set, we filter the todos and only return the incomplete todos.

We then set the todos variable as the returned value of getVisibleTodos.
Now we should be able to run the app and see our new TabBar. The TabBar should filter

based on which type is seleted:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

85

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Figure 3.20 Final Todo app

3.2 Summary
In this chapter we learned:

• Using the JavaScript console is a good way to debug your app and log out useful
information.

• How to build a complete functioning app by building a todo app.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

86

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

4
Introduction to styling

This chapter covers

• Styling overview
• Applying styles to View Components
• Applying styles to Text Components

Views are the main building block of a React Native UI, so it is important to go over and
explain all of the style properties that a View component can implement.

Next we will walk through styling Text components.

4.1 Styling Overview
Every element has its own set of styles which can be applied to it, but may or may not be
applicable to other types of elements. For example, Text elements and View elements both
have their own different set of styles that can be applied. Text elements can receive a
fontWeight (fontWeight refers to the thickness of the font) property while View elements
cannot, and View elements can receive a flex(flex refers to the layout of a View, something
we will cover in depth in the next chapter) properties while Text elements cannot, and so on
and so forth.

In this chapter, we will go over most of the component’s individual style properties and see
how they all work.

4.1.1 Applying styles to elements

Applying styles to elements in React Native can be done in a number of ways. We have
already gone over inline styling (listing 4.1) and styling using a StyleSheet (listing 4.2) in
chapters 1 and 3.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

87

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Listing 4.1 Styling inline

<View style={{marginLeft: 20}}>
 <Text style={{fontSize: 18}}>Some Text</Text>
</View>

Listing 4.2 Styling with a StyleSheet

<View style={style.container}>
 <Text>Some Text</Text>
 </View>

const style = StyleSheet.create({
 container: {
 padding: 10
 }
})

4.1.2 Creating a StyleSheet

A StyleSheet is an abstraction similar to CSS StylesSheets. StyleSheet allows us to create a
style object and refer to each style individually, away from the render method, making the
code easier to understand. StyleSheet also allows us to create, reuse and reference repeated
styles across an application. This way we can create external StyleSheets, and import these
StyleSheets into components whenever we need to use them.

A StyleSheet is created by importing StyleSheet from React Native, and then calling
StyleSheet.create, passing in an object with the style properties we would like to define
(listing 4.3).

Listing 4.3 Importing StyleSheet and creating a StyleSheet

import { StyleSheet } from 'react-native'

const styles = StyleSheet.create({
 container: {
 backgroundColor: 'red'
 }
})

The created styles are then available on the styles object (listing 4.4).

Listing 4.4 Referencing and using styles within a StyleSheet

import React, { Component } from 'react'
import { StyleSheet, View } from 'react-native'

class App extends Component {
 render () {
 return (
 <View style={styles.container} />
)
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

88

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

}

const styles = StyleSheet.create({
 container: {
 backgroundColor: 'red'
 }
})

In addition to applying predefined styles one at a time, you can also pass multiple styles in an
array (listing 4.5).

Listing 4.5 Passing an array of style properties

<View style={[style.container, style.leftContainer]}>
 <Text style{[style.text, style.bold]}>Some Text</Text>
 </View>

 const style = StyleSheet.create({
 // style definitions below
})

Remember when doing this, that the last style passed in will override the previous style if
there is a duplicate property. For example, in the above component, if we had the following
StyleSheet defined, the Text component would render red text even though Text was
originally set to a color of black (listing 4.6).

Listing 4.6 Passing an array of style properties

<View style={[style.container, style.leftContainer]}>
 <Text style{[style.text, style.bold]}>Some Text</Text>
 </View>

 const style = StyleSheet.create({
 container: {
 width: 100
 },
 leftContainer: {
 paddingRight: 10
 },
 text: {
 color: ‘black’
 },
 bold: {
 color: ‘red’,
 fontWeight: ‘bold
 }
 })

You can also pass in both inline styles and StyleSheet styles into an array. To do this, you
need to make sure that the inline styles are defined in a separate object (listing 4.7).

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

89

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Listing 4.7 Passing an array of style properties and inline styles

<View style={[style.container, {marginLeft: 20, marginTop: 20}]}>
 <Text style{[style.text, style.bold]}>Some Text</Text>
</View>

4.1.3 Styling View Components

Now that we have gone over how to apply styles to a component, let’s go through all of the
ways you can style a View element.

PIXELS AND NUMBERS

When dealing with numbers that are applied to styling, React Native uses logical pixels (also
known as "points" on iOS), as opposed to device pixels, at the JavaScript level. When working
at the native level, you occasionally may need to work with device pixels by multiplying the
logical pixels by the screen scale (e.g. 2x, 3x). We will discuss methods of manipulating pixels
based on screen scale later in the book, but for we do not need to worry about this.

The View is the main building block of your UI, and is one of the most important
component to understand if you want to get your styling right. Remember, a View element is
very similar to a div in the sense that you can use it to wrap other elements and build blocks
of UI code within it.

We will be going through each style property available to the View element one by one and
looking closely at how itis implemented. Some of these properties overlap into other elements
as mentioned before. For example, Text elements can also receive margin and padding
properties among others. If we cover these style properties once we will not cover them again
in detail when we go over other elements.

BACKFACEVISIBILITY

The backfaceVisibility property dictates whether or not an element is visible when the
element is rotated more than 90 degrees. This property can be set to either 'visible' or
'hidden '.

This property is useful when transforming elements by rotating their position, or flipping
them backwards, and wanting to control whether or not they are still visible. For example, we
will take a View and rotate it 180 degrees, and see how this property works (listing 4.8).

Listing 4.8 backfaceVisibility

<View style={styles.container}>
 <Text>Hello from App.js</Text>
</View>
 ...

const styles = StyleSheet.create({
 container: {
 padding: 20,
 backgroundColor: '#ededed',

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

90

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

 backfaceVisibility: 'visible',
 transform: [{
 rotateY: '180deg'
 }]
 }
})

Figure 4.1 backfaceVisibility property

If we changed backfaceVisibility to 'hidden', then you would not see the element at all.
If we did not set a property at all, which will be the case almost all of the time, then it would
still show, as backfaceVisibility defaults to 'visible'.

TRANSFORMS We have not yet covered transforms, so don’t worry about fully understanding them if you

have not worked with them before. We’ll be covering them in more depth later on in this chapter. If you have

worked with CSS transforms before, just remember that they are similar to those.

BACKGROUNDCOLOR

The backgroundColor property sets the background color of an element. This property takes a
string of one of the following properties. These same color properties are available anywhere
colors are used in a React Native application:

• rgb stand for red, green, and blue. The values for red, green, and blue may be
specified using a scale from 0–255. Higher numbers mean more of each color.

• alpha is similar to opacity (0 is transparent, 1 is solid)

'#06f'- #rgb
'#06fc'- #rgba
'#0066ff'- #rrggbb
'#0066ff00' - #rrggbb
'rgb(0, 102, 255)' - rgb(number, number, number)
'rgba(0, 102, 255, .5)' - rgb(number, number, number, alpha)
'hsl(216, 100%, 50%)' -hsl(hue, saturation, lightness)
'hsla(216, 100%, 50%, .5)' -hsl(hue, saturation, lightness, alpha)
'transparent' – transparent background
'dodgerblue' – any css3 specified named color (black, red, blue, etc...)

Let’s create a basic View with a backgroundColor of red (listing 4.9).

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

91

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Listing 4.9 backgroundColor

class App extends Component {
 render () {
 return (
 <View style={style.container}>
 <Text>Hello!</Text>
 </View>
)
 }
}

const style = StyleSheet.create({
 container: {
 backgroundColor: 'red'
 }
})

Figure 4.2 backgroundColor property

When working with backgroundColor, as with all styles, you can also use variables (listing
4.10).

Listing 4.10 variables in styles

<View style={style.container}>
<Text>Hello!</Text>
</View>
...
const opacity = 0.5
const blue = '0, 102, 255'
const style = StyleSheet.create({
 container: {
 backgroundColor: `rgba(${blue}, ${opacity})`
 }
})

Figure 4.3 Using variables for styling

*Above, we are using template literals to process our variables. Template literals were
introduced with the es2015 specification and are a great way to embed expressions into
strings. To use them, just add back ticks around the statement and wrap any variable or

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

92

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

expressions in a dollar sign and two curly braces (${someVariable}). The two following
expressions are exactly the same (listing 4.11).

Listing 4.11 Template literals

const name = 'Nader Dabit'
const greeting = 'Hello, ' + name
const greeting2 = `Hello, ${name}`

BORDER PROPERTIES

There are quite a few border properties, and they all work together, so we will go over them
here all together:

• borderColor

• borderWidth

• borderStyle

• borderLeftColor

• borderLeftWidth

• borderBottomColor

• borderBottomLeftRadius

• borderBottomRightRadius

• borderTopLeftRadius

• borderTopRightRadius

• borderBottomWidth

• borderTopColor

• borderTopWidth

• borderRightColor

• borderRightWidth

To set a border, we must first set a borderWidth. The borderWidth is the size of the border,
and it will always be a number. This can be done in a few ways. We can either set a
borderWidth that applies to the entire component, or choose which borderWidth we would
like to set specifically. First, let’s set a borderWidth of 1 to a View element (listing 4.12).

Listing 4.12 borderWidth

<View style={style.border}>
 <Text>Hello!</Text>
</View>
...
const style = StyleSheet.create({
 border: {
 borderWidth: 1
 }
})

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

93

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Figure 4.4 borderWidth property

Notice that the border color defaults to black, and it is applied to the entire component on all
four sides. Let’s specify only a border left color and increase the width of the border so we can
see it better (listing 4.13).

Listing 4.13 borderWidth with borderLeftColor

<View style={style.border}>
 <Text>Hello!</Text>
</View>
...
const style = StyleSheet.create({
 border: {
 borderWidth: 3,
 borderLeftColor: 'red'
 }
})

Figure 4.5 border property

Now, let’s declare a main borderColor property. Notice the results, specifically that the red
color (borderLeftColor) does not get overwritten even though we have it declared before the
green color (borderColor). This is because specificity takes precedence over generality
(listing 4.14).

Listing 4.14 borderWidth with borderColor

<View style={style.border}>
 <Text>Hello!</Text>
</View>

 ...

const style = StyleSheet.create({
 border: {
 borderWidth: 3,
 borderLeftColor: 'red',
 borderColor: 'green'
 }
 })

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

94

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Figure 4.6 borderColor property

Now, let’s see how the borderWidth property will respond with specificity. We’ll do this by
setting a borderTopWidth of 0 before we declare the borderWidth (listing 4.15).

Listing 4.15 borderTopWidth property

<View style={style.border}>
 <Text>Hello!</Text>
</View>
...
const style = StyleSheet.create({
 border: {
 borderTopWidth: 0,
 borderWidth: 3,
 borderLeftColor: 'red',
 borderColor: 'green'
 }
})

As you can see, the borderTopWidth property also takes precedence over the borderWidth
property:

Figure 4.7 borderTopWidth property

BORDERRADIUS

Now, let’s look at borderRadius. borderRadius will allow us to define how rounded border
corners are on our elements. Let’s use borderRadius to make our view into a circle. To do
this, we’ll be setting a width and height value on our View, and calculating our borderRadius
value as ½ of that value (listing 4.16).

* When specifying borderRadius without a position (for example, borderTopRadius), it
will set the radius to all 4 corners of the element.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

95

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Listing 4.16 borderRadius property

<View style={style.border}>
 <Text>Hello!</Text>
</View>

const style = StyleSheet.create({
 border: {
 borderWidth: 3,
 borderColor: 'green',
 width: 100,
 height: 100,
 borderRadius: 50
 }
})

Figure 4.8 borderRadius property

Notice that the Text element’s background is covering up the circle! This is because Text
elements will always inherit the background color of the parent element. Let’s fix this.
To do so, let’s set a backgroundColor of transparent to the parent View (listing 4.17).

Listing 4.17 Setting background color to transparent

<View style={style.border}>
 <Text>Hello!</Text>
</View>

 ...

const style = StyleSheet.create({
 border: {
 borderWidth: 3,
 borderColor: 'green',
 width: 100,
 height: 100,
 borderRadius: 50,
 backgroundColor: 'transparent'
 }
})

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

96

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Figure 4.9 Setting parent of Text to transparent background

The fact that that Text elements inherit their backgroundColor will definitely be something to
keep in mind when working with the borderRadius property, as most of the time there will be
a parent backgroundColor set somewhere in the app, and you will need to override it.

Now, let’s only set a borderBottomLeftRadius and borderBottomRightRadius (listing
4.18).

Listing 4.18 borderBottomRightRadius and borderBottomLeftRadius

<View style={style.border}>
 <Text>Hello!</Text>
</View>
...
const style = StyleSheet.create({
 border: {
 borderWidth: 3,
 borderColor: 'green',
 width: 100,
 height: 100,
 borderBottomLeftRadius: 50,
 borderBottomRightRadius: 50
 }
})

Figure 4.10 BorderBottomLeftRadius and borderBottomRightRadius

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

97

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

BORDERSTYLE

borderStyle is the last of the border properties we have yet to cover. The borderStyle
property defaults to solid, which is what we have seen already. The other two options are
dotted and dashed. Let’s apply dashed to a View component and see how it looks (listing
4.19).

Listing 4.19 borderStyle property

<View style={style.border}>
 <Text>Hello!</Text>
</View>
...
const style = StyleSheet.create({
 border: {
 borderWidth: 3,
 borderColor: 'green',
 borderStyle: 'dashed'
 }
})

Figure 4.11 borderStyle property

MARGIN

Next, let’s take a look at margin. margin defines how far away an element is to the previous
or parent component.

The margin properties available are

• margin

• marginLeft

• marginRight

• marginTop

• marginBottom

If only the general margin property is set without another more specific value such as
marginLeft or marginTop, then that value is passed to all sides of the component (top, right,
bottom, and left). If both margin and a more specific margin property are specified (for
example, marginLeft), then the more specific margin property takes precedence.

First, let’s look at how margin effects an element. If you are familiar with CSS, you will
notice the similarities.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

98

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Figure 4.12 Components with different margins

Now, let’s recreate marginLeft and marginRight functionality in a component (listing 4.20).

Listing 4.20 margin property

<View style={style.parent}>
 <View style={style.child}>
 <Text style={style.text}>A</Text>
 </View>
</View>
...
const style = StyleSheet.create({
 parent: {
 width: 300,
 height: 200,
 backgroundColor: '#cccccc'
 },
 child: {
 width: 150,
 height: 150,
 backgroundColor: '#0066ff',
 marginLeft: 40,
 marginTop: 40
 },
 text: {
 textAlign: 'center',
 fontSize: 80,
 marginTop: 25,
 backgroundColor: 'transparent'
 }
})

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

99

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Figure 4.13 margin property applied to a component

PADDING

padding sets the space between the content of the element and the border of the same
element.

The available properties available for padding are:

• padding

• paddingLeft

• paddingRight

• paddingTop

• paddingBottom

If only the main padding property is set without another more specific value such as
paddingLeft or paddingTop, then that value is passed to all sides of the component (top,
right, bottom, and left). If both padding and a more specific padding property are specified,
for example, paddingLeft, then the more specific padding property takes precedence.

Let’s recreate similar design as above, this time using padding instead of margin. In figure
4.16, take a look at components A and B, with no padding.

Figure 4.14 Component B with no padding

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

100

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

In figure 4.15, we add paddingLeft to component B.

Figure 4.15 Component B with paddingLeft

Now, we’ll recreate this paddingLeft styling in a component (listing 4.21).

Listing 4.21 paddingLeft property

<View style={style.parent}>
 <View style={style.child}>
 <Text style={style.text}>A</Text>
 </View>
</View>
...
const style = StyleSheet.create({
 parent: {
 width: 300,
 height: 200,
 backgroundColor: '#cccccc',
 paddingLeft: 40
 },
...
})

Figure 4.16 paddingLeft property applied to a component

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

101

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

POSITION

position defines how the component should be laid out in relation to the other components
relative to it. The default position is 'relative '

The available properties available for position are:

• relative

• absolute

When using absolute positioning, the following properties are also available:

• top

• left

• bottom

• right

As stated above, relative is the default position of all elements. relative position states that
all items be laid out relative to the sibling or parent. This means that if there is a component
that has a height of 100 and a marginBottom of 20, then the next component will be 20 pixels
below the previous component. The only way to have two relative components overlap is to
apply a negative margin to one of them

With absolute positioning, the component will be positioned absolutely relative to the
parent, and whose margins relative to their parent can be controlled with top, bottom, left,
and right properties. What does this mean? Well, think of it like this: If we have three nested
components: A, B, and C, and give element C an absolute position, then C’s position will be
absolute relative to B, because B is the parent of C. If we want C to be positioned absolutely
relative to A, then we need to move C to be a child of A.

If what we just described doesn’t make sense, let’s take a look at this in action to give us a
clearer understanding of how absolute positioning works. We will have three components:
container, parent, and child. We will give child a position of ‘absolute’, left of 0, and bottom
of 0 and see how this looks, taking into consideration the styling that parent has (specifically
the paddingLeft property) (listing 4.22).

Listing 4.22 absolute positioning property

<View style={style.container}>
 <View style={style.parent}>
 <View style={style.child} />
 </View>
</View>
const style = StyleSheet.create({
 container: {
 paddingTop: 200,
 backgroundColor: '#f4fcff',
 paddingLeft: 40,
 flex: 1
 },
 parent: {

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

102

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

 width: 300,
 height: 200,
 backgroundColor: '#cccccc',
 paddingLeft: 40
 },
 child: {
 width: 150,
 height: 150,
 position: 'absolute',
 backgroundColor: 'red',
 bottom: 0,
 left: 0
 }
})

Figure 4.17 absolute positioning

Notice that the paddingLeft had no effect on the element, and we were able to position the
element exactly where we wanted it by giving it a leftvalue of 0 and a bottom value of 0.
Also notice that the element is still within its parent, which is what we meant when we said
relative to its parent. It did not go to the bottom of the entire screen because it still has to
stay relative to its parent. Next, let’s take the child component out of the parent and place it
directly into the container, keeping the same styling (listing 4.23).

Listing 4.23 absolute positioning property

<View style={style.container}>
<View style={style.parent} />
<View style={style.child} />
</View>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

103

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Figure 4.18 absolute positioning

Now that the child component is relative to the entire container, we see that it drops down to
the bottom left of the screen.

SHADOWPROPTYPESIOS & ELEVATION

If you are looking to add a drop shadow to a View element, there are separate ways to do this
depending on what platform you are on.

If you are on Android, you use elevation which uses Android's underlying elevation API.
This adds a drop shadow to the item and affects z-order (z-index) for overlapping views.

If you are on iOS you use ShadowPropTypesIOS for drop shadows, which will only add a
shadow and will not affect the z-order.

The available properties available for ShadowPropTypesIOS are

• shadowColor

• shadowOffset

• shadowOpacity

• shadowRadius

The available properties available for elevation are

• number(0 to infinity)

Let’s take the previous component we were using and add a drop shadow to the child using
elevation (Android only) (listing 4.24).

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

104

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Listing 4.24 absolute positioning property

<View style={style.parent}>
 <View style={style.child}>
 <Text style={style.text}>A</Text>
 </View>
</View>
...
const style = StyleSheet.create({
...
 child: {
 width: 150,
 height: 150,
 backgroundColor: '#0066ff',
 elevation: 11
 },
...
})

Figure 4.19 elevation

As we stated earlier, elevationalso effects the z-index of the item. This means that if there
are two or more items occupying the same space, we can decide which one needs to be in
front by giving it the larger elevation and therefore the larger z-index.

Let’s see this in practice. To do so, we will create a View with three boxes, each of which
are positioned absolutely. We will give them three different elevations: 1, 2, and 3. Though
they will be in the order of 2, 1, and 3 in our code, the styling will apply an elevation of 1 to
child 1, 2 to child 2, and 3 to child three, making them appear in correct order though they are
not laid out the correct order in our code (listing 4.25).

Listing 4.25 Elevation and z-index

<View style={style.parent}>
 <View style={[style.child, style.child2]} />
 <View style={[style.child, style.child1]} />
 <View style={[style.child, style.child3]} />
</View>

const style = StyleSheet.create({
 parent: {

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

105

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

 width: 300,
 height: 200,
 backgroundColor: '#cccccc',
 paddingLeft: 40
 },
 child: {
 width: 150,
 height: 150,
 position: 'absolute'
 },
 child1: {
 backgroundColor: 'red',
 top: 0,
 left: 0,
 elevation: 1
 },
 child2: {
 backgroundColor: 'orange',
 top: 20,
 left: 20,
 elevation: 2
 },
 child3: {
 backgroundColor: 'blue',
 top: 40,
 left: 40,
 elevation: 3
 }
})

Figure 4.20 Layered elevation

As you can see in figure 4.22 or when you run this code, even though child2 comes before
child1 in the code, child1 is behind child2 when the component is rendered.

Next, let’s create a shadow on an iOS element. Before we do so, let’s go over the four
available properties for adding a shadow (usually all used together to get the right effect):

shadowColor
shadowOffset
shadowOpacity
shadowRadius

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

106

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

SHADOWCOLOR

shadowColor is the color of the shadow (for example, ‘red’, ‘rgba(0,0,0,.3), and so on).

SHADOWOFFSET

shadowOffsetis the distance from the element that the shadow should appear. It takes the
following arguments:

shadowOffset : {
 width: number,
 height: number
}

SHADOWOPACITY

shadowOpacity is the opacity of the shadow (number)

SHADOWRADIUS

shadowRadius allows us to describe how spread out we would like our shadow to be. The
smaller the number, the less spread out and denser the shadow is. The larger the number, the
more spread out and the less dense it will be.

Let’s set up a basic component and use the above properties to add a shadow (listing
4.26).

Listing 4.26 ShadowPropTypesIOS

<View style={style.container}>
 <View style={style.child} />
</View>

 container: {
 paddingTop: 200,
 backgroundColor: '#f4fcff',
 paddingLeft: 40,
 flex: 1
 },
 child: {
 width: 150,
 height: 150,
 backgroundColor: 'red',
 marginLeft: 90,
 shadowColor: 'black',
 shadowOffset: {
 height: 2,
 width: 2
 },
 shadowOpacity: 0.4,
 shadowRadius: 10
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

107

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Figure 4.21 ShadowPropTypesIOS

As you can see above, we have set the shadowColor to black, given the shadowOffset a
height of 2 and a width of 2 (which means it will be pushed 2 pixels to the right and down 2
pixels. These can also be negative numbers for the shadow to go up and left), a
shadowOpacity of .4, and a shadowRadius of 10.

TRANSFORMS

Transforms allow you to modify the shape and position of an element in 3d space. What this
means it that we can use this property to do things like rotate, scale, and skew components.
These transform properties are especially useful when working with animations. Transform
takes an array of transform properties, for example:

transform: [{rotate: '90deg ', scale: .5}]

The properties available for Transforms are:

• perspective

• rotate

• rotateX

• rotateY

• rotateZ

• scale

• scaleX

• scaleY

• translateX

• translateY

• skewX

• skewY

We will go over these one by one and see how they work.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

108

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

PERSPECTIVE

perspective gives an element a 3D-space by affecting the distance between the Z plane and
the user. This is used with other properties to give a 3d effect.

ROTATE

transform: [{ rotate: '45deg' }]

rotate does just what it sounds like it would, it rotates an element. Let’s take our red square
from earlier and rotate it 45 degrees (listing 4.27).

Listing 4.27 ShadowPropTypes IOS

<View style={style.container}>
 <View style={style.child} />
</View>
container: {
 ...
},
child: {
 width: 150,
 height: 150,
 backgroundColor: 'red',
 marginLeft: 90,
 transform: [
 {rotate: '45deg' }
]
}

Figure 4.22 rotate

ROTATEX

transform: [{ rotateX: '50deg' }]

rotateX rotates an element on its x axis. It’s not too apparent what is going on if we use our
previous red square, let’s instead use some large text and apply this property (listing 4.28).

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

109

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Listing 4.28 rotateX

<View style={style.container}>
 <View style={style.child}>
 <Text style={style.text}>rotateX</Text>
 </View>
</View>
container: {
 ...
},
child: {
 width: 150,
 height: 150,
 marginLeft: 90,
 transform: [
 {rotateX: '45deg' }
]
},
test: {
 fontSize: 24,
 textAlign: 'center'
}

Our text should now be rotated 45 degrees on the x axis, skewing the way it looks:

Figure 4.23 rotateX

ROTATEY

transform: [{ rotateY: '50deg' }]

rotateY rotates an element on its Y axis. We will use the same example from last time, but
switching the rotateX for rotateY (listing 4.29).

Listing 4.29 rotateY

...
},
child: {
 ...
 transform: [
 {rotateX: '45deg' }
]
}

Our text should now be rotated 45 degrees on the y axis, skewing the way it looks:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

110

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Figure 4.24 rotateY

ROTATEZ

transform: [{ rotateZ: '50deg' }]

rotateZ rotates an element on its Z axis. We will use the same example from last time, but
switching the rotateY for rotateZ. Let’s also add the backgroundColor back to give us a
better idea of what is going on (listing 4.30).

Listing 4.30 rotateZ

...
},
child: {
 width: 150,
 height: 150,
 marginLeft: 90,
 backgroundColor: 'red',
 transform: [
 {rotateZ: '50deg' }
]
},
text: {
 fontSize: 24,
 textAlign: 'center'
}

Our text should now be rotated 45 degrees on the Z axis, rotating it to the right:

Figure 4.25 rotateZ

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

111

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

SCALE

transform: [{ scale: .3 }]

scale multiplies the size of the element by the number passed to it, the default being 1. If we
want an element to appear larger, we can pass a value larger than 1, and if we want it to be
smaller, a value smaller than 1. Let’s create three squares, and scale two of them (listing
4.31).

Listing 4.31 scale

<View style={style.container}>
 <View style={style.child} />
 <View style={[style.child, style.scale1]} />
 <View style={[style.child, style.scale2]} />
</View>

container: {
 paddingTop: 100,
 backgroundColor: '#f4fcff',
 paddingLeft: 40,
 flex: 1
},
child: {
 width: 50,
 height: 50,
 marginLeft: 90,
 marginTop: 30,
 backgroundColor: 'red'
},
scale1: {
 transform: [
 {scale: .5 }
]
},
scale2: {
 transform: [
 {scale: 2 }
]
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

112

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Figure 4.26 scale

TRANSLATEX AND TRANSLATEY

transform: [{ translateX: 150 }]

translate moves an element along the x (translateX) or y (translateY) axis from the
current position. This is not very useful in normal development as we already have margin,
padding, and other position properties available. This is something that becomes very useful
though when we get into animations. To demonstrate this, we will have two components, and
we will add a translateX to one of them (listing 4.32).

Listing 4.32 translateX

<View style={style.container}>
 <View style={style.child} />
 <View style={[style.child, style.childX]} />
</View>

child: {
 width: 150,
 height: 150,
 marginLeft: 90,
 marginTop: 30,
 backgroundColor: 'red'
},
childX: {
 transform: [{ translateX: 50 }]
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

113

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Figure 4.27 translateX

SKEW

transform: [{ skewY: '50deg' }]

The skew property will skew an element across wither the X or Y axis. Let’s apply these
properties to two square components (listing 4.33).

Listing 4.33 skew

<View style={style.container}>
 <View style={[style.child, style.childY]} />
 <View style={[style.child, style.childX]} />
</View>

child: {
 width: 150,
 height: 150,
 marginLeft: 90,
 marginTop: 30,
 backgroundColor: 'red'
},
childY: {
 transform: [{ skewY: '45deg' }]
},
childX: {
 transform: [{ skewX: '45deg' }]
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

114

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Figure 4.28 skew

4.2 Styling Text Components
With the exception of Flex properties which we have yet to go over, most of the styles
applicable to View elements will also work as expected with Text elements. Most of the styles
that Text elements can utilize will not work for View elements.

Here is a list of styles that can be applied to Text components:

• color

• fontFamily

• fontSize

• fontStyle

• fontWeight

• lineHeight

• textAlign

• textDecorationLine

• textShadowColor

• textShadowOffset

• textShadowRadius

Android only:

• textAlignVertical

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

115

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

iOS only:

• letterSpacing

• textDecorationColor

• textDecorationStyle

• writingDirection

COLOR

color: 'red'

This property specifies the color of the text in a Text element.
All of the color properties we covered earlier will also work here, but just as an overview

let’s take a look at them again:

'#06f'- #rgb
'#06fc'- #rgba
'#0066ff'- #rrggbb
'#0066ff00' - #rrggbb
'rgb(0, 102, 255)' - rgb(number, number, number)
'rgba(0, 102, 255, .5)' - rgb(number, number, number, alpha)
'hsl(216, 100%, 50%)' - hsl(hue, saturation, lightness)
'hsla(216, 100%, 50%, .5)' - hsl(hue, saturation, lightness, alpha)
'transparent' – transparent background
'dodgerblue' – any css3 specified named color (black, red, blue, etc...)

Let’s create a couple of Text elements and pass them some different colors (figure 4.29 and
the listing).

Figure 4.29 color

Listing 4.34 color

<View>
 <Text style={style.text1}>Text1</Text>
 <Text style={style.text2}>Text2</Text>
 <Text style={style.text3}>Text3</Text>
 <Text style={style.text4}>Text4</Text>
</View>

text1: {

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

116

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

 color: '#06f'
},
text2: {
 color: 'rgba(0, 0, 0, .7)'
},
text3: {
 color: '#666'
},
text4: {
 color: 'red'
}

FONTFAMILY

fontFamily: 'string'

For iOS, there are a large number of available fonts that can be implemented out of the box.
For android, there are only three: (normal(Droid Sans), serif(Droid Serif), and monospace
(Droid Sans Mono)). For a full list of iOS fonts available out of the box in React Native, go to:

https://github.com/dabit3/react-native-fonts.

We can also add custom fonts to our project using font files (ttf, otf, and so on). We will go
over how to add new and custom fonts to our project in a later chapter. For now, let’s just talk
about how to use existing fonts in our project.

Let’s look at how to implement a custom font in iOS using the fontFamily property (listing
4.35).

Listing 4.35 iOS fontFamily

<Text style={style.text}>ChalkboardSE-Regular</Text>

 const style = StyleSheet.create({
 text: {
 fontFamily: 'ChalkboardSE-Regular',
 fontSize: 25
 }
})

Figure 4.30 iOS fontFamily

Custom font in Android (listing 4.36).

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

117

Licensed to Hans Otten <hans.otten@autodata.net>

https://github.com/dabit3/react-native-fonts
https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Listing 4.36 Android fontFamily

<Text style={style.text}>monospace</Text>

const style = StyleSheet.create({
 text: {
 fontFamily: 'monospace',
 fontSize: 25
 }
})

Figure 4.31 Android fontFamily

FONTSIZE

fontSize: 18

fontSize is pretty simple, it just adjusts the size of the text in a Text element. We’ve used
this already quite a bit, so we won’t go into too much detail other than the fact that the
default fontSize is 14.

FONTSTYLE

fontStyle: 'italic'

This is to change the font style to italic. The default is 'normal '. The only two options at this
moment are 'normal ' and 'italic.’

FONTWEIGHT

fontWeight: 'bold'

fontWeight refers to the thickness of the font. The default is 'normal' or '400'.
The options for fontWeightare one of the following: 'normal', 'bold', '100', '200',

'300', '400', '500', '600', '700', '800', '900'. The smaller you go, the lighter /
thinner the text gets. The larger you go, the thicker / bolder the text gets.

LINEHEIGHT

lineHeight: 20

lineHeight specifies the height of the text element. When using lineHeight, the default
functionality is that the text will be aligned at the bottom.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

118

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Let’s take a look at an example and then view it in our inspector to see this in action. We
will set up three Text elements, and give the middle element a lineHeight of 50 (listing
4.37).

Listing 4.37 lineHeight

<View style={style.container}>
 <Text style={style.text}>Text</Text>
 <Text style={style.text2}>Text</Text>
 <Text style={style.text3}>Text</Text>
</View>

const style = StyleSheet.create({
 text: {
 fontSize: 20
 },
 text2: {
 fontSize: 20,
 lineHeight: 50
 },
 text3: {
 fontSize: 20
 }
})

Figure 4.32 lineHeight (iOS debugger)

As you can see above (iOS simulator and debugger) highlighted in the darker blue, the height
of the middle text element is larger than the others. Also notice that all of the height has been
added to the top of the element.

This is only true in iOS. In Android, the opposite is true. The text will be aligned to the top
in Android, not the bottom.

TEXTALIGN

textAlign: 'center'

textAlign refers to how the text in the element will be horizontally aligned.
The options for textAlign are the following:

'auto', 'center', 'right', 'left', 'justify' ('justify' is iOS only).

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

119

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Setting the textAlign property will change the horizontal alignment of the text in the
element.

TEXTDECORATIONLINE

textDecorationLine: 'underline '

The options for textDecorationLine are 'none', 'underline', 'line-through', and
'underline line-through'. The default value is 'none'.

This property adds either an underline or line through the given text.

TEXTSHADOW

textShadow encompasses the following three properties:

textShadowColor: 'red '
textShadowOffset: {width: -2, height: -2}
textShadowRadius: 4

This property allows us to add a shadow to a Text element. Let’s incorporate this into a
component to see how it works (listing 4.38).

Listing 4.38 textShadow

<Text style={style.text}>Text Shadow</Text>

 const style = StyleSheet.create({
 text: {
 marginLeft: 20,
 fontSize: 25,
 textShadowColor: 'red',
 textShadowOffset: {width: -2, height: -2},
 textShadowRadius: 3
 }
 })

Figure 4.33 textShadow

As you can see, the text shadow is starting from the left and the top of the text. This is
because we declared width and height of -2.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

120

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

TEXTALIGNVERTICAL (ANDROID ONLY)

textAlignVertical: 'center'

The options for textAlignVertical are 'auto', 'top', 'bottom', and 'center'.
This will allow us to choose the alignment position of our text The default value for this

property in Android is ' top '. This is especially useful when using the lineHeight property
(listing 4.39).

Listing 4.39 textAlignVertical

<Text style={style.text}>Text1</Text>
<Text style={[style.text, style.alignCenter]}>Text2</Text>
<Text style={style.text}>Text3</Text>

 const style = StyleSheet.create({
 text: {
 fontSize: 25
 },
 alignCenter: {
 textAlignVertical: 'center',
 lineHeight: 100
 }
 })

Figure 4.34 textAlignVertical

LETTERSPACING(IOS ONLY)

letterSpacing: 2

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

121

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

letterSpacing specifies spacing between text characters (listing 4.40).

Listing 4.40 letterSpacing

<Text>No letter spacing</Text>
 <Text style={style. text }>With letter spacing</Text>

 const style = StyleSheet.create({
 text: {
 letterSpacing: 3
 }
 })

Figure 4.35 letterSpacing

TEXTDECORATION STYLES(IOS ONLY)

textDecorationLine: 'underline'
textDecorationColor: 'red'
textDecorationStyle: 'double'

textDecorationColor and textDecorationStyle are used with textDecorationLine to give
custom control over the styling of the textDecorationLine property.

textDocorationStyle can take any of the following properties: 'solid', 'double', 'dotted',
'dashed'

Listing 4.41 textDecoration styles

<Text>No letter decoration</Text>

const style = StyleSheet.create({
 text: {
 textDecorationColor: 'red',
 textDecorationStyle: 'dotted',
 textDecorationLine: 'underline'
 }
})

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

122

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Figure 4.36 textDecoration styles

WRITINGDIRECTION

writingDirection: 'rtl'

writingDirectiongives us control over the direction that the text is displayed (right to left,
left to right). This is especially useful when implementing internationalization.

writingDirection can take any of the following properties: 'auto', 'ltr', 'rtl'

4.3 Summary
In this chapter, we learned:

• Styling can be applied inline or by using a StyleSheet and referencing the style variable
used when creating the StyleSheet.

• Styling View components
• Styling Text Components

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

123

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

5
Styling in depth

This chapter covers

• Flexbox
• Dynamic Styles
• Organizing styles
• Summary

Now that we have an understanding of styling elements in React Native, as well as how to use
them, we’ll take a look at the React Native layout system using Flexbox. FlexBox is a
fundamental concept that needs to be properly understood to create layouts and UIs in React
Native.

We’ll put all of the styling knowledge we have together and harness props and state to
dynamically style our components, styling and updating styles based on these properties.

Next, we’ll talk about a few ways to define styles that we will be reusing by exporting and
importing them into other files and components.

Finally, we’ll talk about a few different strategies and best practices that make for practical
code organization.

5.1 Flexbox
Flexbox is a layout implementation that React Native uses to provide an efficient way for users
to create UIs and control positioning in React Native. The React Native Flexbox
implementation is based on the W3C Flexbox web specification, but does not share 100% of
the APIthat the W3C implementation carries with it. It aims to give us an easy way to reason
about, align and distribute space among items in our layout, even when their size is not
known or even when their size is dynamic. Flexbox layout is only available for use on View

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

124

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

components. To better understand how Flexbox works, let’s go ahead and take a look at some
code.

5.1.1 Flexbox Properties

Here are the alignment properties specific to flexBox layout in a View component:

flex
flexDirection
alignItems
justifyContent
alignSelf
flexWrap

5.1.2 flex Property

The first property we need to talk about is the flex property. The flex property is used with a
key of flex, and a value of a number or a variable that holds a number:

Listing 5.1 flex property Using the flex property in your styling

flex: 1

The flex number specifies the ability of the item to alter its dimensions to fill the space of the
container that it is within. This value is relative to the rest of the items within the same
container.

This means that if we have a View element with a height of 300 and a width of 300, and a
child View with a property of flex: 1, then the child view will completely fill the parent view.

If we decide to add another child element with a flex property of flex: 1, they will each take up
equal space within the parent container.

Another way to look at this is to think of the flex properties as being percentages. For
example, if you would like your child components to take up 66.6% and 33.3% respectively,
you could use flex:66 and flex:33, which would also work, with the first item occupying 2/3
and the second item occupying 1/3 of the parent container. The flex number is only important
relative to the other flex items occupying the same space. Thinking about flex numbers in
percentages sometimes makes it much easier to reason about.

To better understand how this all works, let’s take a look at a couple of diagrams depicting
Views with a few different flex values:

Listing 5.2 flex property flex:1 example in code flex property

<View style={styles.container}>
 <View style={styles.flex1} />
</View>

container: {
 width: 300,
 height: 300,

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

125

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

 marginTop: 150,
 backgroundColor: 'white'
},
flex1: {
 flex: 1,
 backgroundColor: '#666666'
}

As you can see, this filled the entire 150 width and height with the child box. Next, let’s add
another box next to it with a lighter shade of gray:

Listing 5.3 flex property Example with two flex items in code

<View style={styles.container}>
 <View style={styles.flexBox1} />
 <View style={styles.flexBox2} />
</View>

container: {
 width: 300,
 height: 300,
 marginTop: 150,
 backgroundColor: 'white'
},
flexBox1: {
 flex: 1,
 backgroundColor: '#666666'
},
flexBox2: {
 flex: 1,
 backgroundColor: '#ededed
}

Figure 5.2 Example with two flex items on device

Now, we see that there is still a single square container but our two boxes now share equally
the space of the parent container. Next, let’s change the flex property of the second box to
flex:2 and see what happens:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

126

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Listing 5.4 flex property Example of two flex items with different flex properties in code

<View style={styles.container}>
 <View style={styles.flexBox1} />
 <View style={styles.flexBox2} />
</View>

container: {
...
},
flexBox1: {
 flex: 1,
 backgroundColor: '#666666'
},
flexBox2: {
 flex: 2,
 backgroundColor: '#ededed
}

Figure 5.3 flex:1 example in with two flex items on device

Now, the second flex item takes up twice as much space as the first flex item.

5.1.3 flexDirection Property

You may notice that the items in our flex container are laying out in a column. Using the
flexDirection property, we canchange the direction of the layout. flexDirection is applied to the
parent view that contains child flex views.

Listing 5.5 flexDirection property flexDirection in code

flexDirection: 'row'

There are two options for this property: row and column. The default setting is column. If you
do not specify a flexDirection property, your content will lay out in a column layout as we saw

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

127

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

before because column is the default layout. Let’s change this to flexDirection: row and see
how it looks. Everything else in our code will stay the same:

Listing 5.6 flexDirection property Implementation of flexDirection in code

<View style={styles.container}>
 <View style={styles.flexBox1} />
 <View style={styles.flexBox2} />
</View>

container: {
 width: 150,
 height: 150,
 marginTop: 150,
 backgroundColor: 'white',
 marginLeft: 20,
 flexDirection: 'row'
},
flexBox1: {
 ...
},
flexBox2: {
 ...
}

Figure 5.4 Implementation of flexDirection on device

As you can see, the child elements now lay out left to right. This property is something that
you will use a lot when developing apps in React Native so it is important to grasp it and
understand how it works.

5.1.4 alignItems Property

alignItems allows us to specify the alignment of the flex items. This property is declared on
the parent view and affects the child flex items.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

128

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Listing 5.7 alignItems property alignItems in code

alignItems: 'flex-start'

There are four options for this property: flex-start, flex-end, center, and stretch. The default
value is stretch, so if no other value is declared, stretch is the behaviour you will get out of the
box.

Let’s create a component to test out this property:

Listing 5.8 alignItems property Base styles without alignItems implemented

<View style={styles.container}>
 <View style={styles.flexBox1}>
 <Text>AlignItems</Text>
 </View>
</View>

const styles = StyleSheet.create({
 container: {
 width: 150,
 height: 150,
 marginTop: 150,
 backgroundColor: '#ededed',
 marginLeft: 20
 },
 flexBox1: {
 backgroundColor: '#666666'
 }
})

Figure 5.5 Above code rendered on device

As you can see, the flexBox1 style and child take up the entire width of the container.
Everything that happens concerning alignItems is relative to the flexDirection. As you can see,
we have not declared a flexDirection, so we are getting the flexDirection column behaviour as

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

129

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

it is the default. Let’s add flexDirection:'row' to the parent container and see what happens.
Keep in mind that the behaviour we are seeing is the same as if we declared alignItems:
'stretch' on the parent container:

Listing 5.9 Adding flexDirection to the container Adding flexDirection to container in code

container: {
 ...
 flexDirection: 'row'
}

Figure 5.6 flexDirection:row on device

Let’s change only alignItems property of the container by adding alignItems: 'center' to the
styling. We’ll be keeping the flexDirection: 'row' property for now:

Listing 5.10 alignItems added to container alignItems:’center’ implemented in code

container: {
 ...
 flexDirection: 'row',
 alignItems: 'center'
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

130

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Figure 5.7 alignItems:’center’ on device.

Now, the content is centered vertically. Next, let’s remove the flexDirection: 'row'property:

Figure 5.8 alignItems:’center’ on device, withouth flexDirection: ’row’

Because the flexDirection is now defaulted to column, the content is centered horizontally.
Changing between the row and column flexDirection and understanding alignItems along

with the soon to be covered justifyContent can sometimes get confusing as they change based
on flexDirection. Don’t worry about understanding this exactly right away. Just remember that
being aware of how these properties affect each other should allow you to debug and
troubleshoot much easier.

Next, let’s implement the same view with alignItems: 'flex-start'. flex-start will align the
items with the beginning of the parent container:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

131

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Listing 5.11 alignItems: 'flex-start' added to container alignItems: 'flex-start'
implemented in code

container: {
 width: 150,
 height: 150,
 marginTop: 150,
 backgroundColor: '#ededed',
 marginLeft: 20,
 alignItems: 'flex-start'
}

Figure 5.9 alignItems:’flex-start’ on device

Because both alignItems properties begin their axes at the top left of the container, they both
will render as shown above.

Finally, let’s implement alignItems: 'flex-end', with no flexDirection property:

Listing 5.12 alignItems: 'flex-end' added to container alignItems 'flex-end' implemented in
code

container: {
 ...
 alignItems: 'flex-end'
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

132

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Figure 5.10 alignItems 'flex-end' on device

The items now vertically align flush with the end of the container. This is because our
flexDirection is defaulted to column.

Now, we will change the flexDirection property to 'row':

Listing 5.13 alignItems: 'flex-end' with flexDirection: 'row' alignItems: 'flex-end' with
flexDirection: 'row' in code

container: {
 ...
 alignItems: 'flex-end',
 flexDirection: 'row'
}

Figure 5.11 alignItems: 'flex-end' with flexDirection: 'row' on device

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

133

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Now that our flexDirection has changed to row, the end of the flex container is rendered as
being the bottom vertically. Remember that the columns stack vertically, and the rows stack
horizontally. This means the the beginning and end of the column will be left and right, while
the beginning and end of the row will be top and bottom.

5.1.5 justifyContent Property

The justifyContent property defines how space is distributed between and around flex items
along the main-axis of their container.

The alignment is done after the lengths and auto margins are applied, meaning that, if
there is at least one flexible element, with a flex property different from 0, it will have no
effect as there won't be any available space.

Listing 5.14 alignItems property justifyContent property in code

justifyContent: 'flex-end'

There are five options for this property: flex-start, flex-end, center, space-around, and space-
between. The default value is flex-start, so if no other value is declared, flex-start is the
behaviour you will get out of the box.

Let’s take another look at the component we have been working with so far:

Listing 5.15 justifyContent default behaviour justifyContent default behaviour in code

<View style={styles.container}>
 <View style={styles.flexBox1}>
 Text>AlignItems</Text>
 </View>
</View>

container: {
 width: 150,
 height: 150,
 marginTop: 150,
 backgroundColor: '#ededed',
 marginLeft: 20
},
 flexBox1: {
 backgroundColor: '#666666'
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

134

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Figure 5.12 justifyContent default behaviour on device

As you can see, our content displays at the top of the parent container. This is the behavior
we will get if we applied justifyContent: 'flex-start' as well. Now, let’s append the
justifyContent: 'flex-end' property to our container style:

Listing 5.16 justifyContent'flex-end' justifyContent: 'flex-end' in code

container: {
...
 justifyContent: 'flex-end'
}

Figure 5.13 justifyContent: 'flex-end' in on device

Now we see the content move to the end of the container. If we were using flexDirection:
'row' as our layout, the content would instead move to the right side of the container, taking
up the entire height.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

135

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Next, let’s implement justifyContent: 'center'. This will center our content in the parent
container:

Listing 5.17 justifyContent: 'center’ justifyContent: 'center' implemented in code.

container: {
 ...
 justifyContent: 'center'
}

Figure 5.14 justifyContent: 'center' on device

Our content is now rendered in the center of our flex container.
Most of the examples we have looked at so far have only been implemented with one child

element. We looked at them in this way to make understanding how they worked a little
easier, but feel free to experiment with the properties we have covered so far by adding
multiple elements and seeing what happens, and if it is what you expected. For the next two
justifyContent properties, we will need to display multiple child elements in order to
understand how they work.

The next property we will implement will be the space-between property. space-between
will basically distribute the items evenly between the first item at the start and the last at the
end.

To get started with this and see space-around in action, we will need to create a reusable
Box component. To do so, let’s change code to the below:

Listing 5.18 justifyContent: 'space-between' justifyContent: 'space-between'
implemented in code.

class App extends Component {
 render () {
 return (
 <View style={styles.container}>
 <Box />

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

136

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

 <Box />
 <Box />
 </View>
)
 }
}

const Box = () => (
 <View style={styles.flexBox1}>
 <Text>AlignItems</Text>
 </View>
)

const styles = StyleSheet.create({
 container: {
 width: 150,
 height: 150,
 marginTop: 150,
 backgroundColor: '#ededed',
 marginLeft: 20,
 justifyContent: 'space-between'
 },
 flexBox1: {
 backgroundColor: '#666666'
 }
})

Figure 5.15 justifyContent: 'space-between' on device

The last property we will implement will be the space-around property. space-around will
basically distribute items evenly with all items having equal space around them.

Listing 5.19 justifyContent: 'space-around' justifyContent: 'space-around in code'

 container: {
 ...
 justifyContent: 'space-around'
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

137

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Figure 5.16 justifyContent: 'space-around on device

5.1.6 alignSelf Property

So far, all of the properties have been implemented by applying them to the parent container.
With alignSelf, we can get access to the alignItems property for individual elements with a
container. This means that if we have multiple items in a container and we do not them all to
have the same alignItems property passed down from the parent, we can implement alignSelf
and control each one individually.

There are five options for this property: flex-start, flex-end, center, auto, and stretch. The
default value is auto, so if no other value is declared, auto is the behaviour you will get out of
the box.

To show how this works, let’s add a new property to our Box component and pass down
alignSelf as a prop. This way, we can see all of the properties side by side:

Listing 5.20 alignSelf alignSelf property in code

class App extends Component {
 render () {
 return (
 <View style={styles.container}>
 <Box align='auto' />
 <Box align='stretch' />
 <Box align='flex-start' />
 <Box align='center' />
 <Box align='flex-end' />
 </View>
)
 }
}

const Box = ({align}) => (
 <View style={[styles.flexBox1, {alignSelf: align}]}>
 <Text>AlignItems</Text>
 </View>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

138

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

)

const styles = StyleSheet.create({
 container: {
 width: 150,
 height: 150,
 marginTop: 150,
 backgroundColor: '#ededed',
 marginLeft: 20
 },
 flexBox1: {
 backgroundColor: '#666666'
 }
})

Figure 5.33 alignSelf property in code

Figure 5.17 alignSelf property on device

Now we have independent control of the alignment of the child items. If there is an alignItems
property on the parent container, alignSelf will override the alignItems property.\

5.1.7 flexWrap Property

When having multiple child elements within a parent component with a flexDirection of row,
these elements will not wrap to stay in the view, but will instead keep going off of the view. To
fix this, you may need to use the flexWrap property.

There are two options for this property: no-wrap and wrap. The default value is no-wrap,
so if no other value is declared, no-wrap is the behaviour you will get out of the box.

To understand this better, let’s look at an example. Consider the following code and
layout:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

139

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Listing 5.21 flexWrap property flexWrap not defined (defaults to no-wrap) in code

class App extends Component {
 render () {
 return (
 <View style={styles.container}>
 <Box />
 <Box />
 <Box />
 <Box />
 <Box />
 </View>
)
 }
}

const Box = () => (
 <View style={styles.flexBox1} />
)

const styles = StyleSheet.create({
 container: {
 marginTop: 150,
 backgroundColor: '#ededed',
 marginLeft: 20,
 flex: 1,
 flexDirection: 'row'
 },
 flexBox1: {
 width: 150,
 height: 150,
 marginLeft: 10,
 marginBottom: 10,
 backgroundColor: 'red'
 }
})

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

140

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Figure 5.18 flexWrap not defined on device

We have declared five boxes in our layout, but as you can see only two of them are shown
with the third overflowing off of the screen. Now, let’s add the flexWrap: 'wrap' property to the
container:

Listing 5.22 flexWrap property flexWrap: 'wrap' in code.

container: {
...
 flexWrap: 'wrap'
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

141

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Figure 5.19 flexWrap: 'wrap' on device.

With flexWrap: 'wrap' declared, we see that any items that would be rendered off of the
screen instead now wrap nicely into our view.

5.2 Dynamic Styles
Now that we have covered most of the styles available to us in a React Native application, let’s
talk about how to use them dynamically. Dynamic styling is a very powerful way for us to
manipulate styling based on variables and conditions in our app. There are many ways to
implement dynamic styling, but we will go over the ways that myself and the community have
found to be valuable and best practice.

5.2.1 Dynamic Styles Using State and Props

Let’s take a look at a few different ways to manipulate styles based on a prop value:

Listing 5.23 Dynamic styling with props Dynamic styling with boolean prop value in code

class App extends Component {
 render () {
 return (
 <View style={styles.container}>
 <Box border />
 <Box />
 </View>
)
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

142

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

}

const Box = ({border}) => (
 <View style={[styles.flexBox1, border && styles.border]} />
)

const styles = StyleSheet.create({
 container: {
 marginTop: 150,
 backgroundColor: '#ededed',
 marginLeft: 20,
 flexDirection: 'row'
 },
 flexBox1: {
 width: 150,
 height: 150,
 margin: 10,
 backgroundColor: 'red'
 },
 border: {
 borderWidth: 5
 }
})

Figure 5.20 Dynamic styling with boolean prop value on device

What we’ve done is passed down a boolean value of border to the Box component. We check
to see if the border prop is passed, if it is then we apply the border style. Any type of logic can
be used here, and we will look at a few other ways of going about doing this. How you use
dynamic styles in your components will entirely depend on circumstance and what your
component is trying to do.

Another common styling use case is passing down color properties as props. Let’s take a
glance at how that would work:

Listing 5.24 Dynamic colors Dynamic color properties

<BoxbackgroundColor='yellow' />

const Box = ({backgroundColor}) => (
 <View style={[styles.flexBox1, backgroundColor &&{backgroundColor}]} />
)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

143

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

We pass down a backgroundColor of yellow to the Box component. If it is defined, we set the
backgroundColor to the backgroundColor that was passed using an es6 shorthand property
name.

Working with dynamic styles based on state values is very similar in concept to working
with dynamic styles based on prop value. Let’s take a look at an example of how this would
work:

Listing 5.25 Dynamic styling based on state Dynamic styling with state value

class App extends Component {
 constructor () {
 super()
 this.state = {loaded: false}
 }
 componentDidMount () {
 setTimeout(() => {
 this.setState({
 loaded: true
 })
 }, 1000)
 }
 render () {
 const { loaded } = this.state
 return (
 <View style={styles.container}>
 <Box backgroundColor={loaded && 'yellow'} />
 </View>
)
 }
}

const Box = ({backgroundColor}) => (
 <View style={[styles.flexBox1, backgroundColor && {backgroundColor}]} />)

const styles = StyleSheet.create({
 container: {
 marginTop: 150,
 backgroundColor: '#ededed',
 marginLeft: 20,
 flexDirection: 'row'
 },
 flexBox1: {
 width: 150,
 height: 150,
 margin: 10,
 backgroundColor: 'red'
 }
})

We set an initial state with a value of loaded: false. In componentDidMount, we simulate an
api call with a setTimeout and update the loading boolean to true. In our Box component, we
check the value of this.state.loaded and update the backgroundColor to yellow when it is true.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

144

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

5.2.2 Dynamic Styles Using Functions and Class Methods

Sometimes we will need to calculate something and render a style based on the output. This
can be implemented either with class methods or regular functions in our component. Here,
we will check out a few ways to implement this functionality.

Say for example we have an array of colors and would like to apply a random color as a
style property. We could possibly set up a helper method that would return a random color
and them use that as a style in our component. We will set this up outside of our component
since we do not need access to the state or props:

Listing 5.26 Dynamic with helper function Dynamic styling with helper function

const colors = ['red', 'blue', 'yellow', 'green']
function getRandomNum () {
 const index = Math.floor(Math.random() * (4))
 console.log('index:', index)
 return colors[index]
}
class App extends Component {
 render () {
 return (
 <View style={styles.container}>
 <Box backgroundColor={getRandomNum()} />
 <Box backgroundColor={getRandomNum()} />
 <Box backgroundColor={getRandomNum()} />
 <Box backgroundColor={getRandomNum()} />
 </View>
)
 }
}

const Box = ({backgroundColor}) => (
 <View style={[styles.flexBox1, backgroundColor && {backgroundColor}]} />
)

const styles = StyleSheet.create({
 container: {
 marginTop: 150,
 backgroundColor: '#ededed',
 marginLeft: 20,
 flexDirection: 'row',
 flexWrap: 'wrap'
 },
 flexBox1: {
 width: 150,
 height: 150,
 margin: 10
 }
})

Here we are calling getRandomNum() from within our component and returning a random
color from our array.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

145

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Another common scenario is styling components based on their index in a mapping
function. We do this to see whether the item is even or odd, and apply styling accordingly.
This is often done in list views where a lot of rows are rendered and the rows need to stand
out from one another:

Listing 5.27 Dynamic with helper function Dynamic styling of rows based in index

let people = ['Jennifer', 'Chris', 'Emily', 'Becky', 'Mark']

class App extends Component {
 render () {
 people = people.map((p, i) => {
 return (
 View key={i} backgroundColor={i % 2 === 0 &&'yellow'}>
 <Text>{p}</Text>
 </View>
)
 })
 return (
<View style={styles.container}>
 {people}
</View>
)
 }
}

const styles = StyleSheet.create({
 container: {
 marginTop: 150,
 backgroundColor: '#ededed',
 marginLeft: 20,
 flexWrap: 'wrap'
 }
})

Figure 5.21

Here we are simply mapping through all of the items in our people array, and setting the
backgroundColor to yellow based on whether the index is even or odd.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

146

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

5.3 Organizing Styles
There are a few main ways that styles can be organized within a react-native, with no exact
declared convention or best practice. How this is done entirely depends on you and or your
team’s preference. That being said, let’s take a look at a few options we have at our disposal.

5.3.1 Declaring styles in component

As we have done so far in this book, a very popular way to declare styles is within the
component that will be using them. The major benefit of this is that the styles of the
component then becomes entirely encapsulated. This component can be moved or used
anywhere in the app and it does not have to worry about it’s styling changing based on
something else in the app changing. One of the drawbacks of this could be if you have a style
that is being used elsewhere you will be writing the same code in multiple places. If a style
changes in your app, you may have to go to every component implementing that style and
update it to match the new styling convention being adopted.

5.3.2 Creating reusable stylesheets

If you are used to writing css, this may seem like a better approach and also feel more
familiar. To do this, simply create a new file called styles.js in which to place the new
stylesheet:

Listing 5.28 Creating reusable stylesheets – styles.js Creating external reusable
stylesheet

import { StyleSheet } from 'react-native'

const styles = StyleSheet.create({
 container: {
 marginTop: 150,
 backgroundColor: '#ededed',
 marginLeft: 20,
 flexWrap: 'wrap'
 }
})

export default styles

Then, we can import and reuse these styles whenever necessary as we would if they were
declared within our component:

Listing 5.29 Importing reusable stylesheet Creating external reusable stylesheet

Import styles from ‘./styles’

<View style={styles.container} />

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

147

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Another technique to keep in mind is that we can also create multiple stylesheets within the
same file. This may come in handy if we are also wanting to create a separate group of ui
elements that we may want to have access to without having to import the entire stylesheet:

Listing 5.30 Exporting multiple stylesheets from single file

import { StyleSheet } from 'react-native'

const styles = StyleSheet.create({
 container: {
 marginTop: 150,
 backgroundColor: '#ededed',
 flexWrap: 'wrap'
 }
})

const buttons = StyleSheet.create({
 primary: {
 flex: 1,
 height: 70,
 backgroundColor: 'red',
 justifyContent: 'center',
 alignItems: 'center',
 marginLeft: 20,
 marginRight: 20
 }
})

export { styles, buttons }

We could then import and use these styles like so:

Listing 5.31 Importing multiple stylesheets from single file

import { styles, buttons } from './app/styles'

<View style={styles.container}>
 <TouchableHighlight style={buttons.primary} />
 ...
 </TouchableHighlight>
</View>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

148

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

6
Cross-platform components

This chapter covers

• An overview of what components are and which ones ship with React Native
• How to implement the native components that ship with React Native
• What the ListView component is and how to implement it in your application
• Understanding touch events and the components that allow touch events
• Summary of the cross platform components and their implementations

There are many components that ship with React Native that ship with React Native and are
ready to be used for your app. Some of these components work cross platform; that is, they
will work regardless of whether you are running your app on iOS or Android. Some are
platform specific.

In this chapter, I cover all the cross platform components and how to implement each one.
I walk through their APIs and talk about use cases that may be ideal for each one.

An example of the types of components we will be covering are things like View and Text
elements, which are cross platform, and we have discussed them already in the previous
chapters. An example of a non-cross-platform component is ToolbarAndroid, which only runs
on Android, or ActionSheetIOS, which would only be for iOS.

When building your application, these components will be the building blocks for your app.

6.1 Implementing native cross-platform components
In this section, we will be going over most of the native cross-platform components one by
one, implementing them, and going over their API.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

149

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

6.1.1 ActivityIndicator

ActivityIndicator is a native component that displays a loading indicator to indicate loading. An
ideal use case for this would be to show it while data is loading, or something is processing in
your app to let your user be aware of this.

ActivityIndicator takes the following properties, all optional, as shown in table6.1.

Table 6.1 All ActivityIndicator properties are optional

Property Type Description (some from docs)

animating Boolean animates the ActivityIndicator icon

color color color of the ActivityIndicator

size string (small or large) size of the ActivityIndicator

Let’s set up an activity indicator to simulate page loading that depends on data from an
external api call, which is a common use case. We will create a new React Native component
with an initial state variable called loading set to true. We will call a setTimeOut function
when the component loads which will set the loading variable to false after four seconds,
which will hide the ActivityIndicator when the timeout triggers (listing 6.1).

Listing 6.1 Implementing ActivityIndicator

import React, { Component } from 'react'
import { View, Text, ActivityIndicator, StyleSheet } from 'react-native'

class Indicator extends Component {
 constructor () {
 super()
 this.state = {loading: true}
 }
 componentDidMount () {
 setTimeout(() => {
 this.setState({ loading: false })
 }, 4000)
 }
 render () {
 const { loading } = this.state
 return (
<View style={styles.container}>
 {loading &&<ActivityIndicator animating color='blue' size='large' />}
 {!loading &&<Text>Component Now Loaded!</Text>}
</View>
)
 }
}

const styles = StyleSheet.create({
 container: {
 justifyContent: 'center',

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

150

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

 alignItems: 'center',
 flex: 1
 }
})

Figure 6.1 ActivityIndicator

In figure 6.1, the screen on the left shows the ActivityIndicator when the page loads, and after
the state of loading is set to false, the message “Component Now Loaded” is then rendered to
the screen.

This code is also located at:
https://github.com/dabit3/react-native-in-action/tree/chapter6/Listing_1-1

6.1.2 Image

Image is a native component used for displaying different types of images, including network
images, static resources, temporary local images, and images from local disk, such as the
camera roll.

Image takes the following properties (table6.2).

Table6.2 Image properties

Property Type Description (some from docs)

resizeMode string (container, cover, stretch,

repeat, or center)

resizes the image

source remote url or local file resource image source

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

151

Licensed to Hans Otten <hans.otten@autodata.net>

https://github.com/dabit3/react-native-in-action/tree/chapter6/Listing_1-1
https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

style (object) style style of the Image component

When specifying an image source, you can either do so locally or remotely with a uri using the
following syntax (listing 6.2).

Listing 6.2 Specifying an Image source

<Image source={require('./img/react.png')} />
<Image source={{uri: 'https://facebook.github.io/react/img/logo_og.png'}} />

Image also takes the following optional methods (listing 6.3).

Listing 6.3 Image methods

onLayout - function - Invoked on mount and layout changes with {nativeEvent -
{layout: {x, y, width, height}}}.

onLoad - function -Invoked when load completes successfully.
onLoadEnd - function -Invoked when load either succeeds or fails.
onLoadStart - function -Invoked on load start.

We will now implement Image components using some of these methods and properties to see
how they work.

The first group of properties we will look at are resizeMode, source, and style. You will
probably be using the source and style properties every time you implement an Image
component using React Native.

Let’s go over how each resizeMode property works so we can understand how to use them
in the future.

• contain – will scale the image uniformly, maintain the image's aspect ratio, so that
both dimensions (width and height) of the image will be equal to or less than the
corresponding dimension of the view (minus padding). This will keep the image within
the boundaries of the component.

• cover – will scale the image uniformly, maintaining the image's aspect ratio, so that
both the width and height of the image will be equal to or larger than the
corresponding dimension of the view (minus padding). This will scale the image up to
fill the entire component.

• stretch – will scale width and height independently. This may change the aspect ratio
of the source. If an image is not large enough to fill the component, this will cause the
image to stretch to fit, usually changing the aspect ratio.

• repeat (iOS only)–will repeat the image to cover the frame of the component. The
image will keep it's size and aspect ratio.

• center–will center the image in the component

We will render the same image five times, using all of the available resizeMode properties
(listing 6.4).

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

152

Licensed to Hans Otten <hans.otten@autodata.net>

https://facebook.github.io/react/img/logo_og.png
https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Listing 6.4 Image with resizeMode, source, and style properties

import React, { Component } from 'react'
import {
 View,
 StyleSheet,
 Image // importing Image from react-native
} from 'react-native'

class ResizeMode extends Component {
render () {
 const uri = 'https://facebook.github.io/react/img/logo_og.png'
 return (
<View style={styles.container}>
<Image
 resizeMode='contain'
 style={styles.image}
 source={{uri}} />
<Image
 resizeMode='cover'
 style={styles.image}
 source={{uri}} />
<Image
 resizeMode='stretch'
 style={styles.image}
 source={{uri}} />
<Image
 resizeMode='repeat'
 style={styles.image}
 source={{uri}} />
<Image
 resizeMode='center'
 style={styles.image}
 source={{uri}} />
</View>
)
 }
}

const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center'
 },
 image: {
 width: 100,
 height: 100,
 marginBottom: 10,
 borderWidth: 1,
 borderColor: '#666666'
 }
})

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

153

Licensed to Hans Otten <hans.otten@autodata.net>

https://facebook.github.io/react/img/logo_og.png
https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Figure 6.2 resizeMode

Images can also take other components as children. One reason to do this would be to use an
Image component to hold a background image. Let’s implement this and see how it would look
(listing 6.5).

Listing 6.5 Image as background image

import React, { Component } from 'react'
import {
 Text,
 View,
 StyleSheet,
 Image // importing Image from react-native
} from 'react-native' // import Image from react-native

class BackgroundImage extends Component {
render () {
 const uri = 'https://facebook.github.io/react/img/logo_og.png'

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

154

Licensed to Hans Otten <hans.otten@autodata.net>

https://facebook.github.io/react/img/logo_og.png
https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

 return (
<View style={styles.container}>
<Image
 style={styles.image}
 source={{uri}}>
<Text style={styles.text}>Hello From Image!</Text>
</Image>
</View>
)
 }
}

const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center'
 },
 text: {
 backgroundColor: 'transparent',
 fontSize: 18,
 color: 'white',
 fontWeight: '600'
 },
 image: {
 width: 300,
 height: 300,
 marginBottom: 10,
 backgroundColor: '#dddddd',
 justifyContent: 'center',
 alignItems: 'center'
 }
})

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

155

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Figure 6.3 Image as backgroundImage

Next, we will implement an image along with some of the methods that will tell us when the
image starts to load and when it finishes loading. We will call onLayout to measure the x and
y position of the image as well as the width and height and then display these values in our
view. We will call onLoadStart when the image begins and show a message ‘Starting to load’,
and then call onLoad once the image has successfully loaded to show ‘Finished loading’ (listing
6.6).

Listing 6.6 Implementing an Image component

import React, { Component } from 'react'
import {
 Text,
 View,
 StyleSheet,
 Image // importing Image from react-native
} from 'react-native' // import Image from react-native

class ImageMethods extends Component {
 constructor () {
 super()
 this.state = {
 startedLoading: false, ❶
 finishedLoading: false, ❶
 layoutX: undefined, ❷
 layoutY: undefined, ❷
 width: undefined, ❷

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

156

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

 height: undefined ❷
 }
 }
 onLayout (event) {
 const { y, width, x, height } = event.nativeEvent.layout
 this.setState({y, width, x, height}) ❻
 }
 onLoadStart () {
 this.setState({startedLoading: true}) ❹
 }
 onLoad () {
 this.setState({finishedLoading: true}) ❺
 }
 render () {
 const uri = 'https://facebook.github.io/react/img/logo_og.png'
 return (
<View style={styles.container}>
<Image
 onLayout={this.onLayout.bind(this)} ❸
 onLoadStart={this.onLoadStart.bind(this)} ❸
 onLoad={this.onLoad.bind(this)} ❸
 style={styles.image}
 source={{uri}} />
 {this.state.startedLoading &&<Text>Starting to load</Text>} ❼
 {this.state.finishedLoading &&<Text>Finished loading</Text>} ❽
<Text>X: {this.state.x}</Text>
<Text>Y: {this.state.y}</Text>
<Text>Width: {this.state.width}</Text>
<Text>Height: {this.state.height}</Text>
</View>
)
 }
}

const styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center'
 },
 text: {
 backgroundColor: 'transparent',
 fontSize: 18,
 color: 'white',
 fontWeight: '600'
 },
 image: {
 width: 100,
 height: 100,
 marginBottom: 10
 }
})

❶ Set the initial state values ofstartedLoading and finishedLoading to false
❷ Set the intial state of x, y, width, and height to undefined
❸ Attach onLayout, onLoad, and onLoadStart methods to the Image component

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

157

Licensed to Hans Otten <hans.otten@autodata.net>

https://facebook.github.io/react/img/logo_og.png
https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

❹ When onLoadStartis called, which happens when the image begins to load,we set the state of
startedLoading to true

❺ When onLoad is called, which happens when the image is finished loading, we set the state of
finishedLoading to true

❻ When the image is loaded, onLayout is called, letting us get the x & y values as well as the width and height of
the component, which we then set in our state, and display in our view

❼ Only show the “Starting to load” message when this.state.startedLoading is true
❽ Only show the “Finished loading” message when this.state.finishedLoading is true

Figure 6.4 Image methods

6.1.3 Modal

React Native has a built in modal that can be used to present content above an enclosing
view.Modal can take the following properties (table 6.3).

Table 6.3 Modal properties

Property Type Description

animationType string (none, slide, or fade)

(default is none)

controls how the modal animates in and out

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

158

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

transparent boolean (default is false) specify whether modal is transparent

visible boolean this property controls whether the modal is visible or not

visible

onRequestClose function a function that will be called once the modal has been

dismissed. This method is optional on iOS and required on

Android

onShow function - a function that will be called once the modal has been

shown.

Listing 6.7 Modal implementation

import React from 'react'
import {
 View,
 Text,
 Modal, // importing Modal from react-native
 StyleSheet,
 TouchableHighlight
} from 'react-native'

class ModalComponent extends React.Component {
 constructor () {
 super()
 this.state = {
 visible: false ❶
 }
 }
 toggleModal () {
 this.setState({
 visible: !this.state.visible ❸
 })
 }
 render () {
 const { visible } = this.state
 return (
<View style={styles.container}>
<TouchableHighlight style={styles.button} onPress={this.toggleModal.bind(this)}> ❷
<Text>Show Modal!</Text>
</TouchableHighlight>
<Modal
onRequestClose={alert('Modal Closed! ')} ❻
 onShow={alert('Modal Shown! ')} ❺
 visible={visible} ❹
animationType='slide'>
<View style={[styles.container, {backgroundColor: '#ededed'}]}>
<Text style={{textAlign: 'center'}}>Hello from Modal!!</Text>
<TouchableHighlight style={styles.button} onPress={this.toggleModal.bind(this)}>
<Text>Hide Modal!</Text>
</TouchableHighlight>
</View>
</Modal>
</View>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

159

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

)
 }
}

const styles = StyleSheet.create({
 container: {
 justifyContent: 'center',
 flex: 1
 },
 button: {
 justifyContent: 'center',
 alignItems: 'center',
 height: 70,
 marginLeft: 20,
 marginRight: 20,
 backgroundColor: '#2d96ff'
 }
})

❶ Set the initial state value of visible to false in our constructor
❷ Attach an onPress method of toggleModal to a TouchableHighlight component
❸ Toggle modal will toggle the value of visible to the inverse of the previous value
❹ Modal will show and hide based on the value of visible. If it is true, it will animate up into the view. If it is set

to false, it will animate out of the view.
❺ We attach an onShow method that will trigger an alert when the Modal has been shown.
❻ We attach an onRequestClose method that will trigger an alert when the Modal has been dismissed.

Figure 6.5 Modal Implementation

6.1.4 Picker

React Native has a built in Picker component that can be used to render the native picker
component on iOS and Android.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

160

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Figure 6.6 Picker on iOS and Android

Picker can take the following properties (table6.4).

Table6.4 Picker Properties

Property Type Description

selectedValue string or integer selected picker value

style object (style) styling for the Picker component

Android only

enabled boolean (default is true) if set to false, the picker will be disabled, i.e. the user

will not be able to make a selection

mode string (dialog or dropdown)

(default is dialog)

specifies how to display the selection items when the

user taps on the picker

iOS only

prompt string title of dialog when dialog modal type is chosen

itemStyle object (style) will apply styling to each Picker item label

onValueChange function (value, itemPosition) this is a callback function that is fired when the picker

value is changed. it takes the value and index as

parameters.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

161

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

To render the Picker, we return an instance of the Picker element, and give it a
selectedValue value, an onValueChange method, and a list of child elements to render. Each
of these child elements is rendered as a Picker.Item, and needs a label and value property
(listing 6.8).

Listing 6.8 Picker overview

<Picker
selectedValue={this.state.selectedValue}
onValueChange={(item)=>this.setState({selectedValue:item})}>
<Picker.Item label="Label1" value="Item1"/>
<Picker.Item label="Label2" value="Item2"/>
</Picker>

For our real world example, we will render out a list of restaurant types, and let the picker
render to the view the restaurant type and whether or not the restaurant is romantic (listing
6.9).

Listing 6.9 Picker example

import React from 'react'
import {
 View,
 Text,
 Picker, // import Picker from react-native
 StyleSheet,
 TouchableHighlight
} from 'react-native'

class PickerComponent extends React.Component {
 constructor () {
 super()
 this.state = {
 restaurant: {
 type: 'Italian', ❶
 romantic: true
 }
 }
 }
 render () {
 const restaurants = [❷
 {type: 'Italian', romantic: true},
 {type: 'French', romantic: true},
 {type: 'Pizzaria', romantic: false},
 {type: 'Sandwich Shop', romantic: false},
 {type: 'Ice Cream', romantic: true},
]
 return (
<View style={styles.container}>
<Picker
 selectedValue={this.state.restaurant.type} ❸
 onValueChange={(value, position) => this.setState({restaurant:

restaurants[position]})}> ❺
 {

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

162

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

 restaurants.map((l, i) => { ❹
 return <Picker.Item key={i} label={l.type} value={l.type} />
 })
 }
</Picker>
<Text
style={{textAlign: 'center'}}>
{this.state.restaurant.type} ❻
</Text>
 {this.state.restaurant.romantic&& ❼
<Text
style={{textAlign: 'center', marginTop: 10}}>ROMANTIC!
</Text>}
</View>
)
 }
}

const styles = StyleSheet.create({
 container: {
 marginTop: 100,
 flex: 1
 }
})

❶ Set the initial state with an object named restaurant. The restaurant has a type value set to Italian, and
romantic value set to true.

❷ Create an array of restaurants, each with a type and romantic value set.
❸ Set the initial selectedValue property to this.state.restaurant.type.
❹ Map over the restaurants and return a Picker.Item for each restaurant. Set the key property to the index,

the label property to the type, and the value property to the type.
❺ Set the onValueChange method to take in the value (value property set on the Picker.Item) and the position

(index) as arguments. When a position is chosen, the state is reset and restaurant is set to the item in the array at
the chosen index.

❻ this.state.restaurant.type is rendered using a Text element.
❼ If the romantic key of the chosen restaurant is true, we show that it is romantic.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

163

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Figure 6.7 Restaurant picker from listing 6.x rendered on iOS and Android

6.1.5 ScrollView

ScrollView is a component that wraps other components and allows native scrolling behaviour,
both horizontally and vertically.

ScrollView can take the following properties (table6.5).

Table6.5 ScrollView Properties

Property Type Description (some from docs)

contentContainerStyle object(style or

StyleSheetproperty)

styling for the scroll view container

horizontal boolean (default is false) changes scrolling to horizonatal

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

164

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

keyboardDismissMode string (none, interactive, or

on-drag), (default is none)

determines whether the keyboard gets dismissed

in response to a drag. - 'none' (the default), drags

do not dismiss the keyboard. - 'on-drag', the

keyboard is dismissed when a drag begins. -

'interactive', the keyboard is dismissed

interactively with the drag and moves in

synchrony with the touch; dragging upwards

cancels the dismissal. On android this is not

supported and it will have the same behavior as

'none'.

keyboardShouldPersistTaps boolean (default is false) when false, tapping outside of the focused text

input when the keyboard is up dismisses the

keyboard. When true, the keyboard will not

dismiss automatically, and the scroll view will not

catch taps, but children of the scroll view can

catch taps.

onContentSizeChange function (contentWidth,

contentHeight)

called when scrollable content view of the

ScrollView changes.

onScroll function fires at most once per frame during scrolling. The

frequency of the events can be controlled using

the scrollEventThrottle prop.

pagingEnabled boolean (default is false) when true, the scroll view stops on multiples of

the scroll view's size when scrolling. This can be

used for horizontal pagination.

refreshControl element a RefreshControl component, used to provide

pull-to-refresh functionality for the ScrollView.

removeClippedSubviews boolean (default is true) experimental: When true, offscreen child views

(whose overflow value is hidden) are removed

from their native backing superview when

offscreen. This can improve scrolling

performance on long lists.

scrollEnabled boolean (default is true) enables or disables scrolling

showsHorizontalScrollIndicator boolean (default is true) When true, shows a horizontal scroll indicator.

showsVerticalScrollIndicator boolean (default is true) When true, shows a vertical scroll indicator.

In our example, we will render a View with two ScrollViews as children. One will scroll
vertically and the other will scroll horizonally (listing 6.10).

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

165

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Listing 6.10 ScrollView example

import React, { Component } from 'react'
import {
 Text,
 View,
 ScrollView, ❶
 StyleSheet
} from 'react-native'

class ScrollViewExample extends Component {
 render () {
 const rows = []
 for (var i = 0; i < 100; i++) { ❷
 rows.push(<Text key={i} style={styles.row}>
 Welcome to React Native!
</Text>)
 }
 return (
<View style={{flex: 1}}>
<ScrollView> ❸
 {rows}
</ScrollView>
<ScrollView ❹
 style={{backgroundColor: '#ededed'}}
 horizontal>
 {rows}
</ScrollView>
</View>
)
 }
}
var styles = StyleSheet.create({
 row: {
 fontSize: 20,
 textAlign: 'center',
 margin: 10
 }
})

❶ import the ScrollView component
❷ create an array of 100 Text elements
❸ render ScrollView with default vertical scrolling
❹ render ScrollView with horizontal scrolling and a backgroundColor of light grey

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

166

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Figure 6.8 ScrollView implementation rendered on iOS and Android

6.1.6 RefreshControl

The RefreshControl component is used inside of a ScrollView or ListView component to add
pull to refresh functionality.

RefreshControl can take the following properties (table6.6).

Table 6.6 RefreshControl Properties

Property Type Description

onRefresh function called when the view starts refreshing

refreshing boolean Whether the view should be indicating an

active refresh

Android only

colors array colors that will be used to draw the refresh

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

167

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

indicator

enabled boolean whether functionality is enabled

progressBackgroundColor color Background color of the refresh indicator

progressViewOffset number top offset

size enum

(RefreshLayoutConsts.SIZE.DEFAULT

or

RefreshLayoutConsts.SIZE.LARGE)

size of refresh control indicator

iOS only

tintColor color color of refresh indicator

title string title to display under indicator

titleColor color title color

In our example, we will render a ScrollView and mock an API by setting a setTimeout
whenever the onRefresh event is fired (listing 6.11). When the ScrollView is pulled down, the
RefreshControl will show while the state is being updated.

Listing 6.11 RefreshControl with ScrollView

import React, { Component } from 'react'
import {
 Text,
 View,
 ScrollView,
 StyleSheet,
 RefreshControl ❶
} from 'react-native'

class RefreshControlExample extends Component {
 constructor () {
 super()
 this.state = {
 numRows: 5,
 refreshing: false ❷
 }
 }
 refreshRows () { ❸
 const { numRows } = this.state
 this.setState({
 refreshing: true
 })
 setTimeout(() => {
 this.setState({
 numRows: numRows + 5,
 refreshing: false
 })
 }, 2000)
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

168

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

 render () {
 const { numRows, refreshing } = this.state
 const rows = []
 for (var i = 0; i < numRows; i++) {
 rows.push(<Text key={i} style={styles.row}>
 Welcome to React Native + {i}!
</Text>)
 }
 return (
<View style={{flex: 1, marginTop: 30}}>
<ScrollView
 refreshControl={ ❹
<RefreshControl
 refreshing={refreshing}
 onRefresh={this.refreshRows.bind(this)}
 />
 }
 showsVerticalScrollIndicator={false} >
 {rows}
</ScrollView>
</View>
)
 }
}

const styles = StyleSheet.create({
 row: {
 fontSize: 20,
 textAlign: 'center',
 margin: 10
 }
})

❶ import the RefreshControl component
❷ set the initial value of refreshing to false
❸ refreshRows sets refreshing to true, then sets a timeout that adds 5 more rows to the original number of rows then

sets refreshing to false
❹ ScrollView takes a refreshControl prop which is the actual RefreshControl component.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

169

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Figure 6.9 RefreshControl on iOS and Android

6.1.7 Slider

Sliders are used to select single values from a range. For instance, if you have a form you
would like to be populated with a certain numeric value, you could use a slider to make it
easier for the user to populate the form with the correct value.

A Slider can take the following properties (table6.7).

Table6.7 Slider

Property Type Description (some from docs)

disabled boolean (default is false) disables the slider

maximumValue Number (default is 1) initial maximum value of the slider

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

170

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

minimumValue Number (default is 0) initial minimum value of the slider

onSlidingComplete function callback function called when the user finishes changing

the value (when the slider is released).

onValueChange function funciton continuously called while the user is dragging the

slider.

step Number (default is 0) step value of the slider. the value should be between 0

and (maximumValue - minimumValue).

style style style the Slider

value number (default is 0) nitial value of the slider. The value should be between

minimumValue and maximumValue, which default to 0

and 1.

iOS Only

maximumTrackImage,

minimumTrackImage

image source assigns the min and max track images. only static images

are supported. the leftmost pixel of the image will be

stretched to fill the track.

maximumTrackTintColor,

minimumTrackTintColor

color the color used for the track to the right and left of the

button. overrides the default blue gradient image.

thumbImage image source sets an image for the thumb. only static images are

supported. assigns a single image for the track. Only static

images are supported. the center pixel of the image will

be stretched to fill the track

trackImage image source assigns a single image for the track. only static images

are supported. the center pixel of the image will be

stretched to fill the track.

In our example, we will create a slider that will let the user choose a value between 1 and
100, with the step being 1 (listing 6.12).

Listing 6.12 Slider implementation

import React, { Component } from 'react'
import {
 Text,
 View,
 Slider ❶
} from 'react-native'

class SliderExample extends Component {
 constructor () {
 super()
 this.state = { ❷
 number: 0
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

171

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

 }
 render () {
 const { number } = this.state
 return (
<View style={{flex: 1, margin: 20, marginTop: 30}}>
<Slider ❸
 step={1}
 minimumValue={0}
 maximumValue={100}
 onValueChange={(value) => this.setState({number: value})}
 />
<View>
<Text>{number}</Text> ❹
</View>
</View>
)
 }
}

❶ import the Slider component
❷ set an initial number value of 0 in the state
❸ implement the slider, giving it a minimum value of zero, maximum value of 100, a step of 1, and an

onValueChange method that updates the state when the value changes.
❹ render the chosen number to the UI

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

172

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Figure 6.10 Slider component on iOS and Android

6.1.8 Switch

The Switch component is a way for users to toggle or choose boolean values from the UI.
The Switch component takes the following properties (table6.8).

Table 6.8 Switch properties

Property Type Description (some from docs)

disabled boolean (default is false) disables the Switch

onValueChange function callback function when value

changes

value boolean (default is false) value of the Switch

iOS only

onTintColor color background color when switch is true

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

173

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

thumbTintColor color color of the foreground switch grip

tintColor color border color when switch is false

In our example, we will create a switch that toggles a View component in and out of view
(listing 6.13).

Listing 6.13 Switch implementation

import React, { Component } from 'react'
import {
 Text,
 View,
 Switch ❶
} from 'react-native'

class SwitchExample extends Component {
 constructor () {
 super()
 this.state = {
 switchValue: false ❷
 }
 }
 render () {
 const { switchValue } = this.state
 return (
<View style={{flex: 1, margin: 20, marginTop: 30}}>
<Switch ❸
 onValueChange={(value) => this.setState({switchValue: value})}
 style={{marginBottom: 10}}
 value={this.state.switchValue} />
 {
 switchValue && (❹
<View style={{backgroundColor: '#ddd', padding: 20}}>
<Text>Switch is toggled on.</Text>
</View>
)
 }
</View>
)
 }
}

❶ import the Switch component
❷ set initial switchValue to false in the state
❸ render Switch component with a value of this.state.switchValue and an onChangeValue method that updates the

switchValue of the state.
❹ Show and hide View based on value of switchValue

6.1.9 TextInput

The TextInput component allows users to input text in your app. It is a very important
component to get to know as you will be using it quite a bit when building React Native apps.
The TextInput component has a very large number of properties so we will not be covering

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

174

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

them all. Instead, I will focus on the most important ones and the ones I have noticed I’ve
needed in my own development (table6.9).

Table6.9 TextInput props

Property Type Description (some from docs)

autoCapitalize boolean (default is false) will autocapitalize certain characters in the input field

autoCorrect boolean (default is true) will provide autoCorrect functionality in the input field

autoFocus boolean (default is false) will automatically focus the TextInput when

componentDidMount is called

blurOnSbmit boolean (default is true for

single line inputs, false for

multiline inputs)

will blur, or unfocus, the input field when the form is

submitted

defaultValue string initial value for input field

keyboardType string (default, numeric, email-

address, or phone-pad)

specifies keyboard type

multiline boolean (default is false) specifies whether TextInput is multiple lines or a

single line

onChangeText function callback that fires when text is added or removed,

and gets passed the current value of the TextInput

onSubmitEditing function (only for single line

TextInput)

called when the submit button is pressed

placeholder string placeholder text for the input

placeholderTextColor color color for the placeholder text

returnKeyType string (done, go, next, search, or

send. Default is return for iOS,

checkmark icon for Android)

specify the type of return key

secureTextEntry boolean (default is false) hides the value of the input in the UI, ideal for

passwords.

selectionColor color specify highlight color of the input

value string specify the value of the input

In our example, we will have a TextInput that renders the value of the input to the UI in a
Text component (listing 6.15).

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

175

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Listing 6.15 TextInput implementation

import React, { Component } from 'react'
import {
 Text,
 View,
 StyleSheet,
 TextInput, ❶
 Platform ❷
} from 'react-native'

let styles = {}

class TextInputExample extends Component {
 constructor () {
 super()
 this.state = { ❸
 inputValue: ''
 }
 }
 render () {
 const { inputValue } = this.state
 return (
<View style={{flex: 1, margin: 20, marginTop: 50}}>
<View style={styles.inputContainer}>
<TextInput ❹
 onChangeText={(text) => this.setState({inputValue: text})}
 style={styles.input}
 placeholder='Please Enter Name'
 />
</View>
<Text>{inputValue}</Text>
</View>
)
 }
}
styles = StyleSheet.create({
 input: {
 ...Platform.select({ ❺
 ios: {
 height: 30
 }
 })
 },
 inputContainer: {
 ...Platform.select({ ❻
 ios: {
 borderBottomColor: '#666',
 borderBottomWidth: 2
 }
 }),
 marginBottom: 30
 }
})

In this example, we are also using the Platform component from React Native, which allows us to detect which
platform we are currently on and apply specific styling based on the Platform.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

176

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

❶ import TextInput component
❷ import Platform component
❸ set initial value of inputValue in the state as an empty string
❹ render TextInput component with an onChangeText method that sets the state of inputValue whenever the

TextInput value changes
❺ give the input a specified height when the platform is iOS
❻ give the input container a border when the platform is ioS

Figure 6.11 TextInput component on iOS and Android

6.1.10 TouchableWithoutFeedback

TouchableWithoutFeedback is one of a few ways to make Views responsive to touch events
(the others being TouchableOpacity, TouchableNativeFeedback (Android only, will go over in a
later chapter), and TouchableHighlight.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

177

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

While TouchableWithoutFeedback is rarely used because most elements that respond to
press should have a visual feedback when touched, and the documentation recommends using
one of the other Touchable elements, we will cover it first as all of the other Touchable
components inherit the same props plus their own specific additional props (table 6.10).

Table6.10 TouchableWithoutFeedback props

Property Type Description (some from docs)

accessible boolean (default is true) allows the component to be accessible to screen reader

accessibilityTraits array allows the specification of an accessibility trait. see

https://facebook.github.io/react-

native/docs/accessibility.html#accessibilitytraits-ios for more

information about accessibility

onPressIn function called when the element is pressed

delayPressIn function delay in ms, from the start of the touch, before onPressIn is

called

onPressOut function called when the element is unpressed

onLongPress function called when the element is pressed and held down, used with

delayLongPress

delayLongPress number delay in ms, from onPressIn, before onLongPress is called.

disabled boolean (default is false) disables button events

hitSlop object {top: number, left:

number, bottom:

number, right: number}

this defines how far your touch can start away from the

button. This is added to pressRetentionOffset when moving off

of the button.

onPress function called when the touch is released, but not if cancelled (e.g. by

a scroll that steals the responder lock).

pressRetentionOffset object {top: number, left:

number, bottom:

number, right: number}

When the scroll view is disabled, this defines how far your

touch may move off of the button, before deactivating the

button.

In our example, we will render a TouchableWithoutFeedback component and toggle a Text
component based on the state of the showName value when the component is touched (listing
6.16).

Listing6.16 TouchableWithoutFeedback implementation

import React, { Component } from 'react'
import {
 Text,

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

178

Licensed to Hans Otten <hans.otten@autodata.net>

https://facebook.github.io/react-native/docs/accessibility.html#accessibilitytraits-ios
https://facebook.github.io/react-native/docs/accessibility.html#accessibilitytraits-ios
https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

 View,
 TouchableWithoutFeedback, ❶
 StyleSheet
} from 'react-native'

let styles = {}

class TouchableWithoutFeedbackExample extends Component {
 constructor () {
 super()
 this.state = {
 showName: true ❷
 }
 this.showName = this.showName.bind(this)
 }
 showName () { ❸
 const { showName } = this.state
 this.setState({
 showName: !showName
 })
 }
 render () {
 const { showName } = this.state
 return (
<View style={{flex: 1, margin: 20, marginTop: 50}}>
<TouchableWithoutFeedback ❹
 onPress={this.showName}>
<View style={styles.button}>
<Text style={styles.buttonText}>Toggle Name</Text>
</View>
</TouchableWithoutFeedback>
 {
 showName && (❺
<Text style={{marginTop: 20}}>My Name is Nader</Text>
)
 }
</View>
)
 }
}

styles = StyleSheet.create({
 button: {
 height: 50,
 backgroundColor: '#dddddd',
 justifyContent: 'center',
 alignItems: 'center'
 },
 buttonText: {
 color: 'white'
 }
})

❶ import TouchableWithoutFeedback component
❷ set initial value of showName to false in the state
❸ create showName method that will toggle the value of showName
❹ render TouchableWithoutFeedback and set showName as the onPress method

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

179

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

❺ if the showName value is true, the Text component will render, if it is false, it will not render

Figure 6.12 TouchableWithoutFeedback on iOS and Android

6.1.11 TouchableHighlight

TouchableHighlight takes the same props as TouchableWithoutFeedback along with a few
more. The main difference between TouchableWithoutFeedback and TouchableHighlight is that
the TouchableHighlight has an underlay color (underlayColor prop) that show when the button
is pressed, giving the user feedback that the press event happened (table6.11).

Table 6.11 TouchableHighlight Props

Property Type Description (some from docs)

activeOpacity number opacity when touch is active

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

180

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

underlayColor color color of component when the touch is active

onHideUnderlay function function that is called immediately after the underlay is hidden

onShowUnderlay function function called immediately after the underlay is shown

style object (style) styling of component

In our example, we will render a basic TouchableHighlight component with an onPress method
attached to a console.log statement (listing 6.17).

Listing 6.17 TouchableHighlight implementation

import React from 'react'
import { TouchableHighlight, Text, StyleSheet } from 'react-native'
let styles = {}

const Button = () => {
 const log = () => console.log('Clicked')
 return (
<TouchableHighlight
 underlayColor='#8a8a8a'
 style={styles.button}
 onPress={log}>
<Text style={styles.buttonText}>Click Me</Text>
</TouchableHighlight>
)
}

styles = StyleSheet.create({
 button: {
 backgroundColor: '#666',
 height: 50,
 justifyContent: 'center',
 alignItems: 'center',
 margin: 20,
 marginTop: 100
 },
 buttonText: {
 color: 'white'
 }
})

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

181

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Figure 6.13 TouchableHighlight

6.1.12 TouchableOpacity

TouchableHighlight takes the same props as TouchableWithoutFeedback along with another
single property, activeOpacity (opacity, number). The main difference between
TouchableHighlight and TouchableOpacity is that TouchableOpacity has less configuration and
is an easy way to create a simple button component without a lot of work.

6.2 Summary
• Overview of most cross platform React Native components
• Overview and implementation of props and methods of cross platform components

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

182

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

7
Navigation

This chapter covers

• React Native Navigation Overview
• Using NavigatorIOS
• Using Navigator
• Using Navigation Experimental

Navigation in React Native is a very important concept to understand when building your
application.

There are many options out there for creating and managing navigation state for a React
Native application, but only three come out of the box, so we will be covering those. They are
NavigatorIOS, Navigator, and Navigation Experimental.

Navigation state is usually held in an array and routes are pushed and popped to the array,
rendering the current chosen item in the array. We navigate through our routes by pushing
and popping to the array, rendering the chosen route (listing 7.1).

Listing 7.1 Route stack example (pseudo code)

import Home from './Home'
import About from './About'
import Contact from 'Contact'

const routes = [{ component: Home, title: 'Home' }, { component: About, title:

'About' }]

// push to route
routes.push({
 component: Contact,
 title: 'Contact'
})

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

183

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

// go back one route
routes.pop()

This is a very basic implementation of how a route array works, and what it looks like to push
and pop routes to the route array. This concept will be applicable to all the navigation options
we look at in this chapter, and also carry on to most navigation options in general when
dealing with React Native.

7.1 NavigatorIOS
The first navigation option we will be covering in this chapter is NavigatorIOS. This navigator
is great for beginners, prototypes, or applications that do not require a complex navigation
state, and applications that only need to run on the iOS platform. To be clear, this navigator
will not work on Android.

The main benefits of NavigatorIOS are its simple API and smooth transitions. While many
of the other options available for navigation use JavaScript for animating the transitions
between routes, NavigatorIOS uses real native transitions, giving it a slightly smoother feel
and truly native performance. It is also very easy to get up and running.

In the context of NavigatorIOS, a route is an object with at least one property: a
component.

{component: MyComponent}

For our basic example, we will set up a navigator that pushes and pops a couple of routes. We
will specify a ref, tintColor, titleTextColor, and initialRoute on the original instance of
the NavigatorIOS, and have three components that we will navigate between (Home, About,
and Contact).

To set up an instance of NavigatorIOS, there are really only two things that must be given
as props: a style of flex:1, to fill the view with the navigator, and an initialRoute object
with a title and component property.

class App extends Component {
 render () {
 return (
<NavigatorIOS
 style={{ flex: 1 }}
 initialRoute={{ title: 'Home', component: Home }}
 />
)
 }
}

With that in mind, let’s code our first application using NavigatorIOS. Our application will
consist of three routes: Home, About, and Contact. The initial route will be a component we
will call Home (listing 7.2, figure 7.1).

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

184

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

Figure 7.1 NavigatorIOS with three routes

Listing 7.2 NavigatorIOS

import React, { Component } from 'react'
import { AppRegistry, NavigatorIOS, View, Text, StyleSheet } from 'react-native' ❶
let styles = {}

const Home = ({ navigator }) => (❷
<View style={styles.container}>
<Text style={styles.text}>Home</Text>
<Text
 style={styles.text}
 onPress={() => navigator.push({ ❸
 title: 'About',
 component: About,
 leftButtonTitle: 'Back',
 onLeftButtonPress: () => navigator.pop()
 })
 }
>Go to About</Text>
</View>
)

const About = ({ navigator }) => (

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

185

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

<View style={styles.container}>
<Text style={styles.text}>About</Text>
<Text
 style={styles.text}
 onPress={() => navigator.pop()} ❹
>Go Back</Text>
<Text
 style={styles.text}
 onPress={() => navigator.replace({
 component: Contact,
 onLeftButtonPress: () => navigator.pop() ❺
 })
 }
>Go to Contact</Text>
</View>
)

const Contact = ({ navigator }) => (
<View style={styles.container}>
<Text style={styles.text}>Contact</Text>
<Text style={styles.text} onPress={() => navigator.pop()}>Go Back</Text>
</View>
)

class App extends Component {
 render () {
 return (
<NavigatorIOS ❻
 ref='navigator'
 style={{ flex: 1 }}
 tintColor='red'
 titleTextColor='green'
 initialRoute={{ rightButtonTitle: 'About', onRightButtonPress: () =>

this.refs.navigator.push({ component: About, title: 'About' }), title: 'Home',
component: Home }}

 />
)
 }
}

styles = StyleSheet.create({
 container: {
 flex: 1,
 paddingTop: 60,
 justifyContent: 'center',
 alignItems: 'center',
 backgroundColor: 'orange'
 },
 text: {
 fontSize: 20,
 padding: 7
 }
})
AppRegistry.registerComponent('App', () => App)

❶ import NavigatorIOS from 'react-native'

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

186

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

❷ create a component called Home. Notice that we get access to navigator as props, this is because any component
that gets rendered by NavigatorIOS anywhere in the routes stack automatically gets passed the navigator reference
as a prop.

❸ create an onPress method that calls navigator.push, passing in a title, component, leftButtTitle,
and onLeftButtonPress method. If we do not pass in a leftButtonTitle or onLeftButtonPress
method, the default that is rendered is a Back button that will call navigator.pop() when pressed.

❹ in About, we have a back button that calls navigator.pop() to go back
❺ in About, we also have a button that calls navigator.replace, replacing the current route with the Contact

component. Using replace will not render any animations at all, instead it will just replace the current scene without
any transitions or animations.

❻ in the render method, we return the instance of NavigatorIOS, passing in all of the configuration we will need to
wire everything together. Notice we also have a ref= 'navigator' which gives us access to the navigator
methods within the initial component. We do this so we can give the initailRoute object access to the
navigator push method in the onRightButtonPress function by calling this.refs.navigator.push.

NavigatorIOS has the props and methods shown in tables 7.1 and 7.2.

Table 7.1 NavigatorIOS props

prop type description(some from docs)

barTintColor string default navigation bar background color

initialRoute object initial route to be rendered

interactivePopGestureEnabled Boolean Boolean value that indicates whether the

interactive pop gesture is enabled. This is

useful for enabling/disabling the back-swipe

navigation gesture.

itemWrapperStyle object (style) The default wrapper style for components in

the navigator. A common use case is to set the

backgroundColor for every scene.

style object (style) container style of the navigator

navigationBarHidden Boolean hides or shows navigation bar

shadowHidden Boolean Boolean value that indicates whether to hide

the 1px hairline shadow by default.

tintColor string text and icon color for buttons in the navigation

bar

titleTextColor string text color for the navigation bar title

translucent Boolean indicates whether the navigation bar is

translucent by default, default is true

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

187

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

Table 7.2 NavigatorIOS methods

method arguments description (some from docs)

push push({route}) Navigate to a new route

pop none – pop() go back one route

popN popN(number) go back specified number of scenes at once

replaceAtIndex replaceAtIndex({route}, index) replaces a route in the navigation stack.

replace replace({route}) replaces the route for the current scene and

immediately load the view for the new route.

replacePrevious replacePrevious({route}) replace the route/view for the previous scene.

popToTop none – popToTop() go back to the topmost item in the navigation

stack.

popToRoute popToRoute({route}) go back to the item for a particular route

object.

replacePreviousAndPop replacePreviousAndPop({route}) replaces the previous route/view and

transitions back to it.

resetTo resetTo({route}) replaces the top item and pop to it.

7.2 Using Navigator to create cross platform navigation
As of this writing, Navigator is currently the only stable cross platform navigation solution that
comes out of the box with React Native. Though it has been the recommendation for cross
platform navigation up until now, keep in mind that Navigation Experimental will one day take
the place of this navigator as the recommended way to implement navigation once it is stable,
though there has yet to be a solid timeline laid out for this transition, so you are safe in
learning and implementing both APIs as of the time of this writing.

Navigator is a good choice for many use cases. The implementation has been around since
the release of the framework, so there is a lot of documentation and information available for
how to implement different navigation state using the Navigator.

That being said, remember that Navigator will one day be replaced by Navigation
Experimental for a few reasons that may be hard to understand coming into this as a
beginner, including the fact that Navigator has an imperative API that does not jive with the
single-directional data flow of the React philosophy and includes somewhat difficult to
customize scene animations.

Navigator has a somewhat similar API to NavigatorIOS. The main difference starting off
that you will notice is that we also need to add a renderScene method to the Navigator
instance which describes how to render a scene for a given route, while NavigatorIOS did this
rendering for us (listing 7.3).

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

188

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

Listing 7.3 Basic Navigator implementation (not full implementation, will not run)

import Home from './pathtohomecomponent/'

<Navigator
 initialRoute={{ name: 'Home', component: Home }}
 renderScene={(route, navigator) =><route.component />}
/>

One thing to remember is that any route properties, such as the name or the component values
in listing 7.3, will be available as properties of the route argument of renderScene. That is
why we can use <route.component /> to render our scene, as we are returning the Home
component as the initialRoute component value. TheinitialRoute object has both a
component and name key, which we then access in renderScene as route.component.

Navigator also has a way to specify scene animations and custom header that calls
methods, all of which we will cover shortly, but first let’s set up an instance of Navigator so we
can begin working with it.

To get started, we will need to create a component for our initial route and a component
that will render the navigator (Listing 7.4, figure 7.2).

Figure 7.2 Navigator with initial route loaded

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

189

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

Listing 7.4 Navigator with a single route

import React, { Component } from 'react'
import { Navigator, View, Text, StyleSheet } from 'react-native' ❶
let styles = {}

const Home = () => (❷
<View style={styles.container}>
<Text style={styles.text}>Home</Text>
</View>
)

class App extends Component {
 constructor() {
 super()
 this.renderScene = this.renderScene.bind(this)
 }
 renderScene(route, navigator) { ❸
 return <route.component navigator={navigator} />
 }
 render () {
 return (
<Navigator ❹
 ref='navigator'
 renderScene={this.renderScene}
 initialRoute={{ title: 'Home', component: Home }}
 />
)
 }
}

styles = StyleSheet.create({
 container: {
 flex: 1,
 paddingTop: 60,
 justifyContent: 'center',
 alignItems: 'center'
 },
 text: {
 fontSize: 20,
 padding: 7
 }
})

export default App

❶ import Navigator along with other needed components from ‘react-native'
❷ create a Home component to render as out initial route component
❸ create a renderScene method that returns the component property of the route, and passes the navigator

reference as a prop to the rendered scene
❹ create Navigator instance, passing the initialRoute and the renderScene as props

Now, when we run our app, we should get the Home component rendered when the app starts
(figure 7.2).

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

190

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

Now that we have our Navigator working, let’s add a couple of routes that we can navigate
between. In the same file, below the Home declaration, let’s create two more components,
Contact and About. We will also update the Home component to take the navigator props and
link to the two new components (Listing 7.5).

Listing 7.5 Adding two routes to

const Home = ({ navigator }) => (❶
<View style={styles.container}>
<Text style={styles.text}>Home</Text>
<Text onPress={() => navigator.push({component: About, title: 'About'})}>About</Text>
<Text onPress={() => navigator.push({component: Contact, title:

'Contact'})}>Contact</Text>
</View>
)

const About = ({ navigator }) => (❷
<View style={styles.container}>
<Text style={styles.text}>About</Text>
<Text onPress={() => navigator.pop()}>Back</Text>
</View>
)

const Contact = ({ navigator }) => (❷
<View style={styles.container}>
<Text style={styles.text}>Contact</Text>
<Text onPress={() => navigator.pop()}>Back</Text>
</View>
)

❶ Home is updated to take the navigator prop that was passed as a prop in the renderScene method, and use it to
call navigator.push to navigate to the <About /> and <Contact /> components we created. We push to a new route
by calling navigator.push, passing an object with both component and title values specified (title will be used
shortly when we create a navigation header).

❷ About and Contact also take the navigator prop that was passed in renderScene and return a basic component
with a back button that calls navigator.pop().

Now we should be able to click on About and Contact from the Home screen to navigate to our
new components.

With our new components working, let’s now add a navigation bar. To enable a
navigationBar, we need to destructure the NavigationBarfrom the Navigator, create a
NavigationBar component and pass it as a prop to the navigationBar in Navigator.
Destructuring NavigationBarfrom Navigator is the same as calling Navigator.NavigationBar
but in a more concise manner (Listing 7.6, figure 7.3).

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

191

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

Figure 7.3 NavigationBar on the About route

Listing 7.6 Navigation Bar Creation

const { NavigationBar } = Navigator ❶

const NavBar = (❷
<NavigationBa r ❸
 style={{ borderBottomWidth: 1, borderBottomColor: '#ededed' }}
 routeMapper={{ ❹
 LeftButton: (route, navigator, index, navState) => {
 if (index === 0) return null
 return (<Text style={styles.backButton} onPress={navigator.pop}>Back</Text>)
 },
 RightButton: (route, navigator, index, navState) => {
 return null
 },
 Title: (route, navigator, index, navState) => {
 return (<Text style={styles.title}>{route.title}</Text>)
 },
 }}
 />
)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

192

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

❶ destructure the NavigationBar from the Navigator
❷ create a variable called NavBar to hold the NavigationBar
❸ create the NavigationBar
❹ NavigationBar takes a prop called routeMapper that should contain three functions: LeftButton,

RightButton, and Title. They should all return either a React Native element or null. Each function is invoked
with route, navigator, index, and navState. navState is an object that contains all of the navigation state
information including the route stack.

The Title component will return the route title, the LeftButton will call navigator.pop,

The LeftButton component will check to see if we are on the initial route (index === 0). If we are on the initial
route, it will return null. If we are not on the initial route, it will return a back button that calls navigator.pop

The RightButton will always return null

Now that we have created a NavBar component, the last thing we need to do is pass it in as a
prop to the Navigator. In the render method, when we return the Navigator, pass the NavBar
in as a navigationBar prop. (listing 7.7).

Listing 7.7 Passing the NavBar component as a prop to the Navigator

render () {
 return (
<Navigator
 navigationBar={NavBar} ❶
 ref='navigator'
 renderScene={this.renderScene}
 initialRoute={{ title: 'Home', component: Home }}
 />
)
 }

❶ pass in the NavBar to the navigationBar prop of Navigator

Now when we run our app we should get a navigation bar (figure 7.3).
With the current setup, we see that when we navigate to a new page the transitions

happen from right to left, and when we go back the go from left to right. What if we want to
specify a certain type of transition? Doing so with this component is very straightforward.
Navigator also has a prop called configureScene which lets us specify how we want the scene
to animate (Listing 7.8).

Listing 7.8 Basic configureScene implementation

const { SceneConfigs } = Navigator
return (
<Navigator
 renderScene={this.renderScene}
 configureScene={(route, routeStack) =>SceneConfigs.FloatFromRight }
 initialRoute={initialRouteObject} />

The default configuration is PushFromRight, so nothing different will happen when we specify
PushFromRight, but there are quite a few options to choose from (listing 7.9).

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

193

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

Listing 7.9 Navigator scene configuration options

Navigator.SceneConfigs.PushFromRight (default)
Navigator.SceneConfigs.FloatFromRight
Navigator.SceneConfigs.FloatFromLeft
Navigator.SceneConfigs.FloatFromBottom
Navigator.SceneConfigs.FloatFromBottomAndroid
Navigator.SceneConfigs.FadeAndroid
Navigator.SceneConfigs.SwipeFromLeft
Navigator.SceneConfigs.HorizontalSwipeJump
Navigator.SceneConfigs.HorizontalSwipeJumpFromRight
Navigator.SceneConfigs.HorizontalSwipeJumpFromLeft
Navigator.SceneConfigs.VerticalUpSwipeJump
Navigator.SceneConfigs.VerticalDownSwipeJump

configureScene is invoked with two parameters, the route and the routeStack.

(route, routeStack) =>SceneConfigs.FloatFromBottom

One way to dynamically implement one of these scene configurations is to create a method
that can be attached to the configureScene prop and do logic on the route. That is, in the
route object we can pass parameters to check for in the configureScene method.

In our example, we will check to see if there is a type: 'modal' in the route, and if so we
will float the scene from the bottom like a Modal window.

After the renderScene method, we will create a configureScene method. We will also
create a new component called Modal and update the Home component to have a new link
called Modal. (listing 7.10).

Listing 7.10 ConfigureScene implementation

❶
const Home = ({ navigator }) => (
<View style={styles.container}>
<Text style={styles.text}>Home</Text>
<Text onPress={() => navigator.push({component: About, title: 'About'})}>About</Text>
<Text onPress={() => navigator.push({component: Contact, title:

'Contact'})}>Contact</Text>
<Text onPress={() => navigator.push({component: Modal, title: 'Modal', type:

'modal'})}>Modal</Text>
</View>
)

❷
const Modal = ({ navigator }) => (
<View style={[styles.container, { backgroundColor: 'red' }]}>
<Text style={styles.text}>Modal</Text>
</View>
)

...
❸
constructor() {
 super()
 this.renderScene = this.renderScene.bind(this)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

194

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

 this.configureScene = this.configureScene.bind(this)
}
...

❹
configureScene (route) {
 const { SceneConfigs } = Navigator
 if (route.type === 'modal') {
 return SceneConfigs.FloatFromBottom
 } else {
 return SceneConfigs.FloatFromRight
 }
}
...

❺
render () {
 return (
<Navigator
 navigationBar={NavBar}
 configureScene={this.configureScene}
 ref='navigator'
 renderScene={this.renderScene}
 initialRoute={{ title: 'Home', component: Home }}
 />
)
}

❶ Add a new route called Home, and add a new type property to the route object.
❷ Create a new component called Modal, and give it a background color of red so we can see the exact transition and

how it differs from the others.
❸ In the existing constructor, we bind the new configureScene method to the class.
❹ In the newly addedconfigureScene method, we check to see if the route.type is modal. If it is, we float

the scene from the bottom. If it is not, we float it in from the right.
❺ In the existing Navigator, we add a new prop called configureScene and pass in our new configureScene

method.

Now when we press Modal, we see the nice bottom to top transition, while all our other
transitions stay the same!

What if we need to pass properties to another scene? With Navigator, we can do this pretty
easily.

The first thing we need to do is go back to our renderScene method and tell it to pass
along any properties to each component being returned (Listing 7.11).

Listing 7.11 Passing Props

renderScene(route, navigator) {
 return <route.component navigator={navigator} {...route.props} />
}

To pass props, we can now just add a props key to the route object (listing 7.12).

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

195

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

Listing 7.12 Passing Props

<Text
onPress={() => navigator.push({component: Modal, title: 'Modal', type: 'modal',

props: { author: 'Nader Dabit' } })}>Modal</Text>

Now, the author prop will be available in the Modal component (listing 7.13).

Listing 7.13 Rendering passed props from Navigator

const Modal = ({ navigator, author }) => (
<View style={[styles.container, { backgroundColor: 'red' }]}>
<Text style={styles.text}>Modal</Text>
<Text>{author}</Text>
</View>
)

Navigator also has the props and methods shown in tables 7.3 and 7.4.

Table 7.3 Navigator props

prop type description (some from docs)

configureScene function describes the animations and gestures of the current

scene being rendered.

initialRoute object object containing the initial scene being rendered.

initialRouteStack array Pass this in to provide a set of routes to initially mount.

This prop is required if initialRoute is not provided to the

navigator. If this prop is not passed in, it will default

internally to an array containing only initialRoute.

navigationBar node Use this to provide an optional component representing a

navigation bar that is persisted across scene transitions.

This component will receive two props: navigator and

navState representing the navigator component and its

state. The component is re-rendered when the route

changes.

navigator object Optionally pass in the navigator object from a parent

Navigator.

onDidFocus function Required function which renders the scene for a given

route. Will be invoked with the route and the navigator

object.

sceneStyle style (object) Styles to apply to the container of each scene.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

196

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

Table 7.4 Navigator methods

method arguments description (some from docs)

immediatelyResetRouteStack(nextR

outeStack)

nextRouteStack

(array of objects)

Resets every scene with a new array of routes.

jumpTo(route) route (object) Transitions to an existing scene without unmounting

jumpForward() none Jump forward to the next scene in the route stack.

jumpBack() none Jump backward without unmounting the current scene.

push(route) route (object) Navigate forward to a new scene, squashing any scenes

that you could jump forward to.

popN(number) number Go back N scenes at once. When N=1, behavior matches

pop(). When N is invalid(negative or bigger than current

routes count), do nothing.

pop() none Transition back and unmount the current scene.

replaceAtIndex(route, index, callback) (route, index,

callback)

Replace a scene as specified by an index.

replace(route) route (object) Replace the current scene with a new route.

replacePrevious(route) route (object) Replace the previous scene.

popToTop() none Pop to the first scene in the stack, unmounting every

other scene.

popToRoute(route) route (object) Pop to a particular scene, as specified by its route. All

scenes after it will be unmounted.

replacePreviousAndPop(route) route (object) Replace the previous scene and pop to it.

resetTo(route) route (object) Navigate to a new scene and reset route stack.

getCurrentRoutes() none Returns the current list of routes.

7.3 Using NavigationExperimental to create cross platform
navigation

Navigation Experimental is the newest navigation API from the React Native core project. It
aims to be more in line with the React and Redux philosophy of one way data flow, and unlike
Navigator and NavigatorIOS, gives us complete control over the state of our Navigation.

The following statement is from the original proposal for this API
(https://github.com/ericvicenti/navigation-rfc):

A new Navigation system for react native. Focuses on the following improvements over <Navigator />:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

197

Licensed to Hans Otten <hans.otten@autodata.net>

https://github.com/ericvicenti/navigation-rfc
https://forums.manning.com/forums/react-native-in-action

Single-directional data flow, using reducers to manipulate top-level state object

Navigation logic and routing must be independent from view logic to allow for a variety of native and js-based

navigation views

Improved modularity of scene animations, gestures, and navigation bars.

What does this mean for us? Well, at this point we have yet to run into any pitfalls with either
Navigator or NavigatorIOS, but in many larger applications, navigation state can become
complex and hard to reason about. While using Navigator, we also have to keep up with our
navigator instance, which can be tiresome, as it would have to be passed down as a prop to
child components wherever we need it.

NavigationExperimental offers a central location that we can keep up with and update our
navigation, and it is the way going forward as far as the React Native project is concerned.

Navigator will also one day be deprecated and Navigation Experimental will be the main
Navigator as well as the one being maintained, so it is important to understand this API and
understand how to use it.

A basic concept to understand when working with NavigationExperimental is the idea of a
reducer function. A reducer is a function that takes in an initial state or value as an argument
and returns a new state or value based on all previous and current actions. Reducers must be
pure, meaning the reducer function should:

• Always return the same output given the same input
• Not rely on any external state, only the arguments
• produce no side effects

Something else to remember when writing reducers and working with the state of the
reducer is that the data structures should be immutable, meaning that we should not mutate
the state, but instead return a completely new data structure.

This means, for example, that instead of adding and removing items from an array stored
in the state when the time comes to update the array, we should create a copy of the array,
push or pop the item to or from the copied array, and then return the newly copied array
along with the existing state.

If you are new to the idea of immutable data, and you would like to have this idea
reinforced for you, there are a couple of open source projects that you can use in your
application. Check out ImmutableJS or Seamless Immutable as they are both great libraries
and are open source.

Let’s look at an example reducer function (listing 7.14).

Listing 7.14 Reducer function

const initialState = { ❶
name: 'Nader Dabit',
 age: 22

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

198

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

}
function personReducer(state = initialState, action) { ❷
 switch(action.type) { ❸
 case 'increment_age':
 return { ❹
 ...state,
 age: state.age + 1
 }
 case 'change_name':
 return { ❺
 ...state,
 name: action.name,
 }
 }
}

❶ create an initialState object with two keys, name and age.
❷ personReducer takes two arguments, state (an object) and action (an object)
❸ switch on the action.type
❹ in the case of 'increment_age', return a new state object with the existing state, and we replace the age key with

the existing age plus 1
❺ in the case of 'change_name', return a new state object with the existing state, and we replace the name key with

the action.name value

We will be making use of this reducer pattern to manage navigation state in
NavigationExperimental, so now that we’ve gone over what this looks like, let’s implement this
into a NavigationExperimental implementation.

When working with NavigationExperimental, we can apply some of the same concepts
we’ve learned so far from Navigator and NavigatorIOS, the main one being the idea of
returning a main navigation component in the render method of the main application class
(listing 7.15).

Listing 7.15 Returning NavigationExperimental NavigationCardStack

class App extends Component {
 render() {
 return (
<NavigationCardStack />
)
 }
}

NavigationCardStack is very similar to Navigator and NavigatorIOS in that it takes a
renderScene method, but instead of an initialRoute object, it takes a navigationState
object (listing 7.16).

Listing 7.16 NavigationCardStack with renderScene and navigationState

const navState = { ❶
 index: 0,
 routes: [{ key: 'Home' }]

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

199

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

}

class App extends Component {
 renderScene() {
 switch(props.scene.route.key) { ❷
 case 'Home':
 return <Home />
 }
 }
 render() {
 return (
<NavigationCardStack
 navigationState={navState}
 renderScene={this.renderScene}
 />
)
 }
}

❶ navState is an object with at least two properties, an index and an array of routes
❷ renderScene is called when the navigationState is changed, and returns the route in the

navigationState routes array that corresponds with the current index of the navigationState

Again, renderScene will return the route in the navigationState routes array that
corresponds with the current index of the navigationState, therefore the following
navigationState will return the About route because the index is 2 and route in the
corresponding position in the routes array is 'About'(listing 7.17).

Listing 7.17navigationState with an index set to 2

const navState = {
 index: 2,
 routes: [{ key: 'Home' }, { key: 'Contact' }, { key: 'About' }]
}

Now that we’ve gone over some of the basics, we can start building navigation using
NavigationExperimental.

To get started, we will create a basic app that will only render an initial route using
NavigationExperimental (listing 7.18, figure 7.4).

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

200

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

Figure 7.4 NavigationExperimental NavigationCardStack with 1 route

Listing 7.18 Setting up NavigatorExperimental

import React, { Component } from 'react'
import { AppRegistry, View, Text, NavigationExperimental } from 'react-native' ❶

const {
 CardStack: NavigationCardStack, ❷
} = NavigationExperimental

let styles = {}

const Home = () => (❸
<View style={styles.container}>
<Text>Hello from Home</Text>
</View>
)

function reducer(state) { ❹
 if (!state) {
 return {
 index: 0,
 routes: [{key: 'Home'}],

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

201

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

 };
 }
}

class NavigationCardStackExample extends Component {
 constructor() {
 super()
 this.state = {
 navState: reducer() ❺
}
 this.renderScene = this._renderScene.bind(this)
 }

 _renderScene(props) { ❻
 switch(props.scene.route.key) {
 case 'Home':
 return <Home />
 }
 }

 render() {
 const { navState } = this.state
 return (
<NavigationCardStack ❼
 navigationState={navState}
 renderScene={this._renderScene}
 />
)
 }

}

styles = {
 container: {
 justifyContent: 'center',
 alignItems: 'center',
 flex: 1
 },
}

AppRegistry.registerComponent('App', () =>NavigationCardStackExample);

❶ import NavigationExperimental from React Native
❷ destructure NavigationCardStack from NavigationExperimentalCardStack
❸ create initial route of Home
❹ create a reducer that for now will always return the initial state object created inside of the reducer
❺ set the initial state of the class to be the returned value of the reducer
❻ renderScene will be invoked with the navigation props object that we will call props. The current scene will be

available as props.scene, and we will switch on the scene key to check for the scene we want, and will return a
component based on the key value

❼ the main class will return NavigationCardStack with the navigationState and renderScene method
passed as props

Now when we run this, we should just get the main Home route rendered to the scene as it is
the route that is in position 0 of the routes array in the navigationState object (figure 7.4).

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

202

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

Now that we have the initial route set up, we can add in a navigate function along with
another route to navigate to and from, we will call this route About. We will also set up a
navigate method and update the reducer to take an action object (listing 7.19, figure 7.5).

Figure 7.5 NavigationExperimental NavigationCardStack with 2 routes, showing About route

Listing 7.19 NavigationExperimental NavigationCardStack with 2 routes

import React, { Component, PropTypes } from 'react'
import { AppRegistry, View, Text, NavigationExperimental } from 'react-native'

const {
 CardStack: NavigationCardStack,
} = NavigationExperimental

let styles = {}

const Home = ({ navigate }) => { ❶
 return (
<View style={styles.container}>
<Text>Hello from Home</Text>
<Text onPress={() => navigate({ type: 'push', route: { key: 'About' }})}>Go To

About</Text>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

203

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

</View>
)
}

const About = ({ navigate }) => (
<View style={styles.container}> ❷
<Text>Hello from About</Text>
<Text onPress={() => navigate({ type: 'pop' })}>Back</Text>
</View>
)

function reducer(state, action) {
 if (!state) {
 return {
 index: 0,
 routes: [{ key: 'Home' }],
 };
 }
 switch (action.type) {
 case 'push': { ❸
 const routes = state.routes.slice();
 routes.push(action.route);
 return {
 ...state,
 index: routes.length - 1,
 routes,
 }
 }
 case 'pop': { ❹
 if (state.index <= 0) return state
 const routes = state.routes.slice(0, -1);
 return {
 ...state,
 index: routes.length - 1,
 routes,
 }
 }
 default:
 return state
 }
}

class NavigationCardStackExample extends Component {
 constructor() {
 super()
 this.state = { navState: reducer() }
 this._renderScene = this._renderScene.bind(this)
 this._navigate = this._navigate.bind(this)
 }
_renderScene(props) { ❺
 switch(props.scene.route.key) {
 case 'Home':
 return <Home navigate={this._navigate} />
 case 'About':
 return <About navigate={this._navigate} />
 }
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

204

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

 _navigate(action) { ❻
 const navState = reducer(this.state.navState, action)
 this.setState({
 navState
 })
 }
 render() {
 const { navState } = this.state
 return (
<NavigationCardStack
 navigationState={navState}
 renderScene={this._renderScene}
 />
)
 }
}

styles = {
 container: {
 justifyContent: 'center',
 alignItems: 'center',
 flex: 1
 },
}

AppRegistry.registerComponent('App', () =>NavigationCardStackExample);

❶ Home now takes a single prop, navigate, and we use navigate to move to the About route by calling navigate and
passing in a type of 'push', and a route object with a key of 'About'.

❷ About also takes the navigate method as a prop, and we use it to go back to the previous route by calling navigate
with the type of 'pop'

❸ the reducer function now takes an action, and we switch on the action type to either push or pop routes to our
navState. If push is called, we create a shallow copy of the routes array by calling .slice() on the routes array,
push the new route to the array, and then return a new object with the existing state, an index with a value of the
routes length minus 1, and the new routes array

❹ if pop is called, we call .slice on the route array, removing the last item in the array, and then return a new object
with the existing state, an index with a value of the routes length minus 1, and the new routes array

❺ renderScene now checks for the 'About' key and returns the About route if it matches
❻ the _navigate method calls the reducer method with the first argument being the navState, and the second

argument being the action, and resets the navState with the returned value of the reducer

Now, we should be able to press the ‘Go To About’ button and navigate to the About page.
Now that we have the basic navigation working, let’s add a header that will display the

current route title and a back button when not on the initial route.
To get started, we will need to import the Header component from NavigationExperimental

as well as create the header we will be using (listing 7.20, figure 7.6).

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

205

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

Figure 7.6 NavigationExperimenatal with Header

Listing 7.20Creating a Header component for Navigation Experimental

...

const {
 CardStack: NavigationCardStack,
 Header: NavigationHeader, ❶
} = NavigationExperimental

let styles = {}

class Header extends Component {
 _back = () => { ❷
 this.props.navigate({ type: 'pop' });
 }
 _renderTitleComponent = (props) => { ❸
 return (
<NavigationHeader.TitletextStyle={{ textAlign: 'center' }}>
 {props.scene.route.key}
</NavigationHeader.Title>
);
 }
 render() {

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

206

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

 return (
<NavigationHeader ❹
 {...this.props}
 renderTitleComponent={this._renderTitleComponent}
 onNavigateBack={this._back}
 />
);
 }
}

...

❶ import and destructure Header from NavigationHeader
❷ create back method that will navigate back when the back button is pressed because we attach this method to

onNavigateBack in the NavigationHeader
❸ renderTitleComponent will return the title of the component (in our case the key, or route.key), declared in

the route, and display it in the middle of the navigation bar
❹ NavigationHeader returns the header, and we pass in the onNavigateBack method and

renderTitleComponent methods as props, as well as a spread object containing all props.

The next thing we need to do to is to return this new header component in our
NavigationCardStack component. To do this, NavigationCardStack has a method called
renderHeader that will return a Header component (listing 7.21).

Listing 7.21 Navigation Header

class NavigationCardStackExample extends Component {
 ...
 _renderHeader = (props) => { ❶
 return (
<Header
 navigate={this._navigate}
 {...props}
 />
)
 }
 ...
 render() {
 const { navState } = this.state
 return (
<NavigationCardStack
 renderHeader={this._renderHeader} ❷
 navigationState={navState}
renderScene={this._renderScene}
 />
)
 }
}

❶ _renderHeader will return the new Header component we created earlier. We pass in the _navigate method
as well as all the props from the navigator.

❷ add renderHeader method as a prop to the NavigationCardStack component.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

207

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

If you are interested in further exploring the Navigation options available via open source
packages, I would especially take a close look at ExNavigation by Exponent, as the
maintainers work closely with the React Native team and are core contributors to React
Native.

7.4 Summary
• NavigatorIOS is a good basic navigator to begin using, but only works on iOS and may

not scale well to a large project.
• Navigator is currently the most stable navigation component. Navigator works cross

platform and there are a good amount of documentation and resources on the web for
this navigation implementation.

• The NavigationExperimental API is currently being finalized and is the next iteration of
navigation in the React Native project.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

208

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

8
Cross-platform APIs

This chapter covers

• How to implement cross-platform APIs

One of the key benefits of using React Native is the ease in which native APIs can be accessed
and used with JavaScript. In this chapter, we will cover most of the cross-platform APIs
available in the framework. When accessing these APIs, you will be able to use a single
codebase to implement platform specific behavior on both iOS and Android.

The main difference between the native APIs in this chapter and the native components in
chapter 6 is that native components usually have something to do with the UI, such as
showing a specific UI element, whereas the APIs are more about accessing native features and
component within the phone such as interacting with or accessing data held within the device
(geolocation, application state, etc…).

In addition to cross platform APIs, there are also platform specific APIs (i.e. APIs that only
work on either Android or iOS). We will be covering iOS specific APIs in Chapter 9, and
Android specific APIs in chapter 10.

A few examples of what APIs we will be covering in this chapter are the PanResponder
(tracking touch event locations), Alert (triggering and using the native alert dialog), and
Geolocation (get location of user) among others.

8.1 Implementing Cross Platform APIs

8.1.1 Alert

Alert launches a platform specific alert dialog with a title, message, and optional methods that
can be called when these buttons are pressed. Alert can be triggered by calling the alert
method (Alert.alert)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

209

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Alert takes four arguments (listing 8.1). Alert.alert(title, message, buttons, options)

Table 8.1 Alert methods and arguments

Argument Type Description

title string main message of Alert button

message string secondary message of Alert

buttons array array of buttons, each being an object with two keys: title (string) and onPress

(function)

options object object containing a cancelable Boolean

You can trigger an alert by calling the Alert.alert() method, passing in one or more arguments.
In our example, we will create an Alert with two options: ‘Cancel’ & ‘Show Message’. If

cancel is pressed, we will dismiss the Alert, and if Show Message is clicked, we will update the
state to show our message (listing 8.2)

Listing 8.1 Alert

import React, { Component } from 'react'
import { TouchableHighlight, View, Text, StyleSheet, Alert } from 'react-native' ❶
let styles = {}

class App extends Component {
 constructor () {
 super()
 this.state = { ❷
 showMessage: false
 }
 this.showAlert = this.showAlert.bind(this)
 }
 showAlert () { ❸
 Alert.alert(
 'Title',
 'Message!',
 [
 {
 text: 'Cancel',
 onPress: () => console.log('Dismiss called...'),
 style: 'destructive'
 },
 {
 text: 'Show Message',
 onPress: () => this.setState({ showMessage: true })
 }
]
)
 }

 render () {
 const { showMessage } = this.state

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

210

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

 return (
 <View style={styles.container}>
 <TouchableHighlight onPress={this.showAlert} style={styles.button}>
 <Text>SHOW ALERT</Text>
 </TouchableHighlight>
 { ❹
 showMessage &&<Text>Showing message - success</Text>
 }
</View>
)
 }
}

styles = StyleSheet.create({
 container: {
 justifyContent: 'center',
 flex: 1
 },
 button: {
 height: 70,
 justifyContent: 'center',
 alignItems: 'center',
 backgroundColor: '#ededed'
 }
})

❶ Alert is imported from React Native
❷ The state is instantiated with showMessage set to false
❸ the showAlert method is defined, passing in a title of ‘Title’, a message of ‘Message’, and two buttons. If ‘Show

Message’ is pressed, the state is updated to showMessage being true.
❹ We hide a message unless showMessage is set to true

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

211

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Figure 8.1 Alert

8.1.2 AppState

AppState will tell you whether the app is active, inactive, or in the background. This will
basically call a method whenever the app state changes, allowing you to perform actions or
call other methods based on the state of the app. If you would like to log a user out for
example when they minimize the app, this would be where you would probably do so.

AppState will return either active, inactive or background when it is called. To set up this
method, you would add an eventlistener, and call a method when the event when it is fired.
The events that AppState uses to respond are either ‘change’, or ‘memorywarning’. We will
create an example using ‘change’ because it is what you will be mainly using in a real world
scenario.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

212

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Listing 8.2 AppState

import React, { Component } from 'react'
import { AppState, View, Text, StyleSheet } from 'react-native' ❶
let styles = {}

class App extends Component {
 componentDidMount () { ❷
 AppState.addEventListener('change', this.handleAppStateChange)
 }
 handleAppStateChange (currentAppState) { ❸
 console.log('currentAppState:', currentAppState)
 }
 render () {
 return (
 <View style={styles.container}>
 <Text>Testing App State</Text>
 </View>
)
 }
}

styles = StyleSheet.create({
 container: {
 justifyContent: 'center',
 flex: 1
 }
})

export default App

❶ import the AppState API from React Native
❷ in componentDidMount, we call the AppState.addEventListener, passing in the type of event to listen for

(change), and a callback function, in this case it is handleAppStateChange.
❸ in handleAppStateChange, we log out the currentAppState

Now, when we run the project, we can test this by either pressing CMD + shift + H in iOS
simulator or pressing the home button in the Android emulator. We should not see the console
logging out the current app state (either active, inactive, or background).

8.1.3 AsyncStorage

Next up is the AsyncStorage API. AsyncStorage is a great way to persist and store data. It is
asynchronous, meaning that you can retrieve data either using a promise or async await, and
uses a key-value system to store and retrieve the data.

Table 8.2 AsyncStorage methods and arguments

Method Arguments Description

setItem setItem(key, value, callback) stores item in AsyncStorage

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

213

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

getItem getItem(key, callback) retrieves item from AsyncStorage

removeItem removeItem(key, callback) removes item from AsyncStorage

mergeItem mergeItem(key, value, callback) merges existing value with another existing value.

(both values must be stringified JSON)

clear clear(callback) erases all values in AsyncStorage

getAllKeys getAllKeys(callback) gets all keys stored in your app

flushGetRequests none - flushGetRequests() flushes any pending requests

multiGet multiGet([keys], callback) allows you to get multiple values using an array

of keys

multiSet multiSet([keyValuePairs], callback) allows you to set multiple key value pairs at once.

multiRemove multiRemove([keys], callback) allows you to delete multiple values using an

array of keys

multiMerge multiMerge([keyValuePars], callback) allows you to merge multiple key value pairs into

one method

In our example, we will take a user object and store it into the AsyncStorage in
componentDidMount. We will then use a button to extract the data from AsyncStorage,
populate our state with the data and render it to our View.

Listing 8.3 AsyncStorage

import React, { Component } from 'react'
import { TouchableHighlight, AsyncStorage, View, Text, StyleSheet } from 'react-

native' ❶
let styles = {}

const person = { ❷
 name: 'James Garfield',
 age: 50,
 occupation: 'President of the United States'
}

const key = 'president' ❸

class App extends Component {
 constructor () {
 super()
 this.state = {
 person: {} ❹
 }
 this.getPerson= this.getPerson.bind(this)
 }
 componentDidMount () {
 AsyncStorage.setItem(key, JSON.stringify(person)) ❺
 .then(() => console.log('item stored...'))
 .catch((err) => console.log('err: ', err))

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

214

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

 }
getPerson() { ❻
 AsyncStorage.getItem(key)
 .then((res) => this.setState({ person: JSON.parse(res) }))
 .catch((err) => console.log('err: ', err))
 }
 render () {
 const { person } = this.state
 return (
 <View style={styles.container}>
 <Text style={{textAlign: 'center'}}>Testing AsyncStorage</Text>
 <TouchableHighlight onPress={this.getPerson} style={styles.button}> ❼
 <Text>Get President</Text>
 </TouchableHighlight>
 <Text>{person.name}</Text>
 <Text>{person.age}</Text>
 <Text>{person.occupation}</Text>
 </View>
)
 }
}

styles = StyleSheet.create({
 container: {
 justifyContent: 'center',
 flex: 1,
 margin: 20
 },
 button: {
 justifyContent: 'center',
 marginTop: 20,
 marginBottom: 20,
 alignItems: 'center',
 height: 55,
 backgroundColor: '#dddddd'
 }
})

❶ import AsyncStorage from 'react-native '
❷ create a person object and store our information in this object
❸ create a key that we will be using to add and remove data from AsyncStorage
❹ create a person object in our state
❺ in componentDidMount, we call AsyncStorage.setItem, passing in the key as well as a the person. You will notice

that we are calling JSON.stringify. We do this because we need the value that we store in AsyncStorage to be a
string. JSON.stringify simply will take objects and arrays and turn them into strings. As you will see next, we will
simply call JSON.parse when we retrieve from AsyncStorage, which will turn this data back into a JavaScript object.

❻ create getPerson method, which will call AsyncStorage.getItem, passing in the key we created earlier. When this is
called, we receive a callback function with the data that is retrieved from AsyncStorage. We then call JSON.parse
on the returned data and populate the state using setState.

❼ finally, we wire up the getPerson method to a TouchableHighlight in our view. When the TouchableHighlight is
pressed, the data from AsyncStorage is rendered to our View.

As you can see, we used promises to set and return the values from AsyncStorage. There’s
also another way to do this, so let’s take a look at async await.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

215

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Listing 8.4 async await

async componentDidMount () {
 try {
 await AsyncStorage.setItem(key, JSON.stringify(person))
 console.log('item stored')
 } catch (err) {
 console.log('err:', err)
 }
}
async getPerson () {
 try {
 var data = await AsyncStorage.getItem(key)
 var person = await data
 this.setState({ person: JSON.parse(person) })
 } catch (err) {
 console.log('err: ', err)
 }
}

async await first requires you to mark the function as async by adding the async keyword
before the function name. We are then able to use the await keyword to wait for the,
allowingus to write promise-based code as if it were synchronous. When we await a promise,
the function waits until the promise settles, but does so in a non-blocking way, then assigns
the value to the variable.

8.1.4 ClipBoard

Clipboard lets you save and retrieve content from the clipboard on both iOS and Android.
ClipBoard has two methods (Listing 8.8).

Table 8.3 Clipboard methods

Method Arguments Description

getString n/a get contents of clipboard

setString setString(content) set content of clipboard

In our example, we will set an initial Clipboard value of ‘Hello World’ in componentDidMount,
then use a method attached to the TextInput to update the clipboard, and add a button that
pushes the current ClipboardValue to an array, and renders it to our View.

Listing 8.5 Clipboard

import React, { Component } from 'react'
import { TextInput, Clipboard, TouchableHighlight, getString, View, Text, StyleSheet

} from 'react-native' ❶
let styles = {}

class App extends Component {
 constructor() {

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

216

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

 super()
 this.state = {
 clipboardData: [] ❷
 }
 this.pushClipboardToArray = this.pushClipboardToArray.bind(this)
 }
 componentDidMount () {
 Clipboard.setString('Hello World! '); ❸
 }
 updateClipboard (string) {
 Clipboard.setString(string); ❹
 }
 async pushClipboardToArray() { ❺
 const { clipboardData } = this.state
 var content = await Clipboard.getString();
 clipboardData.push(content)
 this.setState({clipboardData})
 }
 render () {
 const { clipboardData } = this.state
 return (
 <View style={styles.container}>
 <Text style={{textAlign: 'center'}}>Testing Clipboard</Text>
 <TextInput style={styles.input} onChangeText={(text) =>

this.updateClipboard(text)} /> ❻
 <TouchableHighlight onPress={this.pushClipboardToArray}

style={styles.button}> ❼
 <Text>Click to Add to Array</Text>
 </TouchableHighlight>
 {
 clipboardData.map((d, i) => { ❽
 return <Text key={i}>{d}</Text>
 })
 }
 </View>
)
 }
}

styles = StyleSheet.create({
 container: {
 justifyContent: 'center',
 flex: 1,
 margin: 20
 },
 input: {
 padding: 10,
 marginTop: 15,
 height: 60,
 backgroundColor: '#dddddd'
 },
 button: {
 backgroundColor: '#dddddd',
 justifyContent: 'center',
 alignItems: 'center',
 height: 60,
 marginTop: 15,

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

217

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

 }
})

❶ Import ClipBoard from React Native
❷ Set an empty array called clipboardData in our state
❸ In componentDidMount, update the Clipboard value to ‘Hello World’
❹ Add a updateClipboard method that will replace the existing Clipboard value
❺ add async method named pushClipBoardToArray, using the async await syntax we covered in listing 8.6. This

method will take the value of the clipboard and store it in a variable we named content, then push to the
clipboardData array and reset the state of the clipboardData array.

❻ Attach the TextInput with the updateClipboardText method
❼ Attach the pushClipboardToArray method to be called when the TouchableHighlight it pressed
❽ Map through the items in the clipboardData array and render them to the screen.

8.1.5 Dimensions

Dimensions gives us a way to get the device screen height and width. This is a good way to
set width and height in your device, or to do calculations that are based on the width and
height of the device.

To use Dimensions, you need to import the Dimensions api from React Native, then call the
get() method, and return either the width, the height, or both (listing 8.9).

Listing 8.6 Dimensions

import React, { Component } from 'react'
import { View, Text, Dimensions, StyleSheet } from 'react-native' ❶
let styles = {}

const { width, height } = Dimensions.get('window') ❷
const windowWidth = Dimensions.get('window').width ❸

const App = () => (
 <View style={styles.container}> ❹
 <Text>{width}</Text>
 <Text>{height}</Text>
 <Text>{windowWidth}</Text>
 </View>
)

styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center'
 }
})

❶ import Dimensions from React Native
❷ one way to access the Dimensions is to destructure what is returned from calling Dimensions.get on the window,

which in this case is width and height. You can also get the scale of the window.
❸ another way is to call Dimensions.get and access the object property directly, calling .width on Dimensions.get.
❹ In our View, we render the dimensions that were stored in the variables we retrieved off of the Dimensions.get

method.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

218

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

8.1.6 Geolocation

Geolocation is achieved in React Native using the same API that is used in the browser, with
the navigator.geolocation global variable. You do not need to import anything to begin using
this, as it is again available as a global.

To get started with geolocation, you must enable geolocation to be used in the app if
developing for Android (iOS is enabled by default) (listing 8.10).

Listing 8.7 Enabling Geolocation– Android

In AndroidManifest.xml, add the following line of code:

<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />

Now, we can start using the geolocation api.
Let’s take a look at the available methods available to the api (listing 8.11).

Table 8.4 Geolocation methods

Method Arguments Description

getCurrentPosition getCurrentPosition(successcallback,

errcallback,

optionsobject{enableHighAccuracy:

Boolean, timeout: number, maximumAge:

number})

gets the current position, success returns an

object with a coords object and a timestamp

watchPosition watchPosition (successcallback,

errcallback,

optionsobject{enableHighAccuracy:

Boolean, timeout: number, maximumAge:

number})

will get the current position and will

automatically be called when the device

position changes

clearWatch clearWatch(watchid) will cancel a watch. store the watchPosition

method in a variable when created to have

access to the watchId

stopObserving none - stopObserving() will cancel the all geolocation watches that

have been set up

The coordinates returned from getCurrentPosition and watchPosition is an object with
information about the current user’s location (figure 8.2)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

219

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Figure 8.2 Coordinates object returned from geolocation

To see this in action, we will set up an instance of both geolocation getCurrentPosition and
watchPosition, and have a button that will enable us to clear the watch. We will then display
both the original coordinates as well as the updated coordinates (latitude and longitude)
(Listing 8.12).

Listing 8.8

import React, { Component } from 'react'
import { TouchableHighlight, View, Text, StyleSheet } from 'react-native'
let styles = {}

class App extends Component {
 constructor () {
 super()
 this.state = { ❶
 originalCoords: {},
 updatedCoords: {},
 id: ''
 }
 this.clearWatch = this.clearWatch.bind(this)
 }
 componentDidMount() {
 navigator.geolocation.getCurrentPosition(❷
 (success) => {
 this.setState({originalCoords: success.coords})
 },
 (err) => console.log('err:', err)
)
 let id = navigator.geolocation.watchPosition(❸
 (success) => {
 this.setState({
 id,
 updatedCoords: success.coords
 })
 },
 (err) => console.log('err:', err)
)
 }
 clearWatch () { ❹
 navigator.geolocation.clearWatch(this.state.id)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

220

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

 }
 render () {
 const { originalCoords, updatedCoords } = this.state
 return (
 <View style={styles.container}> ❺
 <Text>Original Coordinates</Text>
 <Text>Latitude: {originalCoords.latitude}</Text>
 <Text>Longitude: {originalCoords.longitude}</Text>
 <Text>Updated Coordinates</Text>
 <Text>Latitude: {updatedCoords.latitude}</Text>
 <Text>Longitude: {updatedCoords.longitude}</Text>
 <TouchableHighlight ❻
 onPress={this.clearWatch}
 style={styles.button}>
 <Text>Clear Watch</Text>
 </TouchableHighlight>
 </View>
)
 }
}

styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 padding: 20,
 },
 button: {
 height: 60,
 marginTop: 15,
 backgroundColor: '#ededed',
 justifyContent: 'center',
 alignItems: 'center'
 }
})

❶ create an initial state with both an originalCoords and updatedCoords set as an empty object as well as id set as an
empty string

❷ in componentDidMount, call getCurrentPosition on navigator.geolocation and set the state of coriginalCoords to
success.coords

❸ call watchPosition and store the result of the function in a variable named id that we will use later to clear the
watch, and reset the state with the id.

❹ create clearWatch method to clear the watch that was created in step C
❺ in our render method, we display the latitude and longitude from both the original coordinates as well as the

updated coordinates

8.1.7 Keyboard

The Keyboard API allows us to have access to the native keyboard. We can use this to either
dismiss the keyboard, or to listen to keyboard events and call methods based on these events.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

221

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Table 8.5

Method Arguments Description

addListener addListener(event, callback) connects a method to be called based on native keyboard

events such as keyboardWillShow, keyboardDidShow,

keyboardWillHide, keyboardDidHide,

keyboardWillChangeFrame, and

keyboardDidChangeFrame

removeAllListeners removeAllListeners(eventType) removes all listeners of the type specified

dismiss none – dismiss() dismisses the keyboard

In our example, we will set up a TextInput and have listeners set up for all available events.
When the event is fired, we will log the event to the console. We will also have two buttons,
one to dismiss the keyboard and another to remove all event listeners that were set up in
componentWillMount (Listing 8.13).

Listing 8.9 Keyboard

import React, { Component } from 'react'
import { TouchableHighlight, Keyboard, TextInput, View, Text, StyleSheet } from

'react-native' ❶

let styles = {}

class App extends Component {
 componentWillMount () { ❷
 this.keyboardWillShowListener = Keyboard.addListener('keyboardWillShow', () =>

this.logEvent('keyboardWillShow'))
 this.keyboardDidShowListener = Keyboard.addListener('keyboardDidShow', () =>

this.logEvent('keyboardDidShow'))
 this.keyboardWillHideListener = Keyboard.addListener('keyboardWillHide', () =>

this.logEvent('keyboardWillHide'))
 this.keyboardDidHideListener = Keyboard.addListener('keyboardDidHide', () =>

this.logEvent('keyboardDidHide'))
 this.keyboardWillChangeFrameListener =

Keyboard.addListener('keyboardWillChangeFrame', () =>
this.logEvent('keyboardWillChangeFrame'))

 this.keyboardDidChangeFrameListener =
Keyboard.addListener('keyboardDidChangeFrame', () =>
this.logEvent('keyboardDidChangeFrame'))

 }
 logEvent(event) { ❸
 console.log('event: ', event)
 }
 dismissKeyboard () { ❹
 Keyboard.dismiss()
 }
 removeListeners () { ❺
 Keyboard.removeAllListeners('keyboardWillShow')
 Keyboard.removeAllListeners('keyboardDidShow')

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

222

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

 Keyboard.removeAllListeners('keyboardWillHide')
 Keyboard.removeAllListeners('keyboardDidHide')
 Keyboard.removeAllListeners('keyboardWillChangeFrame')
 Keyboard.removeAllListeners('keyboardDidChangeFrame')
 }
 render () {
 return (
 <View style={styles.container}>
 <TextInput style={styles.input} />
 <TouchableHighlight ❻
 onPress={this.dismissKeyboard}
 style={styles.button}>
 <Text>Dismiss Keyboard</Text>
 </TouchableHighlight>
 <TouchableHighlight ❼
 onPress={this.removeListeners}
 style={styles.button}>
 <Text>Remove Listeners</Text>
 </TouchableHighlight>
 </View>
)
 }
}

styles = StyleSheet.create({
 container: {
 flex: 1,
 marginTop: 150,
 },
 input: {
 margin: 10,
 backgroundColor: '#ededed',
 height: 50,
 padding: 10
 },
 button: {
 height: 50,
 backgroundColor: '#dddddd',
 margin: 10,
 justifyContent: 'center',
 alignItems: 'center'
 }
})

❶ import the Keyboard API from React Native
❷ in componentWillMount, set up event listeners for all available keyboard events, then call the logEvent method to

log out the event name
❸ logEvent takes in the event name, and logs out the name of the event
❹ dismissKeyboard will dismiss the keyboard if it is in view
❺ in removeListeners, we call Keyboard.removeAllListeners passing in each of the listeners declared in

componentWillMount
❻ wire up the dismissKeyboard method to a button in the UI
❼ wire up the removeListeners method to a button in the UI

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

223

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Figure 8.3 Keyboard

8.1.8 NetInfo

NetInfo is an API that allows us to access data describing whether the device is online of
offline.

Both iOS and Android have different connectivity types (listing 8.14).

Table 8.6

iOS Android

none NONE

Wifi BLUETOOTH

cell DUMMY

unknown ETHERNET

 MOBILE

 MOBILE_DUN

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

224

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

 MOBILE_HIPRI

 MOBILE_MMS

 MOBILE_SUPL

 VPN

 WIFI

 WIMAX

 UNKNOWN

To determine the connection, there are a few methods we can use (listing 8.15).

Table 8.7 NetInfo methods

Method Arguments Description

fetch none – fetch().done(callback) returns the reach of the connection

isConnectionExpensive none -isConnectionExpensive() returns promise which returns a Boolean,

whether the connections is or is not expensive

isConnected none – isConnected.fetch() returns a promise which returns a Boolean,

whether the device is or is not connected

addEventListener removeEventListener(eventName,

callback)

adds an event listener for the specified event

removeEventListener removeEventListener(eventName,

callback)

removes an event listener for the specified event

In our example, we will set up a NetInfo.fetch method to get the initial connection information,
and then set up a listener to log out the current NetInfo if and when it changes (Listing 8.16).

Listing 8.10 NetInfo

import React, { Component } from 'react'
import { TouchableHighlight, NetInfo, TextInput, View, Text, StyleSheet } from

'react-native' ❶

let styles = {}

class App extends Component {
 constructor () {
 super()
 this.state = { ❷
 connection: ''
 }
 this.handleConnectivityChange = this.handleConnectivityChange.bind(this)
 }
 componentDidMount () {

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

225

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

 NetInfo.fetch().done((connection) => { ❸
 console.log('connection: ' + connection)
 this.setState({connection})
 })
 NetInfo.addEventListener('change', this.handleConnectivityChange) ❹
 }
 handleConnectivityChange (connection) { ❺
 console.log('new connection:', connection)
 this.setState({connection})
 }
 render () {
 return (
 <View style={styles.container}>
 <Text>{this.state.connection}</Text> ❻
 </View>
)
 }
}

styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center'
 }
})

❶ import NetInfo from React Native
❷ set the initial state of connection to an empty string
❸ in componentDidMount, get the initial connection and reset the state
in componentDidMount, also create an event listener to call handleConnectivityChange when the connection changes
❺ in handleConnectivityChange, update the state with the new connection information
❻ render the connection information to the view

8.1.9 PanResponder

PanResponder offers a way to make use of data from touch events. With it, we can granularly
respond to and manipulate our application state based on single and multiple touch events,
such as swiping, tapping, pinching, scrolling, and more.

For example, let’s take a look at a basic gesture event and see what type of data is
available to us using onPanResponderMove(event, gestureState), which gives us data about
the current position of the touch event, including current position, accumulated difference
between current position and original position among other things (listing 8.17).

Listing 8.11 PanResponder onPanResponderMove

onPanResponderMove(evt, gestureState) {
 console.log(evt.nativeEvent)
 console.log(gestureState)
}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

226

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Table 8.8 evt and gestureState properties

evt.nativeEvent

changedTouches Array of all touch events that have changed since the last event

identifier The ID of the touch

locationX The X position of the touch, relative to the element

locationY The Y position of the touch, relative to the element

pageX The X position of the touch, relative to the root element

pageY The Y position of the touch, relative to the root element

target The node id of the element receiving the touch event

timestamp A time identifier for the touch, useful for velocity calculation

touches Array of all current touches on the screen

Table 8.9

gestureState

stateID ID of the gestureState- persisted as long as there at least one touch on screen

moveX the latest screen coordinates of the recently-moved touch

moveY the latest screen coordinates of the recently-moved touch

x0 the screen coordinates of the responder grant

y0 the screen coordinates of the responder grant

dx accumulated distance of the gesture since the touch started

dy accumulated distance of the gesture since the touch started

vx current velocity of the gesture

vy current velocity of the gesture

numberActiveTouches Number of touches currently on screen

To use the panResponder, we first need to create an instance of PanResponder in the
componentWillMount method. In this instance we can then set all of our configuration and
callback methods for the PanResponder, using the different methods to manipulate the state
and the View.

Let’s take a look at the create method, which is the only available method for
PanResponder, and creates the configuration for the PanResponder (listing 8.19).

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

227

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Listing 8.12 PanResponder create method

this._panResponder = PanResponder.create({
 onStartShouldSetPanResponder: (evt, gestureState) => {
 // determines whether to enable the PanResponder
 // gets called after the element is touched
 // returns boolean
 },
 onMoveShouldSetPanResponder: (evt, gestureState) => {
 // determines whether to enable the PanResponder
 // gets called after the initial touch has first move
 // returns boolean
 },
 onPanResponderReject: (evt, gestureState) => {
 // gets called if the PanResponder does not register
 // do stuff with evt.nativeEvent or gesturestate
 },
 onPanResponderGrant: (evt, gestureState) => {
 // gets called if the PanResponder does regiser
 // do stuff with evt.nativeEvent or gesturestate
 },
 onPanResponderStart: (evt, gestureState) => {
 // gets called after the PanResponder registers
 // do stuff with evt.nativeEvent or gesturestate
 },
 onPanResponderEnd: (evt, gestureState) => {
 // gets called after the PanResponder has finished
 // do stuff with evt.nativeEvent or gesturestate
 },
 onPanResponderMove: (evt, gestureState) => {
 // gets called when the PanResponder moves
 // do stuff with evt.nativeEvent or gesturestate
 },
 onPanResponderTerminationRequest: (evt, gestureState) => {
 // gets called when something else wants to become responder
 // do stuff with evt.nativeEvent or gesturestate
 },
 onPanResponderRelease: (evt, gestureState) => {
 // gets called when the touch has been released
 // do stuff with evt.nativeEvent or gesturestate
 },
 onPanResponderTerminate: (evt, gestureState) => {
 // this responder has been taken by another one
 // do stuff with evt.nativeEvent or gesturestate
 }
 })

For our example, we will create a draggable square, and will display the x and y coordinates of
the square to our view (Listing 8.20).

Listing 8.13 PanResponder

import React, { Component } from 'react'
import { Dimensions, TouchableHighlight, PanResponder, TextInput, View, Text,

StyleSheet } from 'react-native' ❶
const { width, height } = Dimensions.get('window') ❷

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

228

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

let styles = {}

class App extends Component {
 constructor () {
 super()
 this.state = {
 oPosition: { ❸
 x: (width / 2) - 100,
 y: (height / 2) - 100,
 },
 position: { ❹
 x: (width / 2) - 100,
 y: (height / 2) - 100,
 },
 }
 this._handlePanResponderMove = this._handlePanResponderMove.bind(this)
 this._handlePanResponderRelease = this._handlePanResponderRelease.bind(this)
 }
 componentWillMount () { ❺
 this._panResponder = PanResponder.create({
 onStartShouldSetPanResponder: () => true,
 onPanResponderMove: this._handlePanResponderMove,
 onPanResponderRelease: this._handlePanResponderRelease
 })
 }
 _handlePanResponderMove (evt, gestureState) { ❻
 let ydiff = gestureState.y0 - gestureState.moveY
 let xdiff = gestureState.x0 - gestureState.moveX
 this.setState({
 position: {
 y: this.state.oPosition.y - ydiff,
 x: this.state.oPosition.x - xdiff
 }
 })
 }
 _handlePanResponderRelease () { ❼
 this.setState({
 oPosition: this.state.position
 })
 }
 render () {
 return (
 <View style={styles.container}>
 <Text style={styles.positionDisplay}>x: {this.state.position.x}

y:{this.state.position.y}</Text> ❽
 <View
 {...this._panResponder.panHandlers} ❾
 style={[styles.box, { marginLeft: this.state.position.x, marginTop:

this.state.position.y }]} /> ❿
 </View>
)
 }
}

styles = StyleSheet.create({
 container: {
 flex: 1,

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

229

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

 },
 positionDisplay: {
 textAlign: 'center',
 marginTop: 50,
 zIndex: 1,
 position: 'absolute',
 width
 },
 box: {
 position: 'absolute',
 width: 200,
 height: 200,
 backgroundColor: 'red'
 }
})

❶ import Dimensions, PanResponder, and everything else we will be needing for this component
❷ store the window width and height in variables for later use
❸ create an object to store our original square position x and y axes to center the square, called oPosition, and store

into the state
❹ create an object to store our actual square position x and y axes to center the square, called position, and store into

the state
❺ create a new PanResponder, returning true for onStartShouldSetPanResponder, and setting up

onPanResponderMove and onPanResponderRelease methods
❻ in onPanResponderMove, we calculate the total movements of both x and y by calculating the difference between

the location of the panResponderGrant and the current total of movement since the grant. We then update the
state position with these values

❼ In handlePanResponderRelease, we set the state of oPosition with the updated position we are using in our view
❽ We display the current position values in our view
❾ We attach the created PanResponder to our view by passing in {...this._panResponder.panHandlers} as props
❿ We attach the position x and y values to our view to update the margins, making the item draggable

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

230

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

Figure 8.4 PanResponder

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

231

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

9
iOS-specific Components and

APIs

This chapter covers

• How to implement and use iOS-specific APIs
• Strategies for how to effectively target platform-specific code
• Using DatePickerIOS to choose and save dates in your app
• How to use PickerIOS to choose from a list of data
• Showing loading progress using ProgressViewIOS
• Choosing between options using SegmentedControllIOS
• Creating and switching between tabs using TabBarIOS
• Calling and choosing items in an action sheet using ActionSheetIOS

9.1 Implementing iOS-specific APIs and Components
One of the end goals of the React Native project is to have a minimal amount of platform
specific logic and code. Most APIs can be built so that the platform-specific code is abstracted
away by the framework, giving us a single way to interact with them and easily create cross-
platform functionality.

Unfortunately, there will always be platform-specific APIs that cannot be completely
abstracted away in a way that makes sense cross-platform. Therefore, we will have at least a
handful of platform specific APIs and components we will need to use.

In this chapter, we will cover iOS specific APIs and Components, discuss their props and
methods, and create examples that will mimic functionality and logic that will get you up to
speed quickly.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

232

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

9.2 Targeting platform-specific code
The main idea of platform-specific code is writing components and files in a way that render
iOS- or Android-specific code based on the platform we are on.

There are a few techniques that can be implemented to show components based on what
platform the app is running, and we will cover the most useful of those techniques here.

9.2.1 iOS and Android file extension

The first way to target platform-specific code is by simply naming the file with the correct file
extension depending on the platform you wish to target.

For example, one component that differs quite a bit between iOS and Android is the
DatePicker. If we wanted to have specific styling around our DatePicker, writing all this code in
our main component may become verbose and difficult to maintain. Instead, we will create
two files: DatePicker.ios.js and DatePicker.android.js and import them into our main
component. When we run the project, React Native will automatically choose the correct file
and render it based on the platform we are using.

Let’s look at a basic example. Note, these are just examples (listings 9.1 and 9.2) and will
throw an error as is because DatePicker requires both props and methods to function
correctly, so this is more of a broad overview of how to implement this type of functionality,
we will be going over the DatePicker soon in this chapter (listings 9.1, 9.2, and 9.3).

Listing 9.1 iOS platform specific code

import React from 'react'
import { View, Text, DatePickerIOS } from 'react-native'

export default () => (
 <View>
 <Text>This is an iOS specific component</Text>
 <DatePickerIOS />
 </View>
)

Listing 9.2 Android platform specific code

import React from 'react'
import { View, Text, DatePickerAndroid } from 'react-native'

export default () => (
 <View>
 <Text>This is an Android specific component</Text>
 <DatePickerAndroid />
 </View>
)

Listing 9.3 Rendering the cross-platform component

import React from 'react'
import DatePicker from './DatePicker'

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

233

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

const MainComponent = () => (
 <View>
 ...
 <DatePicker />
 ...
 </View>
)

In listing 9.3, we import the Datepicker without giving a specific file extension. React Native
knows which component to import depending on the platform. From there, we are then able to
use it in our application without having to worry about which platform we are on.

9.2.2 Detecting platform using the Platform API

Another way to detect and perform logic based on the platform is to use the Platform API.
Platform has two properties. The first is an OS key (standing for Operating System) that reads
either ios or android, depending on the platform (listing 9.4).

Listing 9.4 Platform module detecting using Platform.OS property

import React from 'react'
import { View, Text, Platform } from 'react-native'

const PlatformExample = () => (
 <Text style={{ marginTop: 100, color: Platform.OS === 'ios' ? 'blue' : 'green' }}
 >
 Hello { Platform.OS }
 </Text>
)

In listing 9.4, we check to see if the value of Platform.OS is equal to the string 'ios', and if it
is, we return a color of blue. If it is not, we return green.

The second is a method called select. select takes in an object containing the
platform.OS strings as keys (either ios or android), and returns the value for the platform you
are running (listing 9.5).

Listing 9.5 Using Platform.select to render components based on Platform

import React from 'react'
import { View, Text, Platform } from 'react-native'

const ComponentIOS = () => (
 <Text>Hello from IOS</Text>
)

const ComponentAndroid = () => (
 <Text>Hello from IOS</Text>
)

const Component = Platform.select({
 ios: () => ComponentIOS,

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

234

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

 android: () => ComponentAndroid,
})();

const PlatformExample = () => (
 <View style={{ marginTop: 100 }}>
 <Text>Hello from my App</Text>
 <Component />
 </View>
)

We can also use the ES2015 spread syntax to return objects, and use those objects to apply
styling (listing 9.6).

Listing 9.6 Using Platform.select to render styles based on Platform

import React from 'react'
import { View, Text, Platform } from 'react-native'

let styles = {}

const PlatformExample = () => (
 <View style={styles.container}>
 <Text>
 Hello { Platform.OS }
 </Text>
 </View>
)

styles = {
 container: {
 marginTop: 100,
 ...Platform.select({
 ios: {
 backgroundColor: 'red'
 }
 })
 }
}

9.3 DatePickerIOS
DatePickerIOS provides an easy way to implement a native date picker component on iOS.

DatePickerIOS has three modes that come in handy when working with dates and times:
date, time, and dateTime.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

235

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

Figure 9.1 DatePicker with date mode, time mode, and datetime mode

The minimum props that need to be passed to the DatePickerIOS component are date (the
date that is the beginning or current date choice), and an onDateChange method.

When any of the date values are changed, onDateChange is called, passing the function the
new date value.

In our example, we will set up a DatePickerIOS component and display the time in the
View. We will not pass in a mode prop, as the mode defaults to datetime (Listing 9.7).

Listing 9.7 Using DatePicker to show and update time values.

import React, { Component } from 'react'
import { Text, View, DatePickerIOS } from 'react-native' ❶

class App extends Component {

 constructor() {
 super()
 this.state = {
 date: new Date(), ❷
 }
 this.onDateChange = this.onDateChange.bind(this)
 }

 onDateChange(date) { ❸
 this.setState({date: date});
 };

 render() {
 return (
 <View style={{ marginTop: 50 }}>
 <DatePickerIOS ❹
 date={this.state.date}
 onDateChange={this.onDateChange}
 />
 <Text style={{ marginTop: 40, textAlign: 'center' }}>
 { this.state.date.toLocaleDateString() } {

this.state.date.toLocaleTimeString() } ❺
 </Text>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

236

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

 </View>)
 }
}

❶ import DatePickerIOS from React Native
❷ create a date value and store it in the state
❸ create a method called onDateChange that updates the state with the new date value
❹ return the DatePickerIOS component and pass In both the date and the onDateChange method as props
❺ render the date value as text

Figure9.2 DatePickerIOS rendering chosen date and time

Table 9.1 DatePickerIOS methods and arguments

prop Type Description (some from docs)

date Date currently selected date

maximumDate Date maximum allowed date

minimumDate Date minimum allowed date

minuteInterval enum the interval at which minutes can be selected

mode string (date, time, or datetime) date picker mode

onDateChange function onDateChange(date) { } function called when date changes

timeZoneOffsetInMinutes number timezone offset in minutes. Will override the

default which is the device timezone.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

237

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

9.4 PickerIOS
PickerIOS allows us to access the native IOS Picker component, which basically allows us to
scroll through and choose from a list of values using the Native UI.

Figure 9.3 PickerIOS rendering list of people

PickerIOS wraps a list of items to be rendered as children. Each child item must be a
PickerIOS.Item.

import { PickerIOS } from ‘react-native’
const PickerItem = PickerIOS.Item

<PickerIOS>
 <PickerItem />
 <PickerItem />
 <PickerItem />
</PickerIOS>

It is possible to declare each PickerIOS.Item individually as we have done above, but most of
the time you will be mapping over elements in an array and returning a PickerIOS.Item for
each item in the array (listing 9.8).

Listing 9.8 Example of using PickerIOS with an array of PickerIOS.Items

const people = [// an array of people];

render() {
 <PickerIOS>
 {
 people.map((p, i) =>(

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

238

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

 <PickerItem />
))
 }
 </PickerIOS>
}

Both PickerIOS and PickerIOS.Item receive their own props.
For PickerIOS, the main props are onValueChange and selectedValue. The

onValueChange method is called whenever the picker is changed. The selectedValue is the
value that the picker shows as selected in the UI.

For PickerIOS.Item, the main props are key, value, and label. key is a unique identifier
that is required as it is in an array, value is what will be passed to the onValueChange method
of the PickerIOS component, and label is what is displayed in the ui as the label for the
PickerIOS.Item.

In our example, we will render an array of people in the PickerIOS, and when the value
changes, update the UI to show the new value (Listing 9.9).

Listing 9.9 Using PickerIOS to render an array of People

import React, { Component } from 'react'
import { Text, View, PickerIOS } from 'react-native' ❶

const people = [❷
 {
 name: 'Nader Dabit',
 age: 36
 },
 {
 name: 'Christina Jones',
 age: 39
 },
 {
 name: 'Amanda Nelson',
 age: 22
 }
];

const PickerItem = PickerIOS.Item

class App extends Component {

 constructor() {
 super()
 this.state = { ❸
 value: 'Christina Jones'
 }
 this.onValueChange = this.onValueChange.bind(this)
 }

 onValueChange(value) { ❹
 this.setState({ value });
 };

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

239

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

 render() {
 return (
 <View style={{ marginTop: 50 }}>
 <PickerIOS ❺
 onValueChange={this.onValueChange}
 selectedValue={this.state.value}
 >
 {
 people.map((p, i) => { ❻
 return (
 <PickerItem
 key={i}
 value={p.name}
 label={p.name}
 />
)
 })
 }
 </PickerIOS>
 <Text style={{ marginTop: 40, textAlign: 'center' }}>
 {this.state.value} ❼
 </Text>
 </View>)
 }
}

❶ import PickerIOS from React Native
❷ create an array of people. We will use this to populate our PickerItem values
❸ create an initial value in the state to hold the chosen picker value
❹ create an onValueChange method that will update the state value with the new value from our PickerIOS
❺ render the PickerIOS and pass the onValueChange method and the selectedValue as props
❻ render a PickerIOS.Item for every person in the people array
❼ render the value of this.state.value in the UI

Table 9.2 PickerIOS methods and props

prop Type Description (some from docs)

itemStyle object (style) style DatePickerIOS container

onValueChange function(value) this method is called when the PickerIOS value changes

selectedValue number or string currently selected PickerIOS value

9.5 ProgressViewIOS
ProgressViewIOS is a way for us to render the native UIProgressView in our UI.
ProgressViewIOS basically is a native way for us to show loading percentage indication,
download percentage indication, or for any time we need to show an indication of a task that
is being completed.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

240

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

Figure 9.4 Rendering ProgressViewIOS in the UI

The main prop that we need to know about to create this functionality is the progress prop.
progress takes a number between 0 and 1 and fills the ProgressViewIOS with a percentage
fill between 0% and 100%.

In our example, we will simulate some data loading by setting a setInterval method that
gets called in componentDidMount, and increment the state value by 0.01 every 0.01 seconds
until we are at 1, starting the initial value at 0 (listing 9.10).

Listing 9.10

import React, { Component } from 'react'
import { Text, View, ProgressViewIOS } from 'react-native' ❶

class App extends Component {

 constructor() {
 super()
 this.state = { ❷
 progress: 0,
 }
 }

 componentDidMount() {
 this.interval = setInterval(() => { ❸
 if (this.state.progress >= 1) {
 return clearInterval(this.interval)
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

241

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

 this.setState({
 progress: this.state.progress + .01
 })
 }, 10)
 }

 render() {
 return (
 <View style={{ marginTop: 50 }}>
 <ProgressViewIOS ❹
 progress={this.state.progress}
 />
 <Text style={{ marginTop: 10, textAlign: 'center' }}>
 {Math.floor(this.state.progress * 100)}% complete ❺
 </Text>
 </View>)
 }
}

❶ import ProgressVIewIOS from React Native
❷ create initial state value of progress, set to zero
❸ in componentDidMount, store a setInterval method in a variable, and increment the state value of progress

every 1/100 of a second by .01. If this.state.progress is greater than or equal to 1, we clear and cancel the
interval by calling clearInterval and return.

❹ render the ProgressViewIOS, passing in this.state.progress as the progress prop
❺ round and render the value of this.state.progress in the UI

Table 9.3 ProgressViewIOS methods and props

prop Type Description (some from docs)

progress number the progress value (between 0 and 1).

progressImage image source a stretchable image to display as the progress bar.

progressTintColor string (color) the tint color of the progress bar itself

progressViewStyle enum (default or bar) the progress bar style

trackImage image source a stretchable image to display behind the progress bar

trackTintColor string the tint color of the progress bar track

9.6 SegmentedControlIOS
SegmentedControlIOS allows us to access the native iOS UISegmentedControl component.

SegmentedControlIOS is basically a horizontal tab bar that is made up of individual buttons
(figure 9.5).

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

242

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

Figure 9.5 Basic SegmentedControlIOS implementation with 2 values (one and two).

At a minimum, SegmentedControlIOS takes an array of values to render the control values, a
selectedIndex as the index of the control that is selected, and an onChange method that will
be called when a control is pressed.

In our example, we will take an array of three items and render them as a
SegmentedControlIOS. We will also show a value in our UI based on which item is selected
(listing 9.11).

Listing 9.11 SegmentedControlIOS rendering three values

import React, { Component } from 'react'
import { Text, View, SegmentedControlIOS } from 'react-native' ❶

const values = ['One', 'Two', 'Three'] ❷

class App extends Component {

 constructor() {
 super()
 this.state = {
 selectedIndex: 0, ❸
 }
 }

 render() {
 const { selectedIndex } = this.state
 let selectedItem = values[selectedIndex] ❹
 return (
 <View style={{ marginTop: 40, padding: 20 }}>
 <SegmentedControlIOS ❺
 values={values}
 selectedIndex={this.state.selectedIndex}
 onChange={(event) => {
 this.setState({selectedIndex: event.nativeEvent.selectedSegmentIndex});
 }}

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

243

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

 />
 <Text>{selectedItem}</Text> ❻
 </View>)
 }
}

❶ import SegmentedControlIOS from React Native
❷ create an array of values to use in the SegmentedControlIOS
❸ create a state value of selectedIndex set to zero
❹ create a variable called selectedItem, set to the value of the selectedIndex of the values array
❺ render the SegmentedControlIOS component, passing in the values array as the values prop,

this.state.seletedIndex as the selectedIndex, and an onChange method that updates the
selectedIndex state value with the index of the pressed item.

❻ render the value of selectedItem in the UI

Table 9.4 SegmentedControlIOS methods and props

prop Type Description (some from docs)

enabled Boolean If false the user won't be able to interact with the control. Default value is true.

momentary Boolean if true, then selecting a segment won't persist visually. The onValueChange

callback will still work as expected.

onChange function (event) Callback that is called when the user taps a segment; passes the event as an

argument

onValueChange function (value) Callback that is called when the user taps a segment; passes the segment's

value as an argument

selectedIndex number The index in props.values of the segment to be (pre)selected.

tintColor string (color) Accent color of the control.

values array of strings The labels for the control's segment buttons, in order.

9.7 TabBarIOS
TabBarIOS allows us to access the native iOS Tab Bar. TabBarIOS renders tabs at the bottom
of the UI, allowing a nice and easy way to separate your application into sections.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

244

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

Figure 9.6 TabBarIOS with two tabs: History and Favorites

TabBarIOS takes a list of TabBarIOS.Item components as children.

const Item = TabBarIOS.Item

<TabBarIOS>
 <Item>
 <View> // some content here </View>
 </Item>
 <Item>
 <View> // some other content here </View>
 </Item>=
</TabBarIOS>

To show the content within the TabBarIOS.Item, the selected prop of the TabBarIOS.Item
must be true.

<Item
 selected={this.state.selectedComponent === 'home'}
>
 // your content here
</Item>

In our example, we will create an app with two views: History and Favorites. When the
TabBarIOS.Item is clicked, we will switch between views by calling an onPress method to
update the state (Listing 9.12).

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

245

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

Listing 9.12 Rendering tabs using TabBarIOS

import React, { Component } from 'react'
import { Text, View, TabBarIOS } from 'react-native' ❶

const Item = TabBarIOS.Item ❷

class App extends Component {

 constructor() {
 super()
 this.state = {
 selectedTab: 'history', ❸
 }
 this.renderView = this.renderView.bind(this)
 }

 renderView(tab) { ❹
 return (
 <View style={{ flex: 1, justifyContent: 'center', alignItems: 'center' }}>
 <Text>Hello from {tab}</Text>
 </View>
)
 }

 render() {
 return (
 <TabBarIOS> ❺
 <Item
 systemIcon="history" ❻
 onPress={() => this.setState({ selectedTab: 'history' })} ❼
 selected={this.state.selectedTab === 'history'}
 >
 {this.renderView('History')} ❽
 </Item>
 <Item
 systemIcon='favorites'
 onPress={() => this.setState({ selectedTab: 'favorites' })}
 selected={this.state.selectedTab === 'favorites'}
 >
 {this.renderView('Favorites')}
 </Item>
 </TabBarIOS>
)
 }

❶ import TabBarIOS from React Native
❷ create a variable called Item to hold the TabBarIOS.Item component
❸ create an initial state value of selectedTab and set it to history
❹ create a reusable renderView method that takes in a tab as an argument
❺ render a TabBarIOS in our UI, passing in two Item components as children
❻ set the systemIcon prop to history (see https://developer.apple.com/ios/human-interface-

guidelines/graphics/system-icons/ for all system icons). Icons either can be set with a system icon or by passing in
an icon prop and requiring a local image.

❼ attach an onPress method to the item, updating the selectedTab value in the state with the value passed in
to this.setState({})

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

246

Licensed to Hans Otten <hans.otten@autodata.net>

https://developer.apple.com/ios/human-interface-guidelines/graphics/system-icons/
https://developer.apple.com/ios/human-interface-guidelines/graphics/system-icons/
https://forums.manning.com/forums/react-native-in-action

❽ render the view by calling this.renderView method

Table 9.5 TabBarIOS methods and props

Prop Type Description (some from docs)

barTintColor String (color) Background color of the tab bar

itemPositioning enum('fill', 'center', 'auto') Specifies tab bar item positioning. Available values are: - fill

- distributes items across the entire width of the tab bar -

center - centers item in the available tab bar space - auto

(default) - distributes items dynamically according to the

user interface idiom. In a horizontally compact environment

(e.g. iPhone 5) this value defaults to fill, in a horizontally

regular one (e.g. iPad) it defaults to center.

style object (style) style of the TabBarIOS

tintColor string (color) Color of the currently selected tab icon

translucent Boolean A Boolean value that indicates whether the tab bar is

translucent

unselectedItemTintColor string (color) Color of unselected tab icons. Available since iOS 10.

unselectedTintColor string (color) Color of text on unselected tabs

9.8 ActionSheetIOS
ActionSheetIOS allows us to access the native iOS UIAlertController to show a native iOS
action sheet or share sheet.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

247

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

Listing 9.7 ActionSheetIOS rendering an action sheet (left) and a share sheet (right)

The two main methods that we can call on ActionSheetIOS are
showActionSheetWithOptions or showShareActionSheetWithOptions.

showActionSheetWithOptionslets us pass an array of buttons, and attach methods to
each of the buttons. showActionSheetWithOptions gets called with two arguments: options
object and a callback function.

showActionSheetWithOptions(options, callback);

showShareActionSheetWithOptions will allow us to display the native iOS share sheet,
passing in a url, message, and subject to share. showShareActionSheetWithOptions gets
called with three arguments: options object, a failure callback function, and a success
callback function.

showShareActionSheetWithOptions(options, failureCallback, successCallback)

In our example, we will create a View with two buttons. One button will call
showActionSheetWithOptions and the other will call
showShareActionSheetWithOptions(listing 9.13).

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

248

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

Listing 9.13 Using ActionSheetIOS to create action sheets and share sheets.

import React, { Component } from 'react'
import {Text, View, ActionSheetIOS, TouchableHighlight } from 'react-native' ❶

const BUTTONS = ['Cancel', 'Button One', 'Button Two', 'Button Three'] ❷

class App extends Component {
 constructor() {
 super()
 this.state = { ❸
 clicked: null
 }
 this.showActionSheet = this.showActionSheet.bind(this)
 this.showShareActionSheetWithOptions =

this.showShareActionSheetWithOptions.bind(this)
 }

 showActionSheet() { ❹
 ActionSheetIOS.showActionSheetWithOptions({
 options: BUTTONS,
 cancelButtonIndex: 0,
 },
 (buttonIndex) => {
 if (buttonIndex > 0) {
 this.setState({ clicked: BUTTONS[buttonIndex] });
 }
 });
 }

 showShareActionSheetWithOptions() { ❺
 ActionSheetIOS.showShareActionSheetWithOptions({
 url: 'http://www.reactnative.training',
 message: 'React Native Training',
 },
 (error) => console.log('error:', error),
 (success, method) => {
 if (success) {
 console.log('successfully shared!', success)
 }
 });
 };
 render() {
 return (
 <View style={styles.container}> ❻
 <TouchableHighlight onPress={this.showActionSheet} style={styles.button}>
 <Text style={styles.buttonText}>Show ActionSheet</Text>
 </TouchableHighlight>
 <TouchableHighlight onPress={this.showShareActionSheetWithOptions}

style={styles.button}>
 <Text style={styles.buttonText}>Show ActionSheet With Options</Text>
 </TouchableHighlight>
 <Text>
 {this.state.clicked}
 </Text>
 </View>
)

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

249

Licensed to Hans Otten <hans.otten@autodata.net>

http://www.reactnative.training
https://forums.manning.com/forums/react-native-in-action

 }
}

styles = {
 container: {
 flex: 1,
 justifyContent: 'center',
 padding: 20,
 },
 button: {
 height: 50,
 marginBottom: 20,
 justifyContent: 'center',
 alignItems: 'center',
 backgroundColor: 'blue'
 },
 buttonText: {
 color: 'white'
 }
}

❶ import ActionSheetIOS from React Native
❷ create an array of buttons for us to use in the action sheet
❸ create a variable clicked and set to null
❹ create showActionSheet method.

• pass in buttons as the options
• set the cancelButtonIndex to zero (this will position Cancel at the bottom of the action sheet)
• create callback method that takes in the button index as an argument.
• If the button index is greater than zero, we set the clicked state value with the new button value

❺ create showShareActionSheetWithOptions method

• pass in url and message to share
• in first callback function, check to see if there is an error. If so, log out the error
• in second callback method, check to see if success is true, and if so log out ‘successfully shared!’

❻ create two buttons in our View, and attach the showActionSheet and
showShareActionSheetWithOptions to them

Table 9.5 ActionSheetIOS showActionSheetWithOptionsoptions

Option Type Description (some from docs)

options array of strings a list of button titles (required)

cancelButtonIndex integer index of cancel button in options

destructiveButtonIndex integer index of destructive button in options

title string a title to show above the action sheet

message string a message to show below the title

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

250

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

Table 9.6 ActionSheetIOS showShareActionSheetWithOptions options

Option Type Description (some from docs)

url string a URL to share

message string a message to share

subject string a subject for the message

excludedActivityTypes array the activities to exclude from the ActionSheet

9.9 Summary
• Using platform android.js and ios.js extensions to import cross-platform files
• Using the Platform API to render platform specific code
• Implementing DatePickerIOS to choose and save dates in your app
• Using PickerIOS to render and save values from a list
• Using ProgressViewIOS to show loading progress
• Using SegmentedControlIOS to choose from an array of options
• Using TabBarIOS to create and switch between tabs in your app
• How ActionSheetIOS allows us to call either a native iOS action sheet or share sheet in

an app

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

251

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

10
Android-specific components and

APIs

This chapter covers

 How to implement and use Android-specific APIs

 Using DrawerLayoutAndroid to create a side menu

 Creating a native toolbar with ToolbarAndroid

 Create paging views using ViewPagerAndroid

 Using DatePickerAndroid to create and manage dates in your application

 Managing time with TimePickerAndroid

 Creating toasts using ToastAndroid

In this chapter, we will cover Android specific APIs and components, discuss their props and
methods, and create examples that will mimic functionality and logic that will get you up to
speed quickly.

We will do so by creating a demo app that will show off these Android specific APIs and
components.

10.1 Creating the menu using DrawerLayoutAndroid

To get started, we will first create a slide out menu that will link to each of these pieces of
functionality. We will create this menu using the DrawerLayoutAndroid component.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

252

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

Figure 10.1 Initial layout of our application using DrawerLayoutAndroid

The first thing we need to do is create a new android application. From your command line in
the folder that you will be working in, create a new application with YourApplication being
the name of the application you are choosing.

react-native init YourApplication

The next thing we need to do is create the files we will be using. In the root of the application,
create a folder named app and three files in this folder named App.js, Home.js, Menu.js, and
Toolbar.js.

The first thing we need to do is update index.android.js to use our first Android specific
API, DrawerLayoutAndroid, which is the sliding toolbar from the left (figure 10.1).

To get started, let’s edit index.android.js to include and implement this component.

Listing 10.1 index.android.js

import React from 'react'
import {

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

253

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

 AppRegistry,
 DrawerLayoutAndroid, ❶		
 Button,
 View
} from 'react-native'

import Menu from './app/Menu' ❸		
import App from './app/App' ❷		

class chapter10 extends React.Component {

 constructor () {
 super()
 this.state = {
 scene: 'Home' ❸		
 }
 this.jump = this.jump.bind(this)
 this.openDrawer = this.openDrawer.bind(this)
 }

 openDrawer () {
 this.drawer.openDrawer() ❹		
 }

 jump (scene) { ❺		
 this.setState({
 scene
 })
 this.drawer.closeDrawer()
 }

 render () {
 return (
 <DrawerLayoutAndroid ❻		
 ref={drawer => this.drawer = drawer} ①		
 drawerWidth={300} ②		
 drawerPosition={DrawerLayoutAndroid.positions.Left} ③		
 renderNavigationView={() =><Menu onPress={this.jump} />}> ④		
 <View style={{ margin: 15 }}> ⑤		
 <Button onPress={() => this.openDrawer()} title='Open Drawer' />
 </View>
 <App ⑤		
 openDrawer={this.openDrawer}
 jump={this.jump
 scene={this.state.scene} />
 </DrawerLayoutAndroid>
)
 }
}

AppRegistry.registerComponent('chapter10', () => chapter10)

❶		 import DrawerLayoutAndroid from React Native
❷		 import the yet to be created App component
❸		 create a component state setting scene to ‘Home’
❹		 create a method to open the Drawer
❺		 create a method to update the scene state, and then call closeDrawer()

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

254

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

❻		 implement the DrawerLayoutAndroid component
①		 create a reference to the drawer to call methods on the component
②		 give the drawer a width of 300
③		 position the drawer to the left
④		 render the navigation view, which is a Menu component we have yet to create
⑤		 pass in a button as a child and attach the jump method to it. We will use this across the application to open the

drawer. We also pass in the App component as a child, giving the openDrawer, jump, and scene as props.

Next, we will need to create the menu we will be using in the drawer. In app/Menu.js, create
the following component (listing 10.2).

Listing 10.2 Menu.js - Creating the DrawerLayoutAndroid menu

import React from 'react'
import { View, StyleSheet, Button } from 'react-native'

let styles

const Menu = ({onPress }) => {
 const {
 button
 } = styles

 return (
 <View style={{ flex: 1 }}>
 <View style={button} >
 <Button onPress={() => onPress('Home')} title='Home' />
 </View>
 <View style={button} >
 <Button onPress={() => onPress('Toolbar')} title='Toolbar Android' />
 </View>
 </View>
)
}

styles = StyleSheet.create({
 button: {
 margin: 10,
 marginBottom: 0
 }
})

export default Menu

Next, let’s create the App component that will render based on the scene prop that is

passed to it.
<App
 openDrawer={this.openDrawer}
 jump={this.jump
 scene={this.state.scene} />

In app/App.js, create the following component (listing 10.3).

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

255

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

Listing 10.3 app/App.js

import React from 'react'

import Home from './Home' ❶		
import Toolbar from './Toolbar' ❷		

function getScene (scene) { ❸		
 switch (scene) {
 case 'Home':
 return Home
 case 'Toolbar':
 return Toolbar
 default:
 return Home
 }
}

const App = (props) => {
 const Scene = getScene(props.scene) ❹		
 return (
 <Scene openDrawer={props.openDrawer} jump={props.jump} /> ❺		
)
}

export default App

❶		 import the Home component that we have yet to create
❷		 import the Toolbar component that we have yet to create
❸		 create a getScene method that will check the scene and return the correct component
❹		 create a component based on the current scene prop
❺		 render the component, passing in openDrawer and jump as props

Now that everything is pretty much all set up, we can start creating components to interact
with the menu. For our current setup to work, we need to create a Home and a Toolbar
component.

In app/Home.js, create the following component (listing 10.4).

Listing 10.4 app/Home.js

import React, { Component } from 'react'
import {
 View,
 Text,
 StyleSheet
} from 'react-native'

let styles

class Home extends Component {
 render () {
 return (
 <View style={styles.container}>
 <Text
 style={styles.text}>

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

256

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

 Hello, this is an example application showing off some android specific
APIs and Components!

 </Text>
 </View>
)
 }
}

styles = StyleSheet.create({
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center'
 },
 text: {
 margin: 20,
 textAlign: 'center',
 fontSize: 18
 }
})

export default Home

And in app/Toolbar.js, create the following component (listing 10.5).

Listing 10.5 app/Toolbar.js

import React from 'react'
import {
 View,
 Text
} from 'react-native'

class ToolBar extends React.Component {
 render () {
 return (
 <View style={{ flex: 1 }}>
 <Text>Hello from Toolbar</Text>
 </View>
)
 }
}

export default ToolBar

Now, we should be able to start the application and see the toolbar as seen in figure 10.1.

10.2 ToolbarAndroid

Now that everything is set up, let’s add a new component, ToolbarAndroid. ToolbarAndroid is a
React Native component that wraps the native Android Toolbar. This component can display a
variety of things, including a title, subtitle, log, and navigation icon.

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

257

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

In our example, we will implement ToolbarAndroid with a title, subtitle, and two actions
(Options and Menu). When Menu is clicked, we will trigger the openDrawer method that we
have available as a prop.

Figure 10.2 ToolbarAndroid with title, subtitle, and two actions

In app/Toolbar.js, update our code to the following (listing 10.6).

Listing 10.6 app/Toolbar.js – ToolbarAndroid implementation.

import React from 'react'
import {
 ToolbarAndroid, ❶		
 View
} from 'react-native'

class Toolbar extends React.Component {
 render () {
 const onActionSelected = (index) => { ❷		
 if (index === 1) {
 this.props.openDrawer()

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

258

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

 }
 }

 return (
 <View style={{ flex: 1 }}>
 <ToolbarAndroid ❸		
 subtitleColor='white' ①		
 titleColor='white' ②		
 style={{ height: 56, backgroundColor: '#12998c' }} ③		
 title='React Native in Action' ④		
 subtitle='ToolbarAndroid' ⑤		
 actions={[{ title: 'Options', show: 'always' }, { title: 'Menu', show:

'always' }]} ⑥		
 onActionSelected={onActionSelected} ⑦		
 />
 </View>
)
 }
}

export default Toolbar

❶		 import the ToolbarAndroid component
❷		 create an onActionSelected method. This method takes in an index, and will call this.props.openDrawer

if the index is one. We will later have an array of actions, each action will call this method when clicked, passing in
its own index.

❸		 return ToolbarAndroid

①		 pass in white as the subtitleColor prop
②		 pass in white as the titleColor prop
③		 give the component a height and backgroundColor
④		 pass in a title prop of ‘React Native in Action’
⑤		 pass in a subtitle prop of ‘ToolbarAndroid’
⑥		 pass in an array of actions. When these actions are clicked, they will be called with their index in the array as an

argument
⑦		 pass in onActionSelected as the onActionSelected method

Now, we should not only see the ToolbarAndroid when we refresh our device, but we should
also be able to open the DrawerLayoutAndroid menu by clicking on menu.

10.3 ViewPagerAndroid

Next, let’s create an example using ViewPagerAndroid. ViewPagerAndroid is a component that
easily allows you to swipe left and right between views. Every child of ViewPagerAndroid will
be treated as its own separate swipeable view (figure 10.3).

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

259

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

Figure 10.3 ViewPagerAndroid with two child views

In app/ViewPager.js, create the following component (listing 10.7).

Listing 10.7 ViewPagerAndroid

import React, { Component } from 'react'
import {
 ViewPagerAndroid, ❶		
 View,
 Text
} from 'react-native'

let styles

class ViewPager extends Component {
 render () {
 const {
 pageStyle,
 page1Style,
 page2Style,

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

260

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

 textStyle
 } = styles
 return (
 <ViewPagerAndroid ❷		
 style={{ flex: 1 }}
 initialPage={0}>
 <View style={[pageStyle, page1Style]}>
 <Text style={textStyle}>First page</Text>
 </View>
 <View style={[pageStyle, page2Style]}>
 <Text style={textStyle}>Second page</Text>
 </View>
 </ViewPagerAndroid>
)
 }
}

styles = {
 pageStyle: {
 justifyContent: 'center',
 alignItems: 'center',
 padding: 20,
 flex: 1,
 },
 page1Style: {
 backgroundColor: 'orange'
 },
 page2Style: {
 backgroundColor: 'red'
 },
 textStyle: {
 fontSize: 18,
 color: 'white'
 }
}

export default ViewPager

❶		 import ViewPagerAndroid from React Native
❷		 return ViewPagerAndroid with two child views, one of them with an orange background and one with a red

background

Next we need to update Menu.js to add the button to view the new component. In Menu.js,
add this button below the Toolbar Android button.

<View style={button} >
 <Button onPress={() => onPress('ViewPager')} title='ViewPager Android' />
</View>

Finally, we need to import the new component and update the switch statement in App.js to
render the new component (listing 10.8).

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

261

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

Listing 10.8 App.js with new ViewPager component

import React from 'react'

import Home from './Home'
import Toolbar from './Toolbar'
import ViewPager from './ViewPager'

function getScene (scene) {
 switch (scene) {
 case 'Home':
 return Home
 case 'Toolbar':
 return Toolbar
 case 'ViewPager':
 return ViewPager
 default:
 return Home
 }
}

const App = (props) => {
 const Scene = getScene(props.scene)
 return (
 <Scene openDrawer={props.openDrawer} jump={props.jump} />
)
}

export default App

Now, we should be able to run the app and see the new ViewPager Android Button in the side
menu, and can view and interact with the new component.

10.4 DatePickerAndroid

DatePickerAndroid lets us open and interact with the native Android date picker dialog (figure
10.4).

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

262

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

Figure 10.4 DatePickerAndroid

To open and use the DatePickerAndroid component, we import DatePickerAndroid and call
DatePickerAndroid.open().

To get started, create app/DatePicker.js and create the following component (listing10.9).

Listing 10.9 DatePicker.js

import React, { Component } from 'react'
import { DatePickerAndroid, View, Text } from 'react-native' ❶		

let styles

class DatePicker extends Component {

 constructor() {
 super()
 this.state = { ❷		
 date: new Date()
 }

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

263

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

 this.openDatePicker = this.openDatePicker.bind(this)
 }

 openDatePicker () { ❸		
 DatePickerAndroid.open({
 date: this.state.date
 })
 .then((date) => {
 const { year, month, day, action } = date
 if (action === 'dateSetAction') {
 this.setState({ date: new Date(year, month, day) })
 }
 }) }

 render() {
 const {
 container,
 text
 } = styles

 return (
 <View style={container}> ❹		
 <Text onPress={this.openDatePicker} style={text}>Open Datepicker</Text>
 <Text style={text}>{this.state.date.toString()}</Text>
 </View>
)
 }
}

styles = {
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center'
 },
 text: {
 marginBottom: 15,
 fontSize: 20
 }
}

export default DatePicker

❶		 import DatePickerAndroid from React Native
❷		 create the state, setting the date as a new Date()
❸		 create openDatePicker method, passing in the current date as the date to show on when the datepicker opens. The

open method returns a promise, giving us an object with the chosen day, month, year, and the action that was
chosen. If you choose a date, then the action is dateSetAction. If the modal is dismissed, then the action is
dismissedAction.

❹		 We create a button that will call the openDatePicker method, and display the date in our View.

Now that we have the component created, let’s update app/App.js to include the new
component (listing 10.10).

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

264

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

Listing 10.10 app/App.js with new DatePicker component

import React from 'react'

import Home from './Home'
import Toolbar from './Toolbar'
import ViewPager from './ViewPager'
import DatePicker from './DatePicker'

function getScene (scene) {
 switch (scene) {
 case 'Home':
 return Home
 case 'Toolbar':
 return Toolbar
 case 'ViewPager':
 return ViewPager
 case 'DatePicker':
 return DatePicker
 default:
 return Home
 }
}

const App = (props) => {
 const Scene = getScene(props.scene)
 return (
 <Scene openDrawer={props.openDrawer} jump={props.jump} />
)
}

export default App

Finally, we can update the Menu to add the new button that will open our new DatePicker
component. In app/Menu.js, add the following button below the ViewPager Android button.

<View style={button} >
 <Button onPress={() => onPress('DatePicker')} title='DatePicker Android' />
</View>

10.5 TimePickerAndroid

Next up is TimePickerAndroid. TimePickerAndroid is like DatePickerAndroid in that you import
it and call the open method to interact with it. This component brings up a TimePicker dialog
that allows you to choose a time and use it in your application (figure 10.5).

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

265

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

Figure 10.5 TimePickerAndroid with both hour and minute views

To standardize our time formats, we will be using a library called momentjs. To get started
with this library, let’s install moment. In the root directory of the project, install moment using
npm or yarn.

npm install moment –save

Next, let’s create the TimePicker component. In app/TimePicker.js, create the following
component (figure 10.11).

Figure 10.11 app/TimePicker.js – TimePickerAndroid using moment.js

import React, { Component } from 'react'
import { TimePickerAndroid, View, Text } from 'react-native' ❶		
import moment from 'moment' ❷		

let styles

class TimePicker extends Component {

 constructor () {
 super()
 this.state = {
 time: moment().format('h:mm a') ❸		
 }
 this.openTimePicker = this.openTimePicker.bind(this)
 }

 openTimePicker () { ❹		

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

266

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

 TimePickerAndroid.open({
 time: this.state.time
 })
 .then((time) => {
 const { hour, minute, action } = time
 if (action === 'timeSetAction') {
 const time = moment().minute(minute).hour(hour).format('h:mm a')
 this.setState({ time })
 }
 })
 }

 render () {
 const {
 container,
 text
 } = styles

 return (
 <View style={container}> ❺		
 <Text onPress={this.openTimePicker} style={text}>Open Time Picker</Text>
 <Text style={text}>{this.state.time.toString()}</Text>
 </View>
)
 }
}

styles = {
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center'
 },
 text: {
 marginBottom: 15,
 fontSize: 20
 }
}

export default TimePicker

❶		 import TimePickerAndroid from React Native
❷		 import moment from moment
❸		 create an initial time and store it in the state. We call moment().format('h:mm a') to format the date. The

h:mm a that was passed in tells moment that we only want the hour, minute and whether the time is am or pm.
❹		 create openTimePicker method. Again, like DatePickerAndroid, the open method returns a promise, with

a time object that contains hour, minute, and action. We check to see if the action is timeSetAction, and if so
we update the state to reflect the new time.

❺		 create a button in the view to call the openTimePicker method and display the time in the view.

Now that we have the component created, let’s update app/App.js to include the new
component (listing 10.12).

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

267

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

Listing 10.12 app/App.js with added TimePicker component

import React from 'react'

import Home from './Home'
import Toolbar from './Toolbar'
import ViewPager from './ViewPager'
import DatePicker from './DatePicker'
import TimePicker from './TimePicker'

function getScene (scene) {
 switch (scene) {
 case 'Home':
 return Home
 case 'Toolbar':
 return Toolbar
 case 'ViewPager':
 return ViewPager
 case 'DatePicker':
 return DatePicker
 case 'TimePicker':
 return TimePicker
 default:
 return Home
 }
}

const App = (props) => {
 const Scene = getScene(props.scene)
 return (
 <Scene openDrawer={props.openDrawer} jump={props.jump} />
)
}

export default App

Finally, we can update the Menu to add the new button that will open our new TimePicker
component. In app/Menu.js, add the following button below the DatePicker Android button.

<View style={button} >
 <Button onPress={() => onPress('TimePicker')} title='TimePicker Android' />
</View>

10.6 ToastAndroid

ToastAndroid allows us to easily call native Android toasts from within our React Native
application. An android toast is just a popup with a message that goes away after a given
period (figure 10.6).

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

268

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

Figure 10.6 ToastAndroid with default and middle positioned toasts.

To get started building out this component, create app/Toast.js with the following component
(listing 10.13).

Listing 10.13 app/Toast.js - ToastAndroid

import React from 'react'

import { View, Text, ToastAndroid } from 'react-native' ❶		

let styles

const Toast = () => {
 let {
 container,
 button
 } = styles

 const basicToast = () => { ❷		

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

269

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

 ToastAndroid.show('Hello World!', ToastAndroid.LONG)
 }

 const gravityToast = () => { ❸		
 ToastAndroid.showWithGravity('Toast with Gravity!', ToastAndroid.LONG,

ToastAndroid.CENTER)
 }

 return (
 <View style={container}> ❹		
 <Text style={button} onPress={basicToast}>Open basic toast</Text>
 <Text style={button} onPress={gravityToast}>Open gravity toast</Text>
 </View>
)
}

styles = {
 container: {
 flex: 1,
 justifyContent: 'center',
 alignItems: 'center'
 },
 button: {
 marginBottom: 10,
 color: 'blue'
 }
}

export default Toast

❶		 import ToastAndroid from React Native
❷		 create a basicToast method that will call ToastAndroid.show(), passing in two arguments: 1. A

message and 2. A length of time to show the toast. Can be either SHORT (about 2 seconds) or LONG (about 4
seconds)

❸		 create gravityToast method that will call ToastAndroid.showWithGravity(). This method is like
ToastAndroid.show(), but it allows for a third argument to be passed, allowing us to position the toast either
at the top, bottom, or center of the view. We pass in ToastAndroid.CENTER as the third argument, centering
the toast in the middle of the screen.

❹		 create two buttons in the view, attaching our methods to these buttons

Now that we have the component created, let’s update app/App.js to include the new
component (listing 10.14).

Listing 10.14 app/Menu.js – Adding Toast component to app

import React from 'react'

import Home from './Home'
import Toolbar from './Toolbar'
import ViewPager from './ViewPager'
import DatePicker from './DatePicker'
import TimePicker from './TimePicker'
import Toast from './Toast'

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

270

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

function getScene (scene) {
 switch (scene) {
 case 'Home':
 return Home
 case 'Toolbar':
 return Toolbar
 case 'ViewPager':
 return ViewPager
 case 'DatePicker':
 return DatePicker
 case 'TimePicker':
 return TimePicker
 case 'Toast':
 return Toast
 default:
 return Home
 }
}

const App = (props) => {
 const Scene = getScene(props.scene)
 return (
 <Scene openDrawer={props.openDrawer} jump={props.jump} />
)
}

export default App

Finally, we can update the Menu to add the new button that will open our new Toast
component. In app/Menu.js, add the following button below the TimePicker Android button.

<View style={button} >
 <Button onPress={() => onPress('Toast')} title='Toast Android' />
</View>

10.7 Summary
 Implementing a side menu using DrawerLayoutAndroid
 Using ToolbarAndroid to create an interactive app Toolbar
 How to use ViewPagerAndroid to create swipeable views
 Using DatePickerAndroid to create and manipulate dates in your application
 Using TimePickerAndroid to create and manipulate time in your application
 Using ToastAndroid to create native android Toast notifications

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

271

Licensed to Hans Otten <hans.otten@autodata.net>

https://forums.manning.com/forums/react-native-in-action

A
Installing and running

React Native

This appendix covers

• InstallingReact Native for iOS and Android
• Creating and running a new React Native application

A.1 Developing for iOS Devices
At the time of this writing, if you would like to develop for iOS you must have a Mac, as Linux
and Windows are not supported for developing for the iOS platform.

A.1.1 Getting Started

To get started with iOS, you need the following installed on your machine and be using a Mac.

NOTE If you do not have homebrew installed, go to http://brew.sh/ and install homebrew before following

the next steps.

1. Xcode – Xcode is available through the app store.
2. Node.js – The React Native team recommends installing node.js through homebrew on

the command line:

brew install node

3. Wathman – This is also recommended to be installed through homebrew on the
command line:

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

272

Licensed to Hans Otten <hans.otten@autodata.net>

http://brew.sh/
https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

brew install watchman

4. React Native command line interface – this should be installed via the command line

npm install –g react-native-cli

NOTE If you get a permission error, try with sudo:

sudo npm install -g react-native-cli

TESTING THE INSTALLATION ON IOS

Next, we will check to see if we have React Native properly installed by creating a new project.
In the terminal or on your command line of choice, run the following commands:

react-native init MyProject
cd MyProject

Now that we’ve created the new project and changed into the new directory, we can run the
project in a couple of different ways.

• Run the project from the command line: To do this, execute react-native run-ios
from within the MyProject directory.

• Open the project in Xcode: To do this, open the MyApp.xcodeproj file located at
MyProject/ios/MyApp.xcodeproj .

A.2 Developing for Android devices
Developing React Native for Android can be done with either a Mac, Linux, or Windows
environment.

A.2.1 Mac and Android

To get started, you need the following to be installed on your machine.

• Node.js
• React Native command line tools
• Watchman
• Android Studio

The React Native docs, as well as myself, recommend installing node and watchman via
homebrew.

1. If you do not already have Homebrew installed, go to http://brew.sh/ and install it on
your machine.

2. Next, open a command line and install node and watchman using Homebrew:

brew install node
brew install watchman

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

273

Licensed to Hans Otten <hans.otten@autodata.net>

http://brew.sh/
https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

3. Once node.js is installed, then install the React Native command line tools by running
the following command from your command line:

npm install -g react-native-cli

4. Next, install Android Studio at https://developer.android.com/studio/install.html.

Once everything is installed, go to section A.3 of the appendix to create your first project.

A.2.2 Windows and Android

To get started, you need the following to be installed on your machine.

• node.js
• React Native command line tools
• Watchman
• Android Studio

Watchman is in the alpha stage for Windows, but is working fine so far in my experience.

1. To install watchman, go to https://github.com/facebook/watchman/issues/19 and
download the alpha build via the link in the first comment.

2. React Native recommends installing node.js and Python2 via Chocolatey, a package
manager for Windows. To do so, install Chocolatey, then open a commandline as
admin, then run:

choco install nodejs.install
choco install python2

3. Then, install the React Native command line interface:

npm install –g react-native-cli

4. Then, download and install Android Studio at
https://developer.android.com/studio/install.html.

Once everything is installed, go to section A.3 of the appendix to create your first project.

A.2.3 Linux and Android

To get started, you need the following to be installed on your machine.

• Node.js
• React Native command line tools
• Watchman
• Android Studio

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

274

Licensed to Hans Otten <hans.otten@autodata.net>

https://developer.android.com/studio/install.html
https://github.com/facebook/watchman/issues/19
https://developer.android.com/studio/install.html
https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

1. First, if you do not already have node.js installed, go to
https://nodejs.org/en/download/package-manager/ and follow the installation
instructions for your Linux distribution.

2. Once node.js is installed, run the following command to install the React Native
command line tools:

npm install -g react-native-cli

3. Then, download Android Studio at https://developer.android.com/studio/install.html .
4. Then, download and install Watchman at

https://facebook.github.io/watchman/docs/install.html#installing-from-source .

Once everything is installed, go to section A.3 to create your first project.

A.3 Creating a new project
Once your development environment is set up, and react-native-cli is installed, creating a new
project is done from the command line.

To create a new React Native application, navigate to the folder in which you would like to
create your project and issue the following command:

react-native init MyProjectName

NOTE MyProjectName can be whatever you want to name your project.

A.4 Running the project
Once you have successfully created a new project, change directories into the project from
your command line and run the following commands:

RUN PROJECT FOR IOS

react-native run-ios

RUN PROJECT FOR ANDROID

react-native run-android

©Manning Publications Co. We welcome reader comments about anything in the manuscript - other than typos and
other simple mistakes. These will be cleaned up during production of the book by copyeditors and proofreaders.

https://forums.manning.com/forums/react-native-in-action

275

https://nodejs.org/en/download/package-manager/
https://developer.android.com/studio/install.html
https://facebook.github.io/watchman/docs/install.html#installing-from-source
https://forums.manning.com/forums/react-native-in-action
https://forums.manning.com/forums/react-native-in-action

	React Native in Action: Developing iOS and Android Apps with JavaScript MEAP V08
	Copyright
	Welcome
	Brief contents
	Chapter 1: Getting started with React Native
	1.1 Introducing React and React Native
	1.1.1 A Basic React Native Class
	1.1.2 React Lifecycle

	1.2 What You Will Learn
	1.3 What You Should Know
	1.4 Understanding how React Native works
	1.4.1 JSX
	1.4.2 Threading
	1.4.3 React
	1.4.4 Unidirectional data flow
	1.4.5 Diffing
	1.4.6 Thinking in components

	1.5 Acknowledging the strengths
	1.5.1 Developer availability
	1.5.2 Developer productivity
	1.5.3 Performance
	1.5.4 One-way data flow
	1.5.5 Developer experience
	1.5.6 Transpilation
	1.5.7 Productivity and efficiency
	1.5.8 Community
	1.5.9 Open source
	1.5.10 Immediate updates
	1.5.11 Drawbacks
	1.5.12 Conclusion

	1.6 Creating and using basic components
	1.6.1 Components
	1.6.2 Native components
	1.6.3 Component composition
	1.6.4 Exportable components
	1.6.5 Combining components

	1.7 Creating a starter project
	1.8 Summary

	Chapter 2: Understanding React
	2.1 State
	2.1.1 STATE

	2.2 Props
	2.3 React Component Specifications
	2.3.1 render
	2.3.2 getInitialState and constructor
	2.3.3 Default Props
	2.3.4 propTypes
	2.3.5 statics

	2.4 React Lifecycle Methods
	2.4.1 ComponentWillMount
	2.4.2 componentDidMount
	2.4.3 componentWillReceiveProps
	2.4.4 shouldComponentUpdate
	2.4.5 componentWillUpdate
	2.4.6 componentDidUpdate
	2.4.7 componentWillUnmount

	2.5 Summary

	Chapter 3: Building Your First React Native App
	3.1 Building a Todo app
	3.1.1 Layout out the Todo app
	3.1.2 Coding the Todo app
	3.1.3 Opening Developer Menu in iOS Simulator
	3.1.4 Opening the developer menu in Android Emulator
	3.1.5 Using the Developer Menu
	3.1.6 Continuing building the Todo app

	3.2 Summary

	Chapter 4:
Introduction to styling
	4.1 Styling Overview
	4.1.1 Applying styles to elements
	4.1.2 Creating a StyleSheet
	4.1.3 Styling View Components

	4.2 Styling Text Components
	4.3 Summary

	Chapter 5:
Styling in depth
	5.1 Flexbox
	5.1.1 Flexbox Properties
	5.1.2 flex Property
	5.1.3 flexDirection Property
	5.1.4 alignItems Property
	5.1.5 justifyContent Property
	5.1.6 alignSelf Property
	5.1.7 flexWrap Property

	5.2 Dynamic Styles
	5.2.1 Dynamic Styles Using State and Props
	5.2.2 Dynamic Styles Using Functions and Class Methods

	5.3 Organizing Styles
	5.3.1 Declaring styles in component
	5.3.2 Creating reusable stylesheets

	Chapter 6:
Cross-platform component
	6.1 Implementing native cross-platform components
	6.1.1 ActivityIndicator
	6.1.2 Image
	6.1.3 Modal
	6.1.4 Picker
	6.1.5 ScrollView
	6.1.6 RefreshControl
	6.1.7 Slider
	6.1.8 Switch
	6.1.9 TextInput
	6.1.10 TouchableWithoutFeedback
	6.1.11 TouchableHighlight
	6.1.12 TouchableOpacity

	6.2 Summary

	Chapter 7:
Navigation
	7.1 NavigatorIOS
	7.2 Using Navigator to create cross platform navigation
	7.3 Using NavigationExperimental to create cross platform navigation
	7.4 Summary

	Chapter 8:
Cross-platform APIs
	8.1 Implementing Cross Platform APIs
	8.1.1 Alert
	8.1.2 AppState
	8.1.3 AsyncStorage
	8.1.4 ClipBoard
	8.1.5 Dimensions
	8.1.6 Geolocation
	8.1.7 Keyboard
	8.1.8 NetInfo
	8.1.9 PanResponder

	Chapter 9:
iOS-specific Components and APIs
	9.1 Implementing iOS-specific APIs and Components
	9.2 Targeting platform-specific code
	9.2.1 iOS and Android file extension
	9.2.2 Detecting platform using the Platform API

	9.3 DatePickerIOS
	9.4 PickerIOS
	9.5 ProgressViewIOS
	9.6 SegmentedControlIOS
	9.7 TabBarIOS
	9.8 ActionSheetIOS
	9.9 Summary

	Chapter 10: Android-specific components and APIs
	10.1 Creating the menu using DrawerLayoutAndroid
	10.2 ToolbarAndroid
	10.3 ViewPagerAndroid
	10.4 DatePickerAndroid
	10.5 TimePickerAndroid
	10.6 ToastAndroid
	10.7 Summary

	Appendix A: Installing and running React Native
	A.1 Developing for iOS Devices
	A.1.1 Getting Started

	A.2 Developing for Android devices
	A.2.1 Mac and Android
	A.2.2 Windows and Android
	A.2.3 Linux and Android

	A.3 Creating a new project
	A.4 Running the project

